

Available online at www.sciencedirect.com

Biochemical Pharmacology 68 (2004) 1833-1844

Biochemical Pharmacology

www.elsevier.com/locate/biochempharm

Cell-type specific calcium signaling by corticotropin-releasing factor type 1 (CRF₁) and 2a (CRF_{2(a)}) receptors: phospholipase C-mediated responses in human embryonic kidney 293 but not SK-N-MC neuroblastoma cells

Frank M. Dautzenberg^{a,*}, Eric Gutknecht^b, Ilse Van der Linden^a, J. Alberto Olivares-Reyes^c, Franz Dürrenberger^b, Richard L. Hauger^d

^aJohnson and Johnson Research and Development, CNS Research, Turnhoutseweg 30, Beerse, Belgium ^bAxovan Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland ^cDepartamento de Bioquimica, Centro de Investigacion y de Estudios Avanzados del Instituto, Politecnico Nacional, A.P. 14-740, 07000 Mexico DF, Mexico ^dVA Healthcare System, Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA

Received 10 May 2004; accepted 12 July 2004

Abstract

The human corticotropin-releasing factor (hCRF) receptors CRF_1 and $CRF_{2(a)}$ couple to the G_s protein. It has been postulated that CRF receptors may also signal through phospholipase C (PLC). To test this hypothesis, binding and signaling properties were determined for both receptor subtypes stably expressed in human embryonic kidney 293 (HEK293) and human SK-N-MC neuroblastoma cells. CRF receptors were highly expressed and strongly coupled to G_s in HEK293 and SK-N-MC cells. However, when the calcium mobilization pathway was investigated, marked differences were observed. In SK-N-MC cells, neither CRF receptor stimulated calcium mobilization in the fluorometric imaging plate reader (FLIPR) assay, whereas activation of orexin type 1 and 2 receptors stably expressed in SK-N-MC cells revealed robust calcium responses. In contrast, intracellular calcium was strongly mobilized by agonist stimulation of hCRF₁ and hCRF_{2(a)} receptors in HEK293 cells. In HEK293 cells, potency rank orders for calcium signaling of both hCRF₁ and hCRF_{2(a)} receptors was observed in the presence of the PLC inhibitor U-73,122 whereas ryanodine, an inhibitor of calcium release channels and the protein kinase A inhibitor Rp-cAMPS were ineffective. Finally, CRF agonists produced a small but significant stimulation of inositol 1,4,5-triphosphate (IP₃) accumulation in hCRF₁-and hCRF_{2(a)}-transfected HEK293 cells. These data clearly show that phospholipase C-mediated signaling of CRF receptors is dependent upon the cellular background and that in HEK293 cells human CRF receptors robustly respond in the FLIPR format.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Ligand binding; Cyclic AMP; Ca²⁺ mobilization; Phospholipase C; Inositol 1,4,5-triphosphate; CRF receptor signaling

1. Introduction

doi:10.1016/j.bcp.2004.07.013

Corticotropin-releasing factor (CRF) and its structurally related analogs urocortins 1–3 control neuroendocrine, autonomic and behavioral responses to stress by interacting with two high-affinity CRF receptors: CRF₁ and CRF₂ [1,2]. Both receptor subtypes, which are \sim 70% homologous, belong to the class B1 subfamily of G proteincoupled receptors (GPCR) [3,4]. Three biologically active

Abbreviations: CRF, corticotropin-releasing factor; CRF₁, CRF type 1 receptor; CRF₂, CRF type 2 receptor; h, human; oCRF, ovine CRF; FLIPR, fluorimetric imaging plate reader; GPCR, G protein-coupled receptor; G_s, cAMP stimulatory G protein; G_q, phosphoinositide- and calcium-stimulating G protein; IP₃, inositol 1,4,5-triphosphate; PLC, phospholipase C

^{*} Corresponding author. Tel.: +32 14 603921; fax: +32 14 603753. *E-mail address:* fdautzen@prdbe.jnj.com (F.M. Dautzenberg).

^{0006-2952/\$ -} see front matter (C) 2004 Elsevier Inc. All rights reserved.

splice variants, $CRF_{2(a-c)}$, have been identified for the CRF_2 receptor [5].

Despite their high degree of sequence homology, the specificity of CRF agonist and antagonist binding to CRF1 and CRF₂ proteins differs considerably. Binding and functional studies using cell lines recombinantly or endogenously expressing CRF₁ receptors revealed a distinct ligandselective profile: human and ovine CRF, urocortin 1, and the non-mammalian CRF agonists fish urotensin 1, and frog sauvagine bind with high affinity to the mammalian CRF₁ receptor and activate the cyclic AMP signaling pathway [6-9]. In contrast, urocortin 2 and urocortin 3 do not bind to or activate CRF₁ receptors [10–12]. Pharmacological characterization of the CRF₂ receptor splice variants revealed no major differences between $CRF_{2(a)}$, $CRF_{2(b)}$ and $CRF_{2(c)}$ receptors [6,13,14]. However, the binding profiles of these three CRF₂ receptors markedly diverge from the binding profile of the CRF_1 receptor [6,8– 12]. Urotensin 1, sauvagine and urocortins 1-3 bind with up to 1000-fold higher affinities to the CRF₂ receptor than species homologues of CRF (see [5]). In agreement with the binding data, a similar rank order of potency is typically observed when these five agonists are used to stimulate intracellular cyclic AMP (cAMP) accumulation [6,8,10-12]. Therefore, urocortin 2 and urocortin 3 are generally considered to represent endogenous ligands for mammalian CRF₂ receptor variants, whereas urocortin 1 is thought to be an endogenous ligand for both CRF₁ and CRF₂ receptors.

As members of the GPCR subfamily B1, CRF₁ and CRF₂ receptors couple to the stimulatory G protein G_{s} [4] thereby promoting accumulation of the intracellular second messenger cAMP (see above). Because other members of the B1 subfamily have the capability to signal through activation of phospholipase C (PLC) in certain cell systems [15-17], CRF receptors may also activate PLC, and transiently mobilize calcium (Ca^{2+}) depending on the cellular background. Indeed, preliminary evidence suggests that at least the CRF₁ receptor, when recombinantly expressed may interact with G_q proteins [18–21]. In addition, the CRF₁ receptor also appears to increase inositol 1,4,5-triphosphate (IP₃) accumulation in Leydig cells and placenta [18,20]. For the CRF₂ receptor, however, this phenomenon has not been observed.

In this study, we stably expressed the human CRF_1 (h CRF_1) and $CRF_{2(a)}$ (h $CRF_{2(a)}$) receptors in human embryonic kidney 293 (HEK293) and neuroblastoma SK-N-MC cells to determine if G protein coupling and second messenger signaling differed in brain- and peripheral-derived cell lines. Accordingly, in addition to the conventional cAMP measurements, we also determined in HEK293 and SK-N-MC cells if both receptor subtypes can stimulate transient Ca^{2+} mobilization in the fluorometric imaging plate reader (FLIPR), which is a format allowing for real-time agonist activation measurement [22,23]. Our study establishes cell-type specific direct coupling of CRF receptors to the PLC pathway.

2. Materials and methods

2.1. Materials, peptides and reagents

All cell culture media and reagents were purchased from Life Technologies. All peptides (purity >95) were obtained from Bachem Corporation.

2.2. Radiochemicals

¹²⁵I-astressin (2200 Ci/mmol) was purchased from NEN while ¹²⁵I-Tyr⁰-sauvagine (¹²⁵I-sauvagine; 2000 Ci/mmol) was purchased from Amersham Pharmacia Biotech.

2.3. Cell culture, transfections and radioreceptor binding assays

The HEK293 cells stably expressing the hCRF₁ (hCRF₁-HEK) and hCRF_{2(a)} (hCRF_{2(a)}-HEK) receptors were established as previously described [7,24]. The human neuroblastoma SK-N-MC line (American Type Culture Collection No. HTB-10) was maintained in ISCOVE's medium (Life Technologies) supplemented with 5% fetal bovine serum and 4 mM L-glutamine. cDNAs of hCRF₁ and hCRF_{2(a)} receptors and orexin type 1 (OX₁) and type 2 (OX₂) receptors (kindly provided by Dr. Philippe Samama, Roche Biosciences), were inserted into the pcDNA3 vector (2 µg each), and then stably transfected into SK-N-MC cells using the GeneporterTM reagent (Axonlab) as reported previously [24]. Two days after transfection, geneticin selection (500 µg/ml) was initiated to select receptor-expressing clones.

Membranes were prepared from stably transfected HEK293 or SK-N-MC cells as previously described [7,25]. Scatchard and saturation-binding analyses with the Xlfit software program (IDBS) were utilized for calculating the dissociation constant (K_d) and maximal binding (B_{max}) values for equilibrium binding of ¹²⁵I-astressin or ¹²⁵I-sauvagine to membrane proteins (0.5–5 µg) measured using the SPA format as described previously [8,24]. Under these conditions, less than 10% of the total radioactivity was specifically bound by the various receptor constructs and the binding data conformed with a one-site model for CRF receptors expressed in both cell lines. The inhibition constant K_i was also calculated with the Xlfit program.

2.4. cAMP assays

hCRF₁-HEK, hCRF₁-SK-N-MC, hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC cells were plated at 50,000 cells per well in 96-well dishes. Transfected cells were exposed to

CRF peptides for a 10-min stimulation period at 37 °C (5% CO_2) as previously described [26].

2.5. Calcium mobilization assays

HEK293 or SK-N-MC cells stably expressing hCRF₁ or hCRF_{2(a)} receptors were seeded at a density of 100,000 cells into poly-D-lysine coated 96-well blackwall, clearbottom microtiter plates (Corning). One day later, the medium was removed and 100 µl loading medium [DMEM high glucose, without serum, supplemented with 10 mM HEPES-acid, 0.1% BSA, 5 mM probenecid and 2 µM Fluo-3AM (Molecular Probes)]. Cells were loaded for 1 h at 37 °C, washed twice with 100 µl assay buffer (5 mM HEPES-acid, 140 mM NaCl, 1 mM MgCl₂, 5 mM KCl, 10 mM glucose) and then 150 µl assay buffer was added. Cells were further pre-incubated at room temperature before adding agonists in 50 µl assay buffer and then measured on a T-channel fluorometric imaging plate reader (FLIPR, Molecular Devices). Maximum change in fluorescence over baseline was used to determine agonist response.

2.6. Stimulation of inositol 1,4,5-triphosphate (IP_3) production and data reduction

For IP₃ experiments, hCRF₁- and hCRF_{2(a)}-HEK cells were metabolically labeled with myo-[2-3H]inositol (5 µCi/ml) overnight (18 h). The next day labeled cells were washed twice with a large volume (40 ml) of myoinositol-free DMEM medium, and then pre-incubated in myoinositol-free Medium 199(E) with 10 mM lithium chloride for 30 min at 37 °C. After cells were again washed, and resuspended in myoinositol-free Medium 199(E) with 10 mM lithium chloride, they were maximally stimulated with 1-10 µM CRF receptor agonists for 20 min. The reaction was then stopped by adding 10 mM formic acid. Formation of IP₃ was measured by anion exchange chromatography using Bio-Rad AG 1-X8 columns, as previously described [27,28]. After Packard Ultima Flow scintillation fluid was added to collected fractions, [³H] radioactivity was measured in a beta-counter. The data were analyzed by two-way ANOVA and significance between groups was determined by post hoc analysis using Dunnett's test.

3. Results

3.1. Binding properties of $hCRF_1$ and $hCRF_{2(a)}$ receptors stably expressed in HEK293 and SK-N-MC cells

A detailed characterization of CRF receptor binding and signaling properties of the HEK293 cell clones stably expressing hCRF₁ (hCRF₁-HEK) and hCRF_{2(a)} (hCRF_{2(a)}-HEK) receptor has been previously reported [7,8,24]. After cDNAs encoding the hCRF₁ and hCRF_{2(a)} receptors [7,24] were stably transfected into SK-N-MC neuroblastoma cells to generate the hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC lines, we determined the characteristics of CRF receptor binding and agonist-stimulated cyclic AMP accumulation. Saturation-binding experiments were performed in order to quantify the receptor number (B_{max}) for the hCRF₁-HEK, hCRF₁-SK-N-MC, hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC cell clones. Non-selective agonist (¹²⁵I-sauvagine) and antagonist (125I-astressin) radioligands were used to measure G protein-coupled and -uncoupled receptor sites (Table 1). In the hCRF₁-HEK cell line, the B_{max} was approximately three-fold greater for 125 I-astressin (P < 0.01) compared to ¹²⁵I-sauvagine binding, indicating that \sim 35% of CRF₁ receptor sites are coupled to G protein(s) in hCRF₁-HEK cells. When the same analysis was applied to the hCRF₁-SK-N-MC clone, a slightly higher G protein coupling rate was observed for the $hCRF_1$ in this cell line. Because hCRF₁-SK-N-MC membranes bound approximately two-fold more ¹²⁵I-astressin (P < 0.01) than ¹²⁵I-sauvagine, \sim 45% of CRF₁ receptors are coupled to G proteins. The total number of binding sites was significantly higher for the hCRF₁-SK-N-MC line compared to hCRF₁-HEK cells when either ¹²⁵I-sauvagine (80% greater; P < 0.01) and ¹²⁵I-astressin (30% greater; P <0.001) were used. Only minimal differences were observed for K_d values measured for binding of the two radioligands in hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC cells (Table 1).

Table 1

Saturation-binding analyses of radioligand binding to human CRF1 and CRF(2a) receptors stably expressed in HEK293 and SK-N-MC cells

Receptor	¹²⁵ I-Sauvagine		¹²⁵ I-Astressin	
	$\overline{K_{\rm d}}$ (nM)	B _{max} (pmol/mg)	$\overline{K_{\rm d}}$ (nM)	$B_{\rm max}$ (pmol/mg)
hCRF1-HEK	0.16 ± 0.04	1.05 ± 0.06	0.56 ± 0.09	3.11 ± 0.11
hCRF ₁ -SK-N-MC	0.12 ± 0.02	$1.91\pm0.07^{ m a}$	0.51 ± 0.12	4.07 ± 0.23^{b}
hCRF _{2(a)} -HEK	0.23 ± 0.05	$2.45\pm0.07^{\rm c}$	0.26 ± 0.05	4.79 ± 0.13^{d}
hCRF _{2(a)} -SK-N-MC	0.17 ± 0.04	$2.76 \pm 0.14^{\rm e}$	0.22 ± 0.03	$5.08\pm0.19^{\rm f}$

The data are average from at least two independent saturation-binding assays performed in triplicate. By ANOVA, there were significant differences across the groups for B_{max} values (F = 105.5, P < 0.0001). The B_{max} in each cell line was significantly higher in experiments using ¹²⁵I-astressin (P < 0.01) compared to ¹²⁵I-sauvagine as the radioligand. The following additional post hoc B_{max} differences were found to be statistically significant between cell groups: ^aP < 0.01 vs. hCRF₁-HEK-sauvagine; ^bP < 0.001 vs. hCRF₁-HEK-astressin; ^cP < 0.001 vs. hCRF₁-HEK-sauvagine; ^dP < 0.001 vs. hCRF₁-HEK-astressin; ^eP < 0.01 vs. hCRF₁-SK-N-MC-sauvagine; ^fP < 0.001 vs. hCRF₁-SK-N-MC-sauvagine

Table 2 Effects of GTP γ S on agonist- or antagonist radioligand binding to human CRF₁ and CRF_(2a) receptors stably expressed in HEK293 and SK-N-MC cells

Receptor	¹²⁵ I-Sauvagine		¹²⁵ I-Astressin	
	IC ₅₀ (nM)	<i>I</i> _{max} (%)	IC ₅₀ (nM)	I _{max} (%)
hCRF1-HEK	44 ± 6	31 ± 4	N.D.	3 ± 1
hCRF1-SK-N-MC	49 ± 5	45 ± 3^a	N.D.	2 ± 1
hCRF _{2(a)} -HEK	36 ± 4	50 ± 4^{a}	N.D.	5 ± 3
hCRF2(a)-SK-N-MC	41 ± 7	53 ± 5^a	N.D.	5 ± 1

The data are average from at least two independent binding experiments performed in triplicate. N.D.: the inhibition of ¹²⁵I-astressin binding by GTP_γS did not follow a dose–response relationship and thus, an IC₅₀ value could not be calculated. By ANOVA, there were significant differences across the groups for the I_{max} values of GTP_γS-mediated ¹²⁵I-sauvagine binding (F = 35.1, P < 0.01). The following additional post hoc I_{max} difference was found to be statistically significant between cell groups: ^aP < 0.01 vs. hCRF₁-HEK-sauvagine.

In these two cell lines, $\sim 50\%$ of the ¹²⁵I-astressin binding sites were labeled with ¹²⁵I-sauvagine. The B_{max} values did not significantly differ between hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC cells. In addition, the total number of CRF binding sites in the two hCRF₂-expressing cell lines was consistently higher than the B_{max} values measured in the two hCRF₁-expressing cell lines. Thus, we concluded that hCRF2(a) receptors in HEK293 and SK-N-MC cells were expressed at higher levels and were more strongly coupled to G proteins than hCRF₁ receptors expressed in these two cellular backgrounds. However, the B_{max} values for hCRF₁ receptors was significantly greater in SK-N-MC compared to HEK293 cells (P <0.001). In agreement with the saturation-binding analyses a smaller receptor proportion being sensitive to GTPyS inhibition was found for hCRF₁-HEK cells in comparison to hCRF₁-SK-N-MC and the two hCRF_{2(a)} receptor preparations with the agonist ¹²⁵I-sauvagine as radioligand (Table 2).

Competitive binding studies using five different agonists (oCRF, urocortins 1–3, and sauvagine) against ¹²⁵I-sauvagine were next completed in hCRF₁-HEK, hCRF₁-SK-N-MC, hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC lines. Agonist binding properties were significantly different for hCRF₁ and hCRF_{2(a)} receptors in agreement with previous studies [10–12] (Table 3). An identical rank order binding

profile was observed for the hCRF₁ receptor expressed in HEK293 and SK-N-MC cells. Urocortin 1, sauvagine and oCRF bound with subnanomolar to low nanomolar affinities, whereas urocortin 2 displaced the radiolabeled antagonist with $>1 \mu M$ affinities (Table 3). Because urocortin 3 exhibited the weakest affinity for the $hCRF_1$ receptor, an IC₅₀ value could not be calculated in both cell lines. In contrast, a different binding profile was observed for the hCRF_{2(a)} receptor expressed in HEK293 and SK-N-MC cells. The hCRF_{2(a)} receptor in both lines exhibited subnanomolar binding affinity for urocortin 1 and sauvagine. The binding affinities for urocortins 2 and 3 were in the low nanomolar range (Table 3). In contrast, oCRF was significantly less potent in competing with ¹²⁵I-sauvagine in both hCRF_{2(a)}-expressing cell lines based on its IC₅₀ values being \sim 100–200 nM (Table 3). However, there were no significant differences between IC_{50} values for each agonist acting at CRF_1 receptors expressed in HEK293 and SK-N-MC cells. Likewise, agonist IC_{50} values did not differ for $hCRF_{2(a)}$ expressing HEK293 and SK-N-MC cells (Table 3).

3.2. cAMP accumulation in $hCRF_1$ -HEK, $hCRF_1$ -SK-N-MC, $hCRF_{2(a)}$ -HEK and $hCRF_{2(a)}$ -SK-N-MC cells

Next, we analyzed the functional properties of both CRF receptor subtypes stably expressed in HEK293 and SK-N-MC cells by measuring agonist-stimulated accumulation of intracellular cAMP, which is the second messenger normally associated with CRF receptor signaling. In agreement with the binding studies, the hCRF₁ and the hCRF_{2(a)} receptor expressed in both cell lines revealed an identical subtype-specific potency rank order. For the hCRF₁-HEK and hCRF₁-SK-N-MC cells, oCRF, urocortin 1 and sauvagine were highly potent agonists (Fig. 1A; Table 4). In contrast, urocortin 2 was less potent by three orders of magnitude in the two hCRF₁-expressing cell lines. Finally, urocortin 3 concentrations of 10 µM and more were required to stimulate cAMP production in hCRF₁-HEK and hCRF₁-SK-N-MC cells (Fig. 1A; Table 4). In contrast, in $hCRF_{2(a)}$ receptor-expressing lines, the following potency rank order profile for agonist-stimulated cAMP accumulation was observed (Fig. 1B; Table 3): sauvagine

Table 3

Competitive binding of CRF analogs to hCRF1 and hCRF(2a) receptors stably expressed in HEK293 and SK-N-MC cells

Ligand	hCRF1-HEK, IC50 (nM)	hCRF1-SK-N-MC, IC50 (nM)	hCRF _{2(a)} -HEK, IC ₅₀ (nM)	hCRF _{2(a)} -SK-N-MC, IC ₅₀ (nM)
oCRF	1.24 ± 0.26	1.18 ± 0.25	$229\pm36^{\mathrm{a}}$	$137 \pm 38^{\mathrm{b}}$
Urocortin 1	0.31 ± 0.09	0.29 ± 0.11	0.26 ± 0.07	0.45 ± 0.12
Urocortin 2	$4600\pm624^{\rm c}$	$3700 \pm 501^{\circ}$	2.41 ± 0.51	3.11 ± 0.63
Urocortin 3	$>10000^{c,d}$	>10000 ^{c,d}	12.9 ± 2.6	10.1 ± 2.9
Sauvagine	0.78 ± 0.15	0.64 ± 0.11	0.52 ± 0.12	0.61 ± 0.14

The data are means \pm S.E.M. of three to four independent experiments performed in triplicate. The human versions of urocortins 1–3 were used.

^a P < 0.0001 vs. urocortin 1, urocortin 2, urocortin 3 and sauvagine.

 $^{\rm b}$ P<0.0005 vs. urocortin 1, urocortin 2, urocortin 3 and sauvagine.

^c P < 0.0001 vs. oCRF, urocortin 1 and sauvagine.

^d P = 0.0001 vs. UCN 2.

Fig. 1. Stimulation of cAMP accumulation by CRF agonists in SK-N-MC cells stably expressing hCRF₁ (A) and hCRF_{2(a)} (B) receptors. Cells were incubated for 10 min at 37 °C with increasing concentrations (1 pM–10 μ M) of CRF agonists as indicated in Section 2. The results are representatives of five independent experiments performed in triplicate. The E_{max} values elicited by urocortin 1-stimulation differed significantly from the E_{max} values obtained by stimulation with oCRF, urocortin 2, urocortin 3 and sauvagine. hCRF₁-SK-N-MC: F(4,12) = 9.4, P < 0.005; hCRF_{2(a)}-SK-N-MC: F(4,12) = 17.99, P < 0.0001.

~ urocortin 2 > urocortin 3 ~ urocortin 1 \gg oCRF. Notably, urocortin 1 was significantly less efficacious in stimulating cAMP accumulation in hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC cells (Fig. 1). A similar situation has been observed between hCRF₁-HEK and hCRF_{2(a)}-HEK cells (see [8]). In addition, the cAMP response magnitude for urocortin 1 was ~85% of the maximal cAMP response produced by the other agonists. Importantly, although the potency rank order for agonist-stimulated cAMP accumulation was identical for hCRF₁-HEK versus hCRF₁-SK-N-MC and hCRF_{2(a)}-HEK versus hCRF_{2(a)}-SK-N-MC cells, all CRF agonists were five-fold more potent in the hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC cells compared to the HEK293 lines (Table 4).

3.3. Transient Ca^{2+} mobilization in $hCRF_1$ -HEK and $hCRF_{2(a)}$ -HEK but not $hCRF_1$ -SK-N-MC and $hCRF_{2(a)}$ -SK-N-MC cells

Because in initial reports CRF_1 receptors have been postulated to signal via the PLC cascade [19–21], we tested the ability of recombinant CRF_1 and $CRF_{2(a)}$ receptors expressed in HEK293 and SK-N-MC cells to couple to G_q protein and stimulate transient Ca^{2+} mobilization using the real-time FLIPR assay [22,23]. Since the ability of SK-N-MC cells to functionally respond in the FLIPR format has not been tested previously to our knowledge, we also measured FLIPR responses activated by recombinantly expressed orexin OX₁ and OX₂ receptors which typically couple to G_q proteins [29] thereby serving as positive controls. In the first experimental setting, we used the most potent CRF₁/CRF₂ agonist sauvagine (see cAMP experiments) for the various CRF receptor expressing lines and orexin A, which is equally potent at the OX₁ and OX₂ receptors [29].

Sauvagine stimulated transient Ca²⁺ mobilization in hCRF₁-HEK and hCRF_{2(a)}-HEK cells in a concentration-dependent manner (Fig. 2; Table 4). In hCRF₁-HEK cells, sauvagine-stimulated Ca²⁺ mobilization reached a peak of ~14,000 relative fluorescence units (RFU) within 40 s after agonist application and then rapidly returned to baseline levels over the next 90 s (Fig. 2). In hCRF_{2(a)}-HEK cells, a strong Ca²⁺ mobilization with a peak of ~8000 RFU was observed during a ~40-s sauvagine incubation. The hCRF_{2(a)}-HEK cell Ca²⁺ response returned to baseline levels with a slightly slower kinetic (Fig. 2). However, Ca²⁺ mobilization did not significantly increase in hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC cells

Table 4

Stimulation of cAMP production by various CRF peptides in HEK293 and SK-N-MC cells stably expressing human CRF1 and CRF(2a) receptors

Ligand	hCRF1-HEK, EC50 (nM)	hCRF ₁ -SK-N-MC, EC ₅₀ (nM)	hCRF _{2(a)} -HEK, EC ₅₀ (nM)	hCRF _{2(a)} -SK-N-MC, EC ₅₀ (nM)
oCRF	0.54 ± 0.10^{a}	0.10 ± 0.01	$19.9 \pm 3.6^{\rm b,c}$	4.28 ± 0.59^{b}
Urocortin 1	$1.41 \pm 0.21^{\rm a}$	0.22 ± 0.08	$1.28 \pm 0.12^{\circ}$	0.24 ± 0.02
Urocortin 2	$2270 \pm 186^{ m a,d}$	$637 \pm 120^{ m d}$	$0.46 \pm 0.07^{\circ}$	0.09 ± 0.02
Urocortin 3	>10000 ^{d,e}	$9400 \pm 689^{\rm d,e}$	$0.96\pm0.12^{ m c}$	0.24 ± 0.04
Sauvagine	$0.38\pm0.07^{\rm a}$	0.06 ± 0.01	$0.31\pm0.04^{\rm c}$	0.05 ± 0.02

The data are means \pm S.E.M. of five independent experiments performed in triplicate. The human versions of urocortins 1–3 were used.

^a P < 0.02 vs. hCRF₁-SK-N-MC.

^b P < 0.0001 vs. urocortin 1, urocortin 2, urocortin 3 and sauvagine.

^c $P < vs. hCRF_{2(a)}$ -SK-N-MC.

^d P < 0.0001 vs. oCRF, urocortin 1 and sauvagine.

^e P = 0.0001 vs. urocortin 2.

Fig. 2. Real time dose–response curves for sauvagine-mediated transient Ca^{2+} mobilization in hCRF₁-HEK and hCRF_{2(a)}-HEK cells. Cells (100,000 per well) were incubated with increasing sauvagine concentrations (1–300 nM) for the indicated time. The results are representatives of 11 independent experiments performed in quadruplicate.

exposed to sauvagine. Because orexin A stimulated robust Ca^{2+} mobilization responses in SK-N-MC cells stably expressing OX₁ and OX₂ receptors (Table 5), we ruled out the possibility that the SK-N-MC cellular background has defective G_q signaling. Thus, we concluded that hCRF₁ and hCRF_{2(a)} receptors signal through different pathways in HEK293 and SK-N-MC cells.

Next, we determined if hCRF₁ and hCRF₂ receptors expressed in HEK293 cells could stimulate intracellular Ca²⁺ release in response to other CRF ligands. When hCRF₁-HEK cells were incubated with oCRF, urocortin 1 and sauvagine, a nearly equipotent stimulation of transient Ca^{2+} mobilization was observed with EC_{50} values in the low nanomolar range (Fig. 3; Table 6). In contrast, no Ca^{2+} responses were observed when hCRF₁-HEK cells were exposed to two selective CRF₂ receptor agonists urocortins 2 and 3. However, as observed in cAMP experiments, urocortin 1 was less efficacious than oCRF and sauvagine in stimulating Ca²⁺ mobilization with the maximum only reaching ~9500 RFU compared to ~14,000 RFU resulting from oCRF and sauvagine stimulation (Fig. 3). As observed in the initial experiments, stimulation of Ca^{2+} mobilization in hCRF_{2(a)}-HEK cells by various

Table 5

Maximal FLIPR responses of CRF_1 and $CRF_{2(a)}$ receptors in HEK293 and SK-N-MC cells, and comparison to OX1 and OX2 receptors in SK-N-MC cells

Cell line	Receptor	$E_{\rm max}; \Delta {\rm RFU}$
HEK293	$hCRF_1$ $hCRF_{2(a)}$	13900 ± 560 7600 ± 480
SK-N-MC	$hCRF_1$ $hCRF_{2(a)}$ OX_1 OX_2	$\begin{array}{r} 230 \pm 200 \\ 210 \pm 170 \\ 12200 \pm 500 \\ 14800 \pm 800 \end{array}$

The data are means \pm S.E.M. of two (OX1 and OX₂) to six (CRF receptors in HEK293 and SK-N-MC cells) independent experiments performed in quadruplicate using a maximally stimulating concentration of 1 (M sauvagine (CRF receptors) or orexin A (OX₁ and OX₂). CRF agonists produced maximal responses of only ~60% of the responses observed in the hCRF₁-HEK cells. However, in contrast to the hCRF₁-HEK cells, all agonists were able to mobilize Ca²⁺ transients in the hCRF_{2(a)}-HEK line, albeit with different potencies. While sauvagine, urocortins 1 and 2 only differed by a factor of ~2.5 from each other, urocortin 3 was almost 10-fold less potent than sauvagine (Fig. 3; Table 6). Finally, oCRF only increased Ca²⁺ transients at a concentration in the low micromolar range (Table 6). As observed with the hCRF₁-HEK cells, urocortin 1 was less efficacious than the four other agonists to stimulate Ca²⁺ mobilization in hCRF_{2(a)}-HEK cells (Fig. 3).

In another experimental setting, we tested the ability of the nonselective CRF_1/CRF_2 peptide antagonist astressin and the CRF₂-selective antagonist antisauvagine to inhibit agonist-induced Ca²⁺ mobilization. Increasing concentrations of astressin or antisauvagine $(0.1 \text{ nM}-10 \mu\text{M})$ were used in the presence of a submaximal sauvagine concentration (50 nM) to measure the inhibitory potency of both antagonists. In hCRF1-HEK cells, astressin efficiently inhibited sauvagine-stimulated Ca²⁺-responses with an IC_{50} of ~60 nM, while antisauvagine, even at the highest dose, was without effect (Fig. 4). In contrast, both antagonists potently inhibited sauvagine-stimulated Ca²⁺ transients in hCRF_{2(a)}-HEK cells (Fig. 4). The IC₅₀ values for astressin (~ 20 nM) and antisauvagine (~ 12 nM) only differed minimally from each other and were in good agreement with their inhibitory potency in cAMP stimulation experiments [26].

3.4. Mechanism of transient Ca^{2+} mobilization in $hCRF_1$ -HEK and $hCRF_{2(a)}$ -HEK cells

In order to determine the exact mechanism of agonistinduced Ca²⁺ mobilization in HEK293 cells stably expressing both human CRF receptor subtypes we measured FLIPR responses in the presence of various inhibitors.

Fig. 3. Stimulation of transient Ca²⁺ mobilization in hCRF₁-HEK and hCRF_{2(a)}-HEK cells by various CRF agonists. Cells (100,000 per well) were incubated with increasing agonist concentrations (0.1 nM–10 μ M) for up to 2 min. Maximal relative fluorescence units (RFU) at the peak of the transient Ca²⁺ mobilization curve were taken for quantification. The results are representatives of up to eight independent experiments performed in quadruplicate. For the hCRF₁ receptor significant differences [*F*(4,28) = 2967.661, *P* < 0.0001] in the potency of the various agonists were obtained. Similarly, the stimulation experiments with the hCRF_{2(a)} receptor [*F*(4,30) = 147,211, *P* = 0.0001] also revealed significant differences. Furthermore, the *E*_{max} values elicited by urocortin 1-stimulation differed significantly from the *E*_{max} values obtained by stimulation with the other agonists and reached only ~70%. hCRF₁-HEK: *F*(2,10) = 299.4, *P* < 0.0001; hCRF_{2(a)}-HEK: *F*(4,30) = 647.8, *P* < 0.0001.

To this end we chose the following inhibitors: ryanodine, an inhibitor of Ca²⁺ release channels [30,31], Rp-cAMPS an inhibitor of protein kinase A [32] and U-73,122 a potent inhibitor of PLC and Gq signaling [30]. At a 100-nM sauvagine concentration ryanodine (45 µM) and RpcAMPS (15 µM) failed to block transient Ca²⁺ mobilization in hCRF1-HEK and hCRF2(a)-HEK cells, whereas U-73,122 (10 µM) blocked sauvagine-stimulated FLIPR responses by more than 95% in both hCRF₁ and hCRF_{2(a)} receptor expressing HEK293 cells (Fig. 5A). The inhibitory effect of 10 μM U-73,122 on agonist-mediated Ca²⁺ mobilization was further investigated in hCRF₁- and hCRF_{2(a)}-HEK cells by performing full dose-response curves for sauvagine and in case of the $hCRF_{2(a)}$ receptor also for urocortin 3. U-73,122 potently inhibited FLIPR responses in both cell lines (Fig. 5B). At maximally stimulating sauvagine and urocortin 3 concentrations U-73,122 inhibited transient Ca²⁺ mobilization by \sim 92–95%, whereas the structurally related but inactive U-73,343 was without significant effect (<10% inhibition) on CRF receptor-stimulated FLIPR responses (not shown).

Finally, to confirm functionally that CRF receptors stably expressed in HEK293 cells activated the PLC-

Table 6

Stimulation of intracellular calcium by various CRF peptides in HEK293 cells stably expressing CRF₁ and CRF_(2a) receptors

• •	e · · · · · ·	•
Ligand	$hCRF_1, EC_{50} (nM)$	hCRF _{2(a)} , EC ₅₀ (nM)
oCRF	23.2 ± 5.3	1640 ± 378^a
Urocortin 1	33.1 ± 6.7	40.4 ± 5.9
Urocortin 2	$>10000^{b}$	43.1 ± 6.4
Urocortin 3	>10000 ^b	156 ± 45
Sauvagine	20.8 ± 4.5	21.9 ± 3.6

The data are means \pm S.E.M. of at least seven independent experiments performed in quadruplicate. The human versions of urocortins 1–3 were tested.

^a P = 0.0001 vs. urocortin 1, urocortin 2, urocortin 3 and sauvagine.

^b P < 0.0001 vs. oCRF, urocortin 1 and sauvagine.

PKC signaling pathway, we determined if IP₃ accumulation was increased by submaximal CRF receptor agonist concentrations. In hCRF₁-HEK cells, oCRF and sauvagine (100 nM each) but not urocortin 2 (10 μ M) stimulated a significant (P < 0.01) ~70% increase IP₃ formation over basal levels (Fig. 6). A significant increase in IP₃ levels was also observed in HEK cells transiently transfected with hCRF₁ and stimulated with hCRF (data not shown) in agreement with previous reports [19,20]). In hCRF_{2(a)}-HEK cells, all agonists at 100 nM concentrations also stimulated small (~50–60%) but significant (P < 0.01) elevation of IP₃ production over basal values (Fig. 6). As expected from the FLIPR experiments no stimulation of IP₃ production by CRF agonists was observed in hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC cells (not shown).

4. Discussion

This study establishes that coupling of CRF1 and $CRF_{2(a)}$ to the PLC pathway is governed by cellular background whereas CRF receptor coupling to G_s occurred in both brain- and peripheral-cell lines. In a series of experiments, oCRF-, urocortin 1- and sauvagine-induced activation of hCRF₁ receptors markedly increased cAMP accumulation in HEK293 or SK-N-MC cells consistent with a high efficiency G_s-mediated signaling. When the hCRF_{2(a)} receptor was activated by agonists, cAMP accumulation in both cell lines was increased with the following potency rank order profile: sauvagine \sim urocortin 2 \sim urocortin 3 > urocortin 1 \gg oCRF. When CRF receptor signaling through PLC was assessed, oCRF, urocortin 1, and sauvagine were found to stimulate transient Ca²⁺ mobilization in both hCRF1-HEK and hCRF2(a)-HEK cells in a concentration-dependent and nearly equipotent manner. Using CRF₂ receptor-selective agonists, urocortin 2 was \sim 10-fold more potent than urocortin 3 in mobilizing

Fig. 4. Antagonist-mediated inhibition of Ca^{2+} mobilization in hCRF₁-HEK and hCRF_{2(a)}-HEK cells. Cells were incubated with increasing concentrations of astressin and antisauvagine (0.1 nM–10 μ M each) in the presence of 50 nM sauvagine. The results are representatives of three independent FLIPR experiments performed in quadruplicate.

calcium in HEK293 cells. However, in hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC cells, Ca²⁺ mobilization was not increased by sauvagine and other agonists. Therefore, cell-type specific factors may account for specificity of CRF receptor-G protein interactions.

In all species, the CRF_1 and the $CRF_{2(a)}$ receptor are mainly found in the central nervous system [1,2,5]. However, pharmacological characterizations of vertebrate CRF_1 and CRF_2 receptor variants have been conducted in various peripheral cells [6,7,9,14,19,20,24] including the HEK293 line [7,14,21,24]. Previously, receptor-G protein interactions were believed to be highly selective in cell systems endogenously expressing signaling proteins in a physiologically stringent setting. A similar finding was also observed in heterologous, peripheral cell systems artificially induced to express a receptor that is not normally present in the cell [33]. This hypothesis proposed that a given receptor coupled to only G_s , G_i , or G_q . Specificity of receptor-G protein interactions was thought to depend on unique intracellular structural motifs governing a receptor's affinity for binding a specific G protein. However, recent

Fig. 5. Inhibition of sauvagine-mediated FLIPR responses by various inhibitors. (A) hCRF₁-HEK and hCRF_{2(a)}-HEK cells were incubated with a submaximal sauvagine concentration (100 nM) in the absence of presence of ryanodine (45 μ M), RP-cAMPS (15 μ M) or U-73,122 (10 μ M). (B) Full dose–response stimulation curves for the agonists sauvagine and urocortin 3 were generated in the absence or presence of 10 μ M U-73,122. The results are representative of three independent experiments performed in quadruplicate.

Fig. 6. Stimulation of IP₃ accumulation in hCRF₁- and hCRF_{2(a)}-expressing HEK293 cells by sauvagine. Cells were incubated at 37 °C for 5 min with sauvagine (100 nM). The results are representative of four independent experiments performed in quadruplicate. By ANOVA, there were significant differences for IP₃ stimulation in hCRF₁-HEK [F(3,12) = 36.31, P < 0.01] and hCRF_{2(a)}-HEK cells [F(3,12) = 28.56, P < 0.01]. Statistical significance: *P < 0.01 vs. control.

studies have reported that a receptor can bind to more than one G protein. One factor that may account for a receptor binding to different G proteins is cellular background [34]. Little information is available regarding the selectivity of CRF receptor-G protein interactions in neuronal background which could play an important role in GPCR signaling in the central nervous system. For example, recombinant expression of pituitary adenylate cyclaseactivating polypeptide (PACAP) receptor PAC₁ splice variants in peripheral cell lines [15,16,35] revealed important differences in the binding and cAMP signaling properties when compared to their endogenous expression in a neuronal cell line [36,37]. So far, no attempt has been made to express CRF1 and CRF2 receptor subtypes recombinantly in a neuronal-like background. Thus, our study represents the first characterization of recombinant hCRF₁ and hCRF_{2(a)} receptors in a neuroblastoma line. SK-N-MC cells were chosen due to a pharmacological characterization of the recombinant histamine H3 receptor in SK-N-MC cells providing results identical to the native centrally expressed H3 receptor [38,39].

When $hCRF_1$ and $hCRF_{2(a)}$ receptors were highly expressed in the SK-N-MC cells, there were substantial differences between the hCRF₁-HEK, hCRF₁-SK-N-MC, hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC lines in saturation-binding experiments where the agonist sauvagine and the antagonist astressin were used as radioligands. Agonist and antagonist labeling as well as GTP_yS-inhibition studies established that $hCRF_{2(a)}$ receptors expressed in both cell lines bound the ligands with nearly identical affinities and exhibited similar B_{max} values. Furthermore, in the hCRF_{2(a)}-HEK and hCRF_{2(a)}-SK-N-MC lines, slightly more than 50% of the hCRF_{2(a)} receptor proteins were coupled to G proteins. However, for the hCRF₁ receptor expressing lines, differences were observed. The density of expressed hCRF1 receptors was 80% greater in SK-N-MC compared to HEK cells when ¹²⁵I-sauvagine was used as the tracer for receptor quantification but only 30% higher with ¹²⁵I-astressin. Furthermore, GTP γ S inhibited ¹²⁵Isauvagine to hCRF₁-HEK cells only by $\sim 30\%$ but by

almost 50% to hCRF₁-SK-N-MC cells. This data indicates that the hCRF₁ receptor is better coupled in SK-N-MC than in HEK293 cells. When competition-binding studies were completed using oCRF, urocortins 1–3, and sauvagine, no pharmacological differences between the two CRF₁ and CRF₂ receptor expressing lines were observed. Neither the rank order binding profile nor the affinity for the various ligands differed significantly for the hCRF₁ and the hCRF_{2(a)} receptor expressing HEK293 and SK-N-MC lines.

Important signaling differences were demonstrated between the CRF receptor-expressing HEK293 and SK-N-MC cells in two functional assays. In cAMP experiments, all agonists were significantly more potent in stimulating cAMP accumulation in hCRF₁-SK-N-MC and hCRF_{2(a)}-SK-N-MC cells compared to their respective HEK293 counterparts, except for urocortin 3 which was relatively inactive in stimulating signaling at the hCRF₁-HEK and hCRF₁-SK-N-MC cells. Nevertheless, the CRF receptor-specific rank order potency profiles were not different in both cell lines.

More striking differences were observed when the hCRF1 and hCRF2(a) receptor-expressing cell lines were tested for their ability to promote transient Ca²⁺ mobilization in the FLIPR system. The FLIPR system allows for real-time measurements of agonist-mediated responses. Another advantage of the FLIPR system is its ability to directly measure second messenger responses in contrast to gene reporter assays, which often do not replicate the potency rank order profiles of second messenger assays [40,41]. One disadvantage of the FLIPR assay, however, is the inability of some G_s-coupled GPCRs to respond in this system. Co-expression of the $G\alpha 16$ subunit has facilitated PLC-mediated signaling for some, but not all, of these receptors [42]. The CRF receptors belong to the B1 GPCR subclass, which comprises G_s-coupled receptors [4]. However, some members of this subclass can couple to PLC in recombinant and/or endogenous expression systems [17,43]. Preliminary studies showed small PLC-signaling of recombinant mammalian, chick and fish CRF₁ but not CRF₂ receptors [19–21]. Thus, it seemed likely, that the hCRF₁ receptor might couple to G_q and respond in the FLIPR system.

We observed robust agonist-stimulated Ca²⁺ transients for hCRF1 and hCRF2(a) receptors in HEK293 but not SK-N-MC cells. This result was surprising for two reasons: (i) hCRF₁ receptor expression was higher in SK-N-MC cells; and (ii) a stronger G_s coupling for both receptors was observed in SK-N-MC cells. Since higher receptor expression levels has been proposed to promote coupling to additional second messenger systems [17], it was expected that recombinantly expressed CRF receptors would more readily activate the PLC signaling cascade in SK-N-MC compared to HEK293 cells. We further ruled out that SK-N-MC cells are unable to respond in the FLIPR system by demonstrating that OX₁ and OX₂ receptors strongly coupled to PLC activation when expressed in SK-N-MC cells. We, therefore, concluded that differential coupling of hCRF₁ and hCRF_{2(a)} receptors to cAMP and PLC in HEK293 and SK-N-MC cells most likely depends on the endogenous repertoire of G proteins in these lines. $hCRF_1$ and $hCRF_{2(a)}$ receptors appear to couple to G_s in a selective manner in SK-N-MC cells. However, both receptors stimulate cAMP and PLC in HEK293 cells. The hypothesis that CRF receptor-G protein specificity is governed by cellular background is further strengthened by our observation that CRF₁ receptors appear to couple exclusively with G_s in Y79 retinoblastoma cells [28], rat hypothalamic 4B cells endogenously expressing CRF₁ receptors [44], and rat amygdalar AR5 cells endogenously expressing CRF_{2(a)} receptors [45] (F.M. Dautzenberg, unpublished observation). Furthermore, it was recently shown that CRF receptors may differentially bind to either G_q or G_s in vivo in two different mouse strains [46].

When a variety of CRF agonists was tested for their potency to stimulate FLIPR responses in hCRF1-HEK and hCRF_{2(a)}-HEK cells, we observed a rank order potency profile virtually identical with the profile obtained in cAMP assays. While oCRF, urocortin 1 and sauvagine were equipotent in stimulating Ca²⁺ transients in hCRF₁-HEK cells, urocortins 2 and 3 were inactive. In contrast, urocortins 1 and 2 and sauvagine were up to 10-fold more potent than urocortin 3. In addition, Ca²⁺ transients were stimulated by oCRF only at micromolar concentration in hCRF_{2(a)}-HEK cells. The use of high oCRF concentrations was necessary due to the lower potency of all agonists at both receptors in the FLIPR experiments compared to the cAMP assays. In other experiments, we have shown that the CRF₁/CRF₂ nonselective antagonist astressin and the CRF₂-specific antagonist antisauvagine [8] were able to antagonize agonist-mediated FLIPR responses in a receptor-specific manner. At this point it is important to note that urocortin 1 was less efficacious in the cAMP and Ca²⁺ stimulation experiments a phenomenon that we and others have frequently observed (see [8]) and which is likely

reflected by its apparent high affinity for G proteinuncoupled and -coupled CRF receptors and likely restricted to recombinant systems [8].

Transient Ca²⁺ mobilization by CRF receptor activation in principle could also be mediated by mechanisms other than PLC activation. For another class B receptor, the glucagon-like peptide 1 (GLP-1) receptor such a phenomenon has been observed [30]. Ca^{2+} mobilization by activation of the receptor was mediated by ryanodine-sensitive Ca²⁺ release channels but not by direct activation of PLC [30]. However, when we tested the ability of ryanodine, Rp-cAMPS, a potent protein kinase A inhibitor and the PLC inhibitor U-73,122 [32] we observed potent inhibition of Ca^{2+} mobilization only in the presence of U-73,122. Furthermore, CRF agonists promoted a small but significant stimulation of IP3 production in hCRF1- and hCRF2(a)-HEK cells. Because of the PLC sensitivity of the Ca²⁺ release we believe that the observed IP₃ production in CRF receptor expressing HEK293 cells accounts for transient Ca²⁺ mobilization. These results clearly demonstrate that the observed activation of Ca²⁺ transients is mediated by direct activation of PLC in HEK293 cells stably expressing CRF receptor.

In conclusion, agonist-activated hCRF₁ and hCRF_{2(a)} receptors more potently stimulate cAMP accumulation in SK-N-MC cells compared to HEK293 cells. In contrast, dual cAMP-and PLC-mediated signaling of hCRF₁ and hCRF_{2(a)} receptors was observed in HEK293 cells. Despite a rightward shift of the agonist dose–response curves in the FLIPR compared to the cAMP system, we believe that the FLIPR readout is a robust and reproducible system for the functional detection of CRF receptor responses. We further propose that this assay system is suitable for high throughput screening of a large number of chemical molecules.

Acknowledgements

This study was initiated at Axovan AG (now Actelion AG). The authors are grateful to Drs. Waldenair and Pedro for financial support during the initial phase. We wish to thank Ludevine Peguet, Sandra Braun and Thomas Gillert for technical assistance with some experiments. R.L.H. was supported by a VA Merit Review grant and the VA Mental Illness Research, Education and Clinical Center (MIRECC) of VISN22. Drs. Hauger and Olivares-Reyes were further supported by the California-MEXUS grant.

References

- Vale W, Vaughan J, Perrin M. Corticotropin-releasing factor (CRF) family of ligands and their receptors. Endocrinoligist 1997;7:S3–9.
- [2] Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 2002;23:71–7.

- [3] Dautzenberg FM, Kilpatrick GJ, Hauger RL, Moreau JL. Molecular biology of the CRH receptors—in the mood. Peptides 2001;22:753– 60.
- [4] Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol 2001;2: [REVIEWS3013].
- [5] Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM. International union of pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropinreleasing factor and their ligands. Pharmacol Rev 2003;55:21–6.
- [6] Donaldson C, Sutton S, Perrin MH, Corrigan AZ, Lewis KA, Rivier J, et al. Cloning and characterization of human urocortin. Endocrinology 1996;137:2167–70.
- [7] Dautzenberg FM, Dietrich K, Palchaudhuri MR, Spiess J. Identification of two corticotropin-releasing factor receptors with high ligand selectivity from *Xenopus laevis*: unusual pharmacology of the type 1 receptor. J Neurochem 1997;69:1640–9.
- [8] Dautzenberg FM, Py-Lang G, Higelin J, Fischer C, Wright MB, Huber G. Different binding modes of amphibian and human CRF type 1 and type 2 receptors: evidence for evolutionary differences. J Pharmacol Exp Ther 2001;296:13–20.
- [9] Perrin MH, Sutton SW, Cervini LA, Rivier JE, Vale WW. Comparison of an agonist, urocortin, and an antagonist, astressin, as radioligands for characterization of corticotropin-releasing factor receptors. J Pharmacol Exp Ther 1999;288:729–34.
- [10] Hsu SY, Hsueh AJW. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 2001;7:605–11.
- [11] Lewis K, Li C, Perrin MH, Bount A, Kunitake K, Donaldson C, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF₂ receptor. Proc Natl Acad Sci USA 2001;98:7570–5.
- [12] Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 2001;98:2843–8.
- [13] Kostich WA, Chen A, Sperle K, Largent BL. Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRF_{2T} receptor. Mol Endocrinol 1998;12:1077–85.
- [14] Palchaudhuri MR, Hauger RL, Wille S, Fuchs E, Dautzenberg FM. Isolation and pharmacological characterization of two functional splice variants of corticotropin-releasing factor type 2 receptor from *Tupaia belangeri*. J Neuroendocrinol 1999;11:419–28.
- [15] Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockart J, Seeburg PH, et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature (London) 1993;365:170–5.
- [16] Pisegna JR, Wank SA. Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. J Biol Chem 1996;271:17267–74.
- [17] Kenakin T. Differences between natural and recombinant G proteincoupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol Sci 1997;18:456–64.
- [18] Ulisse S, Fabbri A, Tinajero JC, Dufau ML. A novel mechanism of action of corticotropin releasing factor in rat Leydig cells. J Biol Chem 1990;265:1964–71.
- [19] Xiong Y, Xie LY, Abou-Samra AB. Signaling properties of mouse and human corticotropin-releasing factor (CRF) receptors: decreased coupling efficiency of human type II CRF receptor. Endocrinology 1995;136:1828–34.
- [20] Karteris E, Grammatopoulos D, Randeva H, Hillhouse EW. Signal transduction characteristics of the corticotrophin-releasing hormone receptors in the feto-placental unit. J Clin Endocrinol Metab 2000;85:1989–96.
- [21] Pohl S, Darlison MG, Clarke WC, Lederis K, Richter D. Cloning and functional pharmacology of two corticotropin-releasing factor receptors from a teleost fish. Eur J Pharmacol 2001;430:193–202.

- [22] Coward P, Chan SD, Wada HG, Humphries GM, Conklin BR. Chimeric G proteins allow a high-throughput signaling assay of Gicoupled receptors. Anal Biochem 1999;270:242–8.
- [23] Sullivan E, Tucker EM, Dale IL. Measurement of [Ca²⁺] using the Fluorometric Imaging Plate Reader (FLIPR). Methods Mol Biol 1999;114:125–33.
- [24] Dautzenberg FM, Huber G, Higelin J, Py-Lang G, Kilpatrick GJ. Evidence for the abundant expression of Arginine 185 containing human CRF_{2a} receptors and the role of position 185 for receptorligand selectivity. Neuropharmacology 2000;39:1368–76.
- [25] Hauger RL, Dautzenberg FM, Flaccus A, Liepold T, Spiess J. Regulation of corticotropin-releasing factor receptor function in human Y-79 retinoblastoma cells: rapid and reversible homologous desensitization but prolonged recovery. J Neurochem 1997;68:2308–16.
- [26] Dautzenberg FM, Higelin J, Brauns O, Butscha B, Hauger RL. Five amino acids of the *Xenopus laevis* CRF₂ receptor mediate differential binding of CRF ligands in comparison to its human counterpart. Mol Pharmacol 2002;61:1132–9.
- [27] Olivares-Reyes JA, Smith RD, Hunyady L, Shah BH, Catt KJ. Agonist-induced signaling, desensitization, and internalization of a phosphorylation-deficient AT1A angiotensin receptor. J Biol Chem 2001;276:37761–8.
- [28] Hauger RL, Olivares-Reyes JA, Braun S, Catt KJ, Dautzenberg FM. Mediation of CRF₁ receptor phosphorylation and desensitization by protein kinase C: a possible role in stress adaptation. J Pharmacol Exp Ther 2003;306:794–806.
- [29] Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573–85.
- [30] Gromada J, Rorsman P, Dissing S, Wulff BS. Stimulation of cloned human glucagons-like peptide 1 receptor expressed in HEK 293 cells induces cAMP-dependent activation of calcium-induced calcium release. FEBS Lett 1995;373:182–6.
- [31] Rossi D, Sorrentino V. Molecular genetics of ryanodine receptors Ca²⁺-release channels. Cell Calcium 2002;32:307–19.
- [32] Kotak VC, Sanes DH. Postsynaptic kinase signaling underlies inhibitory synaptic plasticity in the lateral superior olive. J Neurobiol 2002;53:36–43.
- [33] Gudermann T, Kalkbrenner F, Schultz G. Diversity and selectivity of receptor-G protein interaction. Annu Rev Pharmacol Toxicol 1996;36:429–59.
- [34] Gudermann T, Schoneberg T, Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 1997;20:399–427.
- [35] Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL. N-terminal splice variants of the type I PACAP receptor: isolation, characterization, and ligand binding/selectivity determinants. J Neuroendocrinol 1999;11:941–50.
- [36] Olianas MC, Ennas MG, Lampis G, Onali P. Presence of pituitary adenylate cyclase-activating polypeptide receptors in Y-79 human retinoblastoma cells. J Neurochem 1996;67:1293–300.
- [37] Dautzenberg FM, Hauger RL. G protein receptor kinase 3 and protein kinase C-mediated desensitization of the PACAP receptor type 1 in human Y-79 retinoblastoma cells. Neuropharmacology 2001;40:394– 407.
- [38] Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, et al. Cloning and functional expression of the human histamine H₃ receptor. Mol Pharmacol 1999;55:1101–7.
- [39] Wieland K, Bongers G, Yamamoto Y, Hashimoto T, Yamatodani A, Menge WMBP, et al. Constitutive activity of histamine H3 receptors stably expressed in SK-N-MC cells: display of agonism and inverse agonism by H3 antagonists. J Pharmacol Exp Ther 2001;299:908–14.
- [40] Ardati A, Goetschy V, Gottowick J, Henriot S, Waldenair O, Deuschle U, et al. Human $CRF_2 \alpha$ and β splice variants: pharmacological

characterization using radioligand binding and a luciferase gene expression assay. Neuropharmacology 1999;38:441-8.

- [41] Parsons SJW, Rhodes SA, Connor HE, Rees S, Brown J, Giles H. Use of a dual firefly and Renilla luciferase reporter gene assay to simultaneously determine drug selectivity at human corticotrophin releasing hormone 1 and 2 receptors. Anal Biochem 2000;281:187–92.
- [42] Kostenis E. Is Galpha16 the optimal tool for fishing ligands of orphan G-protein-coupled receptors? Trends Pharmacol Sci 2001;22:560–4.
- [43] Deutsch PJ, Sun Y. The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem 1992;267:5108–13.
- [44] Sheriff S, Dautzenberg FM, Mulchahey JJ, Pisarska M, Hauger RL, Chance WT, et al. Interaction of Neuropeptide Y and corticotropinreleasing hormone signaling pathways in AR-5 amygdalar cells. Peptides 2001;22:2083–9.
- [45] Kasckow J, Mulchahey JJ, Aguilera G, Pisarska M, Nikodemova M, Chen HC, et al. Corticotropin-releasing hormone (CRH) expression and protein kinase A mediated CRH receptor signalling in an immortalized hypothalamic cell line. J Neuroendocrinol 2003;15:521–9.
- [46] Blanck T, Niehold I, Grammatopoulos DK, Randeva HS, Hillhouse EW, Spiess J. Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning. J Neurosci 2002;23:700–7.