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Abstract Progenitor cells may contribute to cardiac regenera-
tion. Here, we investigated the role of cadherins and integrins
for differentiation of human adult circulating endothelial progen-
itor cells (EPCs) into cardiomyocytes (CM) in a co-culture sys-
tem. N- and E-cadherin were expressed in EPCs and were
localized at the interface between EPCs and CM. Incubation
of a blocking antibody against E-cadherin reduced the expres-
sion of CM marker protein in EPCs. Blocking antibodies against
N- or P-cadherin or the B1- and B2-integrins were not effective.
These data suggested that cell-to-cell communication mediated
by E-cadherin contributes to the acquirement of a cardiomyo-
genic phenotype of human endothelial progenitor cells.

© 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

A number of cardiovascular diseases such as myocardial
infarction lead to cardiomyocyte loss and consequently deteri-
oration of cardiac function. The replacement of cardiomyo-
cytes by cell therapy would be a promising option to
regenerate cardiac tissue. Furthermore, the transplantation
of healthy stem cells may compensate for mutated, dysfunc-
tional genes in cardiomyocytes as suggested by first animal
studies [1]. Several different types of adult stem and progenitor
cells have been shown to differentiate into the cardiomyogenic
lineage. Bone marrow-derived hematopoietic stem cells, mes-
enchymal stem cells and side population (SP)-cells showed
expression of cardiac marker proteins after infusion in animal
models of myocardial infarction [2-4]. Additionally, tissue res-
ident cardiac progenitor cells have been identified [5,6], which
can differentiate into cardiomyocytes. Very recent studies ques-
tioned that c-kit*/lin~ bone marrow-derived stem cells can ac-
quire a cardiac phenotype after injection in a mouse model of
acute myocardial infarction [7,8]. Moreover, other studies sug-
gested that bone marrow-derived stem cells can fuse with
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cardiomyocytes [9]. Interestingly, some studies showed that
both fusion and differentiation occur in mice after injection
of cardiac stem cells in a model of myocardial infarction [6].
The reason for the controversial outcomes between the studies
is not yet resolved and likely reflects methodological differ-
ences.

In order to determine the molecular mechanism(s) underlying
cardiomyogenic differentiation of adult stem or progenitor
cells, we used a co-culture system of neonatal rat cardiomyo-
cytes to mimic the cardiac environment [10]. Embryonic endo-
thelial cells [10], human CD34" cells [11], and human peripheral
blood mononuclear cell-derived circulating endothelial progen-
itor cells (EPCs) [12] were shown to acquire a cardiomyogenic
phenotype after co-culture. In this co-culture assay, expression
of cardiac genes and Gap-junctional communication between
neonatal cardiomyocytes and differentiating stem or progenitor
cells was detected [10,12]. Functional activity of the differenti-
ated circulating progenitor cells was documented by showing
oscillating calcium transients after pacing [12]. These data sug-
gest that the co-culture system might be useful as an experimen-
tal model system to study the mechanism(s) of cardiomyogenic
differentiation of adult progenitor cells.

Interestingly, albeit at a lower extent cardiac differentiation
was still achieved, when paraformaldehyde-fixed cardiomyo-
cytes were used as matrix for the co-culture assay [12], but
was not observed by co-incubation with cardiomyocyte-condi-
tioned medium [10,12] suggesting an important role of cell-to-
cell or cell-to matrix interaction for cardiac differentiation.
Cellular interactions can be mediated by integrins or cadher-
ins. Particularly, f1-integrin expression was shown to be essen-
tial for the differentiation of cardiac muscle cells from
embryonic stem cells [13]. Cadherins are also known to regu-
late signaling processes such as differentiation, proliferation,
and migration [14]. Among the classic cadherins, which are cal-
cium dependent and have five repeats of cadherin-specific
extracellular modules, N-cadherin and E-cadherin are crucial
for cardiogenesis [15,16]. N-cadherin deficiency resulted in car-
diovascular defects [15]. Forced N-cadherin or E-cadherin
expression using o- or B-MHC promotor rescued the heart
development in N-cadherin null mice [16], demonstrating
an essential role of cadherins in embryonic cardiogenesis.
Moreover, connexin 43-mediated Gap-junctional intercellular
communication is regulated by E-cadherin [17]. We had previ-
ously reported that adhesion of EPCs to fixed cardiomyocytes

0014-5793/$30.00 © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.febslet.2005.09.071


mailto:Dimmeler@em.uni-frankfurt.de 

M. Koyanagi et al. | FEBS Letters 579 (2005) 6060-6066

was calcium dependent [12] suggesting the relevance of cal-
cium-dependent proteins such as integrins or cadherins for
cell-to-cell communication between EPC and cardiomyocytes.

Here, we investigated the contribution of integrins and cad-
herins for the acquirement of a cardiomyogenic phenotype of
EPCs after co-culture with neonatal cardiomyocytes. Our
data demonstrate an important role of E-cadherin on EPCs
differentiation. In particular, E-cadherin blocking antibody
significantly inhibited the expression of the cardiac marker
a-sarcomeric actinin in the human EPCs after co-culture. In
contrast, inhibition of N- or P-cadherin and integrin blocking
experiments had no effect. Furthermore, addition of an E-
cadherin blocking antibody did not affect cell fusion, suggest-
ing a predominant role of E-cadherin on EPC differentiation.

2. Materials and methods

2.1. Antibodies and peptides for cell culture

Anti-N-cadherin antibody (Ab) (clone NCD-2), anti-E-cadherin Ab
(clone HECD-1), anti-P-cadherin Ab (clone NCC-CAD-299) were pur-
chased from Calbiochem (San Diego, CA). Anti-integrin f1 antibody
(clone P4C10) was obtained from Chemicon (Temecula, CA). Anti-inte-
grin 2 (CD18) Ab was purchased from Cymbus Biotechnology (UK).
RGD peptide (H-Gly-Arg-Gly-Asp-Asn-Pro-OH; GRGDNP) and
RGD control peptide (H-Gly-Arg-Gly-Glu-Ser-Pro-OH; GRGESP)
were from Bachem. N-cadherin blocking peptide (sequence: RAD-
SFDINGNQV) and control peptide (sequence: RAHAVDINGNQYV)
were sythesized by Biosyntan (Berlin, Germany). The efficiency of this
peptides was confirmed previously [18]. All antibodies and peptides were
incubated with EPC before co-cultivating and re-added every 2 days.

2.2. Cell culture experiments

Neonatal ventricular cardiomyocytes were isolated from 0 to 1 day
old Wistar rats and cultivated as previously described [12]. Noncardio-
myocytes (primarily fibroblasts) were separated from the cardiomyo-
cytes by differential plating onto plastic dishes. EPCs were cultivated
from human peripheral blood mononuclear cells from healthy volun-
teers as described [12]. After 3 days in culture, adherent cells were
labeled with Dil-ac-LDL. EPCs have been extensively characterized
in our laboratory in previous studies [19]. Expression of endothelial
markers, such as vVWF, KDR, and eNOS were routinously confirmed
[12]. EPCs were pre-incubated with antibodies or isotype IgG for
30 min. Then EPCs (1.5x 10%) and freshly isolated cardiomyocytes
were plated onto gelatin coated dishes at a ratio of 1:3 [12]. In some
experiments, we fixed cardiomyocytes with 2% paraformaldehye as de-
scribed [12]. Then, EPCs were added onto fixed cardiomyocytes.

2.3. Immunostaining and flow cytometry analysis

After 6 days of the co-culture, cells were stained with phycoerythrin-
conjugated antibodies recognizing human HLA-DR and HLA-class I
(both Caltag Laboratories, Burlingame, CA) followed by permeabili-
zation using the Cytofix/Cytoperm kit (BD Pharmingen) and staining
with FITC-conjugated (Pierce, Rockford, IL) anti-a-sarcomeric acti-
nin antibody (clone EA-53, Sigma) as described [12]. 20000 cells were
analyzed on a BD FACS Calibur cell sorter (BD Biosciences, San Jose,
CA).

For immunostaining, cells were fixed with PLP buffer (2% parafor-
maldehyde, 0.01 M NalOy, 0.075 M lysine, 0.037 M phosphate buffer,
pH 7.2) for 15 min on ice. After permeabilization with 0.2% saponin
(Sigma), cells were incubated with pan-cadherin antibody (Sigma), fol-
lowed by staining with a FITC-conjugated anti-rabbit IgG (Jackson)
and o-sarcomeric actinin antibody (Sigma), followed by staining with
Cy5-conjugated anti-mouse 1gG (Jackson). Nuclei were counterstained
with Sytox Blue (Molecular Probes) according to the manufacture’s
protocol.

2.4. RNA isolation and RT-PCR analyses

Total RNA from HUVEC, EPCs, and human heart were isolated by
using TRIzol (Invitrogen). RNA was subjected to RT-PCR by using
M-MLYV Reverse Transcriptase (Invitrogen). Primers are as following:
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E-cadherin (5'-GAACACAGGAGTCATCAGTGTGG-3'/5'-CTGC-
TACGTGTAGAATGTACTGC-3'), N-cadherin (5'-GCAAGACTG-
GATTTCCTGAAG-3'/5'-CTGGAGTTTTCTGGCAAGTTG-3'),
H-cadherin (5-TGCGGAAGATATGGCAGAACTCG-3'/5'-GAGT-
TTTGCCATTGACATCAGTGG-3'), VE-cadherin (5-AGGTATG-
AGATCGTGGTGGAAGC-3'/5-TGGATGTATTCATAATCCAG-
AGGC-3’), cadherin-19 (5'-ATGCTGACGATCCCTCAAGTGG-3'/
5'-TCATCCTCTTCAATGCTGTAATCC-3'), eNOS (5'-CCAGCT-
AGCCAAAGTCACCAT-3'/5'-GTCTCGGAGCCATACAGGATT-
3"), KDR (5-GGTGCACTGCAGACAGATCTACG-3'/5'-GTCGTC-
TGATTCTCCAGGTTTCC-3'), GAPDH (5-TCACCATCTTCCAG-
GAGCGAGATC-3'/5'-GAGACCACCTGGTGCTCAGTGTAG-3').

2.5. Detection of cell fusion

Adenoviruses coding for enhanced GFP were generated by using
pAdTrack-cytomegalovirus and pShuttle-cytomegalovirus (provided
by Vogelstein [20]). One day after isolation cardiomyocytes were in-
fected with adenoviruses (MOI 20). Three days after the infection
cardiomyocytes were subsequently used for co-cultivation with Dil-
ac-LDL labeled EPCs. GFP* cardiomyocytes were counted by immu-
nostaining. After 6 days of cultivation, cells were collected and subjected
to FACS analysis. GFP*/Dil-ac-LDL" cells were defined as fused cells.
We replated co-cultured cells at day 6 onto dishes with lower concentra-
tion to detect the cells on a single cell level. Then we performed immu-
nostaining as described above.

2.6. Statistical analysis

Data are expressed as means £ S.E.M. Unpaired, two-tailed Student’s
t-test was used for the comparison between groups based on the original
data.

3. Results

Differentiation of EPCs into cardiomyocytes was induced by
co-incubation of EPCs with neonatal rat cardiomyocytes.
After 6 days of co-culture, the expression of the cardiac marker
protein o-sarcomeric actinin in the human cells was detected
by FACS staining against o-sarcomeric actinin and human
HLA. The cardiac phenotype of the EPCs was further con-
firmed by confocal microscopy showing expression of the car-
diac markers ANP and MEF-2, RT-PCR directed against
ANF and BMHC using human specific primers, and the dem-
onstration of oszillating calcium transients after pacing of the
human cells (see our previous publications [12,21]). Moreover,
the expression of the cardiac marker protein a-sarcomeric ac-
tinin was also detected when fixed cardiomyocytes were co-cul-
tured with human EPCs (Fig. 1A, and [12]).

3.1. 1 and P2 integrins are not required for cardiac
differentiation of circulating endothelial progenitor cells
Since Bl-integrins are essential for differentiation of embry-
onic stem cells into cardiomyocytes [13], we determined the
contribution of Bl-integrin to the co-culture-induced differen-
tiation of human EPCs. Therefore, blocking antibodies
(10 pg/ml) or RGD peptides (0.5 mM) were added to the co-
culture of EPCs and neonatal cardiomyocytes and expression
of the cardiac marker o-sarcomeric actinin was determined
after 6 days. However, cardiac differentiation of EPCs was
not affected by the Bl-blocking antibody or RGD peptide
(Fig. 1B). Surprisingly, the survival and adhesion of EPCs in
the presence of Bl-integrin blocking antibody or RGD peptide
was increased (Fig. 1C) suggesting that the blockade of Bl1-
integrins improves adhesion and survival but does not interfere
with differentiation. Next, we tested the effects of f2-integrin
blocking antibodies. In the presence of B2-integrin antibodies,
the total number of human HLA positive cells was signifi-
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Fig. 1. (A) Representative immunocytochemical picture after 6 days co-culture of human Dil-ac-LDL EPC (red fluorescence) with paraformal-
dehyde (2%) fixed cardiomyocytes. The cardiac marker o-sarcomeric actinin was detected by using a FITC-conjugated antibody (green fluoresence).
Nuclei are stained in blue. (B) Integrin antibodies (1 integrin; 10 pg/ml, B2 integrin; 1 pg/ml) or RGD peptide (0.5 mM) were incubated with the
co-culture for 6 days and EPC differentiation was detected by FACS analysis. Isotype IgG and RGD control peptide were used as control. (n = 6).
(C) EPCs survival was determined by counting the number of total human HLA positive cells by FACS analysis. N = 5-6, *P < 0.05 versus control.

cantly decreased (69.7 + 4.7% reduction, Fig. 1C). Despite the
drastic reduction of EPC adhesion and survival, the total num-
ber of double positive cells was not changed (64.2 = 13.7 vs
76.7 £ 23.2; n=15, out of 20000 total cells, respectively). Con-
trol experiments confirmed that B1-, and B2-integrin blocking
antibodies efficiently and selectively blocked the respective
integrins [22].

3.2. Expression and functional contribution of cadherins

Since integrin blocking antibodies had no effect on EPC dif-
ferentiation, we determined the expression of cadherins in the
co-culture system by confocal microscopy. Cadherins were
specifically expressed at the border between cardiomyocytes
and neighbouring EPCs (Fig. 2A: yellow arrow). Interestingly,
the non-differentiated human cells, which do not express the
cardiac marker protein a-sarcomeric actinin, did lack the spe-
cific staining of cadherins at the border to the cardiomyocytes
(Fig. 2A: white arrow). Next, we assessed the specific expres-
sion of cadherins in cardiomyocytes and EPCs by using RT-
PCR. As previously described, cardiomyocytes express N-cad-
herin (Fig. 2B). Additionally expression of E-cadherin was
documented in human heart (Fig. 2B). EPC expressed various
different cadherin genes including E-cadherin, N-cadherin, and

VE-cadherin. In contrast, H-cadherin and Cad-19 were only
expressed in human heart but were low to absent in EPC
(Fig. 2C). Interestingly, E-cadherin expression was signifi-
cantly higher in EPC (424 £ 69.8%, P =0.004) compared to
human umbilical venous endothelial cells, which lack the pro-
genitor cell characteristics (Fig. 2B).

In order to assess whether cadherins are essential for EPC
differentiation, we used cadherin blocking antibodies. E-cad-
herin blocking antibodies alone significantly inhibited the
EPC differentiation, whereas N- and P-cadherin antibodies
had no effect on EPC differentiation (Fig. 3A). The mixture
of N-, P-, E-cadherin blocking antibodies inhibited EPC differ-
entiation but did not further significantly reduce expression of
the cardiac marker protein a-sarcomeric actinin as compared
to E-cadherin antibodies (Fig. 3A). Since N-cadherin plays
an essential role in embryonic heart development, we con-
firmed the negative results obtained with the N-cadherin
blocking peptides by using a previously described peptide with
a sequence specific for the extracellular domain of N-cadherin
[18]. However, N-cadherin blocking peptides did not exert any
effect (Fig. 3C). Control experiments showed that the survival
of EPC was similar in the different antibody treatment regi-
mens (data not shown).
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Fig. 2. Expression of Cadherins. (A) Representative immunocytochemical picture after 6 days of the co-culture. Human EPCs were labeled by Dil-
ac-LDL (red) and cardiomyocytes were detected by a-sarcomeric actinin (green). Pan-cadherin expression is shown in white. Nuclei are stained in
blue. Representative confocal images from n = 5 experiments are shown. Pan-cadherin was expressed at the border between cardiomyocytes and
neighbouring EPCs (yellow arrow). Non-differentiated human cells (white arrow), which do not express a-sarcomeric actinin, lack the specific
staining of cadherins at the border to the cardiomyocytes. Bar indicates 100 pm. (B/C) Expression of cadherins was detected in human umbilical
venous endothelial cells (HUVECQ), three different donor-derived EPC preparations (EPC A, EPC B, and EPC C), human heart. The endothelial NO-
synthase (eNOS), the VEGF-receptor-2 (KDR) and von Willebrand factor (vWF) were used as endothelial markers. Gene expressions were
controlled by GAPDH. “-RT” indicates samples without addition of reverse transcriptase. A representative figure out of N =3-6 individual

experiments is shown.

3.3. Effects of cadherins on fusion

Because some investigators suggested the involvement of fu-
sion in the process of transformation of stem/progenitor cells
into cardiomyocytes, we tested whether cadherin blocking
antibodies could inhibit cellular fusion. For detecting fusion,
cardiomyocytes were transduced with an adenovirus coding
for GFP for 1 week and were then co-cultured for 6 days with
Dil-ac-LDL labeled EPCs. Importantly 98.8 * 1.24% of the
cardiomyocytes did express GFP 1 week after transduction.
After 6 days of co-culture, cells positive for a-sarcomeric acti-
nin, GFP and Dil-ac-LDL were considered as fused cells,
whereas cells only positive for a-actinin and Dil-ac-LDL but
negative for GFP represent differentiated EPCs. Since GFP
and Dil-ac-LDL are not transported via Gap junctions,
GFP*/Dil-ac-LDL" cells may only derive from cellular fusion
or transmembrane fusion allowing the exchange of organelles
and/or proteins. Using this criterion, fusion was observed in
2.9 + 6% of the human cells, whereas 6.0 + 0.7% of the cells

were positive for human HLA and o-sarcomeric actinin at
day 6 [21]. Thus, fusion represents roughly 50% of the cells
with cardiomyogenic phenotype. However, cadherin blocking
antibodies in the same concentration as used in the previous
experiments did not affect the number of GFP*/Dil-ac-LDL"
fused cells, suggesting that E-cadherin specifically contributed
to EPCs differentiation but not to cell fusion (Fig. 3D).

4. Discussion

The data of this study disclose an important role of E-cad-
herin for EPC differentiation into cardiomyocytes. Cadherin
expression was confirmed by immunocytochemistry and RT-
PCR. Blocking experiments using an E-cadherin antibody sig-
nificantly inhibited EPC differentiation, but not fusion of EPC
with cardiac myocytes. Although integrin 1 was essential for
the differentiation of cardiac muscle cells from embryonic stem
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Fig. 3. (A/B) Cadherin blocking antibodies (10 pg/ml each) were incubated with the co-culture of human EPC and neonatal rat cardiac myocytes.
After 6 days of co-culture, FACS analysis was performed to detect the expression of the cardiac marker gene a-sarcomeric actinin in the human
HLA-positive cells. Isotype control IgG was used as control (n = 5). *P < 0.05 versus control IgG. Panel B shows a representative FACS analysis
after incubation of the co-culture with anti N-, E-, P-cadherin antibodies (10 pg/ml each). Upper right (blue box), indicates a-sarcomeric actinin and
human HLA double positive cells. (C) The effect of N-cadherin blocking peptide (sequence: RADSFDINGNQV) on a-sarcomeric actinin expression
after 6 days of co-culture as assessed by FACS analysis. A control peptide (sequence: RAHAVDINGNQV) was used as a negative control. n =8
experiments. D: Effect of mixture of N-, E-, P-cadherin antibodies (10 pg/ml each) on cell fusion. Cardiac myocytes were transduced with an
adenovirus encoding GFP. After 1 week, cardiac myocytes were extensively washed and were co-incubated with Dil-ac-LDL labeled human EPC.
Double positive cells expressing GFP and show Dil-ac-LDL represent fused cells. n = 3 experiments. (E) Representative immunostaining of fused cell
and non-fused differentiated cell. Co-cultured cells of Dil-ac-LDL (red) labeled EPCs and GFP-transduced CM (green) were replated in a low density
to detect cells on a single cell level. Double positive cells for Dil-ac-LDL (red) and a-sarcomeric actinin (blue) were detected in GFP positive (green
arrow) and GFP negative cells (blue arrow). Nuclei are stained in white. Representative confocal images from n = 3 experiments are shown.

cells [13], integrin Bl and RGD peptide had no effect on EPC
differentiation in the co-culture system.

Classic cadherins promote calcium-dependent cell-to-cell
adhesion [23]. Furthermore, cadherins are also known to reg-
ulate diverse signaling processes such as differentiation, prolif-
eration, and migration [14]. Since adhesion of EPCs to fixed
cardiomyocytes was calcium dependent [12], we hypothesized
that classic calcium-dependent cadherins were involved in
cell-to-cell communication between EPCs and cardiomyocytes.
Indeed, cadherins were expressed at the border between differ-
entiated EPCs and cardiomyocytes (Fig. 2A). As classic cad-

herins such as N-cadherin and E-cadherin are crucial for
cardiogenesis [15-17], we examined the effect of N-, E-, and
P-cadherin blocking antibodies on EPC differentiation. Sur-
prisingly, only the blockade of E-cadherin significantly inhib-
ited the expression of cardiomyocyte markers in human
EPCs. Cardiomyocytes predominantly express N-cadherin.
And it is not entirely clear, whether cardiomyocytes express
substantial amounts of E-cadherin. Thus, E-cadherin may be
potentially activated by heterophilic interactions [24].
Intracellular signaling of classic cadherins is mainly medi-
ated via B-catenin. B-catenin is a transcription cofactor of T
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cell factor/ lymphoid enhancer factor (TCF/LEF). Phosphory-
lation of B-catenin by glycogen synthase kinase 3B (GSK3p)
leads to ubiquitination of B-catenin and its subsequent degra-
dation [23]. Activation of cadherins blocks the degradation of
B-catenin by inhibiting GSK3 activity [23]. However, we have
recently observed that inhibition of GSK3p by LiCl did not
affect EPC differentiation [21]. These data suggested that the
signaling of EPC differentiation is unlikely to be mediated
via the GSK3p/B-catenin pathway. If so, how does cadherin
contribute to GSK3p/B-catenin-independent signal transduc-
tion? Recently, it had been reported that presenilin-1 cleaved
the N-cadherin intracellular domain resulting in degradation
of the transcriptional coactivator CREB binding protein [25].
E-cadherin could also be cleaved by cellular stress [26] or
presenilin-1 [27]. One may speculate that a C-terminal cleavage
fragment of E-cadherin might directly influence the intracellu-
lar signaling independent on B-catenin. However, we could not
detect a E-cadherin cleavage fragment by Western blot analy-
sis in the co-cultured cells under the condition tested (data not
shown). Thus, additional mechanisms appear to be mediated
by E-cadherin.

Recently, some investigators questioned that bone marrow-
derived hematopoietic stem cells can acquire a cardiac pheno-
type in vivo [7,8]. Moreover, other studies suggested that bone
marrow-derived stem cells can fuse with cardiomyocytes [9].
However, at least in vitro, stem/progenitor cells are capable
to differentiate into other lineages after co-culturing with fixed
cells as shown in previous studies [12,28], thus indicating that
differentiation certainly exists. Furthermore, both fusion and
differentiation were shown to occur in mice after injection of
cardiac stem cells in a model of myocardial infarction [6].
We also confirmed that fusion processes (either cellular or
transmembrane fusion) existed in our co-culture assay repre-
senting roughly 50% of a-sarcomeric actinin-positive EPCs.
However, E-cadherin blocking antibodies did not affect fusion.
Thus, E-cadherin appears to rather selectively contribute to
EPC differentiation but not fusion.

Surprisingly, only E-cadherin did affect EPC differentia-
tion. Of note, the E-cadherin expression pattern is different
from other cadherins, when EPCs were compared with ma-
ture endothelial cells (HUVEC) (Fig. 2B). E-cadherin expres-
sion was significantly higher in EPCs compared to HUVEC
(0.85+£0.07 vs 0.21 £0.04, P <0.05, n=3), whereas other
cadherins such as N-cadherin and VE-cadherin were prefer-
entially expressed in mature endothelial cells. In contrast to
a previous study showing a transdifferentiation of freshly
isolated HUVEC to cardiomyocyte [10], cultivated HUVEC
(>3 passages) used in the present study failed to acquire a
cardiomyogenic phenotype (data not shown). Thus, it is pos-
sible that the selective expression of E-cadherin in progenitor
cells compared to HUVEC might contribute to the capacity
of the progenitor cells to acquire a cardiomyogenic pheno-
type.

Taken together, the present study describes that E-cadherin,
but not P-, N-cadherin as well as B1 or B2 integrins contributes
to the expression of cardiac marker proteins within human EPCs
after co-culture with neonatal rat cardiomyocytes. E-cadherin
blocking antibodies significantly inhibited EPC differentiation
but not fusion, suggesting that cell-to-cell communication via
E-cadherin is involved in differentiation processes rather than
cell fusion.
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