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Abstract

Peptidyl prolyl cis/trans isomerase cyclophilin A (CypA) serves as a cellular receptor for the important immunosuppressant drug, cyclo-
sporin A. In addition, CypA and its enzyme family have been found to play critical roles in a variety of biological processes, including pro-
tein traYcking, HIV and HCV infection/replication, and Ca2+-mediated intracellular signaling. For these reasons, cyclophilins have
emerged as potential drug targets for several diseases. Therefore, it is extremely important to screen for novel small molecule cyclophilin
inhibitors. Unfortunately, the biochemical assays reported so far are not adaptable to a high-throughput screening format. Here, we report
a Xuorescence polarization-based assay for human CypA that can be adapted to high-throughput screening for drug discovery. The tech-
nique is based on competition and uses a Xuorescein-labeled cyclosporin A analog and puriWed human CypA to quantitatively measure the
binding capacity of unlabeled inhibitors. Detection by Xuorescence polarization allows real-time measurement of binding ratios without
separation steps. The results obtained demonstrated signiWcant correlation among assay procedures, suggesting that the application of Xuo-
rescence polarization in combination with CypA is highly advantageous for the accurate assessment of inhibitor binding.
© 2006 Elsevier Inc. All rights reserved.
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Fluorescence polarization (FP)1 measurements have
long been a valuable biophysical research tool for investi-
gating processes such as membrane lipid mobility, myosin
reorientation, and protein–protein interactions at the
molecular level [1–3]. Immunoassays represent the largest
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1 Abbreviations used: FP, Xuorescence polarization; HTS, high-throughput
screening; CypA, cyclophilin A; CsA, cyclosporin A; MeBmt, 4R-4-([E]-2-
butenyl)-4-N-methyl-L-threonine; CN, calcineurin; PPIase, peptidyl prolyl
cis/trans isomerase; Trp, tryptophan; hCypA, human CypA; DMSO,
dimethyl sulfoxide; cps, counts per second; Cs-CMO, cyclosporine-carbo-
xymethyloxime; 6-AMF, 6-aminomethylXuorescein; DMF, N,N-dimethyl-
formamide; DIEA, N,N-diisopropylethylamine; THF, tetrahydrofuran;
HOBt, N-hydroxybenzotriazole; EDAC, N-(3-dimethylaminopropyl)-N�-
ethylcarbodiimide; TFA, triXuoroacetic acid; MALDI–TOF MS, matrix-
assisted laser/desorption ionization time-of-Xight MS.
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group of bioanalytical applications, having been developed
and used extensively for clinical diagnostics [4,5]. The more
recent advent of microplate readers equipped with polariz-
ing optics has led to the adoption of Xuorescence polariza-
tion as a readout mode for high-throughput screening
(HTS) [6,7]. FP measurements provide information on
molecular orientation and mobility and processes that
modulate them, including receptor–ligand interactions,
proteolysis, protein–DNA interactions, membrane Xuidity,
and muscle contraction. Because polarization is a general
property of Xuorescent molecules, polarization-based read-
outs are somewhat less dye dependent and less susceptible
to environmental interferences such as pH changes than are
assays based on Xuorescence intensity measurements. Here,
we report our FP assay development work for human pep-
tidyl prolyl cis/trans isomerase cyclophilin A (CypA).
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The immunosuppressant drug cyclosporin A (CsA) is
a cyclic hydrophobic undecapeptide that contains seven
N-methyl amino acid residues and the unusual amino acid
4R-4-([E]-2-butenyl)-4-N-methyl-L-threonine (MeBmt) in
position 1 (Scheme 1). CsA is produced by the fungus Toly-
pocladium inXatum and was Wrst isolated in 1976 by workers
at Sandoz [8]. The structure of CsA has been conWrmed by
total synthesis [9]. The conformation of CsA (free in solu-
tion and bound to cyclophilin) has been solved by NMR
[10] and X-ray crystallography [11]. CsA exerts its immuno-
suppressive eVect by binding to CypA [12]. The binding of
CsA to CypA involves extensive interactions from the
amino acid residues at positions 9, 10, 11, 1, and 2, as
highlighted in red in Scheme 1. The resulting CsA–CypA
complex binds to calcineurin (CN), a Ca2+/calmodulin-
dependent phosphatase, and inhibits its enzyme activity [13].
The amino acid residues making contact with CN are high-
lighted in blue in Scheme 1. CsA is widely used to prevent
and treat organ transplantation rejection and has potential
therapeutic applications in the treatment of diseases such as
asthma, psoriasis, atopic dermatitis, and rheumatoid arthri-
tis [14]. However, CsA at doses used to produce a clinical
eVect is associated with side eVects such as nephrotoxicity,
hypertension, hepatotoxicity, anemia, and gastrointestinal
intolerance [15–17]. There is also evidence to suggest a corre-

Scheme 1. CsA structure and its amino acid residues interacting with
CypA and CN.

 

 

lation between CN inhibition and many CsA-induced toxic-
ities [18,19]. This mechanism-based toxicity presents unique
challenges for improving the therapeutic index of CsA and
underscores the strong need for identifying new nonimmu-
nosuppressant small molecule cyclophilin ligands. To this
end, we report here an FP assay that, for the Wrst time,
makes HTS eVorts for CypA possible.

The enzymatic peptidyl prolyl isomerase (PPIase) activ-
ity of CypA is generally assessed by assays that are based
on chymotrypsin-coupled isomer-speciWc proteolysis using
the tetrapeptide derivatives Suc-Ala-Xaa-Pro-Yaa-para-
nitro-anilides by UV–Vis spectroscopy or using Suc-Ala-
Xaa-Pro-Yaa-amino-methyl-coumarins by Xuorescence
spectroscopy, as illustrated in Scheme 2 [20]. An uncoupled
protease-free assay of PPIase activity based on minor
absorption coeYcients of cis and trans conformers of tetra-
peptide anilides remote from far UV peptide absorption
has also been described [21]. However, the uncatalyzed
spontaneous cis/trans isomerization rate is extremely fast,
with half lives of 4.6 s at 37 °C, 74 s at 10 °C, and 346 s at
0 °C [22], making these activity-based assays not useful
for HTS. A Xuorescence competition assay using [D-Lys
(Dsn)]8-CsA as probe has been reported for determining
the equilibrium constant of the spectroscopically invisible
ligand [23]. The intrinsic tryptophan (Trp) Xuorescence of
CypA increases two- to threefold on CsA binding and can
also oVer a good measurement of equilibrium binding con-
stant of the spectroscopically invisible ligand binding to the
CsA pocket. Unfortunately, most of the small molecule
compound libraries contain a signiWcant number of colored
compounds and make these Xuorescence intensity-based
assays not optimal for HTS eVorts. Recently, a surface plas-
mon resonance-based assay was also reported for human
CypA (hCypA) [24]. However, this assay again does not
meet the criteria for an HTS assay.

To overcome the diYculties of current assay procedures
and further facilitate the drug discovery eVort for CypA, we
have developed a Xuorescence polarization-based assay for
hCypA that can be adapted to HTS. The technique is based
on competition and uses a Xuorescein-labeled CsA analog
and puriWed hCypA to quantitatively measure the binding
capacity of nonlabeled inhibitors. Detection by Xuorescence
Scheme 2. Chymotrypsin-coupled PPIase-catalyzed cis/trans isomerase assays.
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polarization allows real-time measurement of binding ratios
without separation steps. The FP assay uses a Xuorescein-
labeled CsA analog as probe. The parallel and perpendicu-
lar intensities of the probe are linear from 0.01 to 2 nM. The
mP signals are between 240 and 70 and reach a plateau at
2 nM. The probe binds to CypA at a Kd value of 500 nM.
The FP competition assay provides an accurate activity
determination for CypA inhibitors and gives results com-
parable to those of the coupled spectrophotometric, cou-
pled Xuorogenic, and Trp Xuorescence enhancement assays.
More important, for the Wrst time, the FP competition
assay would allow the identiWcation of weaker inhibitors in
an HTS format that could serve as scaVolds for further
rational structure-based drug design.

Materials and methods

hCypA was cloned and puriWed as described previously
[25]. The CypA substrates Suc-AAPF-2, 4-diXuoroanilide
for direct spectrophotometric assay, and Suc-ALPF-

AMC for coupled Xuorogenic assay were obtained from
Bachem, and their purities were greater than 95% as judged
by HPLC analysis. Cyclosporins B, C, D, and H were
obtained from Fujian Kerui Pharmaceutical, and their
purities were greater than 95% as judged by HPLC.

Coupled Xuorogenic assay for IC50 measurement

The reactions were started by the addition of 4 �l of
2.5 mM Suc-ALPF-AMC to 200 �l of 50 mM Hepes (pH
7.8), 0.15 mg/ml �-chymotrypsin, 3–6 nM hCypA, and var-
ious concentrations of inhibitor in 10% dimethyl sulfox-
ide (DMSO) at 4 °C. The reactions were monitored at an
excitation wavelength of 380 nm and an emission wave-
length of 460 nm for 5 min on an ICN Titertek Fluoros-
kan II 96-well microtiter Xuorescence plate reader at
ambient temperature using white microXuor U-bottom
plates obtained from Dynex. kobs rates were determined
from the Wrst-order curve Wtting using Deltasoft data col-
lecting and analyzing software (BioMetallics), and IC50
values were determined from the equation of percentage
inhibition at various inhibitor concentrations
(inhibition%D 100[I]/([I] + [IC50])).

Direct spectrophotometric assay for IC50 measurement

The reactions were started by the addition of 5�l of
20 mM Suc-AAPF-2,4-diXuoroanilide to 500 �l of 50 mM
Hepes (pH 7.8), 13 nM hCypA, and various concentrations
of inhibitor in 10% DMSO at 4 °C. The reactions were
monitored at a wavelength of 246 nm for 5 min on a Beck-
man DU640 spectrophotometer. The data were then
exported into KaleidaGraph software. The kobs rates were
determined from Wrst-order decay, and IC50 values were
determined from the equation of percentage inhibition at
various inhibitor concentrations (inhibition%D100[I]/
([I] + [IC50])).
Trp quenching assay for Kd measurement

Four hundred microliters of 50 mM Hepes (pH 7.8), 10%
DMSO, and 328 nM hCypA was titrated with increasing
amount of inhibitors. The Trp Xuorescence was excited at
280 nm, and an emission scan was taken from 300 to
400 nm on a SPEX FluoroMax. The Xuorescence intensities
at 350 nm at various inhibitor concentrations were Wt to the
quadratic equation (F0 + ((F¡F0)/[I])¤(([CypA] + Kd + [I])
¡ sqrt(([CypA] + Kd + [I])¡)� 2–4¤[CypA]¤[I])/2) to provide
the Kd using KaleidaGraph software.

Fluorescence polarization competition assay for Kd 
measurement

FP measurements were performed on an Analyst AD
Assay Detection System (Molecular Devices) using a con-
tinuous high-intensity, xenon-arc lamp as light source with
Wlter settings suitable for Xuorescein excitation (485 nm)
and emission (530 nm). As a standard reading conWgura-
tion, the excitation polarization Wlter was set in the S
(static) position, whereas the emission polarization Wlter
was dynamically polarizing the light in either the S or P
(perpendicular) orientation. A Xuorescein dichroic mirror
(505 nm) was used to direct the polarized light into the
assay well. Emitted polarized light was detected by the Xuo-
rescence photomultiplier tube with the SmartRead, sensi-
tivity 2 setup option in counts per second (cps). Two
intensity measurements were collected for each well: one
when the dynamic polarizer was in the S position and one
when the polarizer was in the P position. For a standard-
ized assay setup, each individual well of a black 96-well LJL
HE PS microplate (Molecular Devices) was loaded with
200 �l of 50 mM Hepes (pH 7.8), 0.5–1 �M hCypA (3–6 �l of
32.8 �M stock), 1–10 nM of Xuorescein-labeled CsA analog,
and various inhibitor concentrations in 10% DMSO. The
reactions were read in an LJL instrument from Molecular
Devices for 100 min. The average mP signals at various
inhibitor concentrations were Wt to the equation for com-
petitive binding [26] in Excel to obtain the Kd value.

Results

Synthesis of cyclosporine-carboxymethyloxime

Cyclosporine-carboxymethyloxime (Cs-CMO, 1) was
synthesized from CsA (3) in three steps, as described in
Scheme 3 [27–30]. CsA (3) was treated with acetic
anhydride in pyridine in the presence of 4-N,N-dimethyla-
minopyridine (DMAP) at room temperature for 16 h. The
Cs-acetate (4) was isolated by Xash chromatography (2%
methanol in dichloromethane) in 91% yield. The Cs-acetate
(4) was then treated with osmium tetroxide and sodium
periodate in 1,4-dioxane-water (1:1 ratio) at room tempera-
ture for 16 h, followed by treatment of the intermediate
aldehyde with carboxymethoxylamine hemihydrochloride
at room temperature for 45 min. The compound (5) was
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isolated by Xash chromatography (5% methanol in dichlo-
romethane) in 81% yield. Finally, the acetate group in com-
pound 5 was cleaved by treatment with sodium methoxide
in methanol at room temperature for 5.5 h, followed by
HPLC puriWcation and lyophilization to aVord the desired
Cs-CMO (1) in 58% yield and 96.3% purity.
Scheme 3. Synthesis of Cy-CMO (1).
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Synthesis of 6-aminomethylXuorescein

6-AminomethylXuorescein (6-AMF, 2) was prepared
from a mixture of 5/6-carboxyXuorescein (6) in six steps,
as described in Scheme 4 [31,32]. First, the 5/6-carboxy-
Xuorescein (6) was treated with trimethylacetic anhydride
in N,N-dimethylformamide (DMF) in the presence of
N,N-diisopropylethylamine (DIEA) at room temperature
for 48 h. The bis-pivalyl derivative (7) was isolated as a
mixture of 5- and 6-isomers by extractive workup in
greater than 95% yield. The carboxylic acid group in bis-
pivalyl derivative (7) was then converted to its acid chlo-
ride by treatment with oxalyl chloride in DMF and
dichloromethane, which was then reduced to the corre-
sponding alcohol using lithium borohydride in tetrahy-
drofuran (THF) at low temperature. The crude product
was puriWed by Xash chromatography (10% ether in
dichloromethane), and the product (8 as 5- and 6-isomers)
was isolated in 26 and 23% yield, respectively. The 6-iso-
mer of 8 was then treated with HN(Cbz)2 (9, which was
separately prepared from benzyl carbamate in two steps)
in the presence of triphenylphosphine and diisopropyl
azodicarboxylate in THF. The bis-Cbz compound (10)
was isolated in 66% yield by Xash chromatography (30%
ethyl acetate in hexanes). The pivalyl groups in 10 were
cleaved by treatment with ammonium hydroxide in meth-
anol and dichloromethane at room temperature for 8 h to
aVord a mixture of 11a and 11b in 71% yield. Finally, the
mixture of 11a and 11b was treated with 30% HBr in
acetic acid to aVord the desired 6-AMF (2) as its HBr salt
in 87% yield and 96.8% purity.

Synthesis of Xuorescein-labeled CsA analog

To Cs-CMO (1, 17.5 mg, 0.014 mmol) dissolved in
anhydrous DMF (5 ml, Applied Biosystems) were added
6-AMF (2, 5.0 mg, 0.014 mmol), N-hydroxybenzotriazole
(HOBt, 2.8 mg, 0.021mmol, Aldrich), N-(3-dimethylamino-
propyl)-N�-ethylcarbodiimide (EDAC, 4 mg, 0.021 mmol,
Sigma), and DIEA (15mg, 0.056 mmol, Applied Biosys-
tems). The reaction mixture was stirred at ambient
temperature for 18 h, diluted with 1.0 ml of 90% DMSO in
water, and puriWed by reverse-phase HPLC using Waters
Delta Pak C18 stationary phase eluted with a linear gradi-
ent of 20–100% acetonitrile in 80 min with 0.1% triXuoro-
acetic acid (TFA) in water to give FP probe (Scheme 5) as
a bright yellow powder (8.2 mg, 37%); matrix-assisted
laser/desorption ionization time-of-Xight MS (MALDI–
TOF MS): m/z D 1628.5 (calculated 1628.9 [M + Na]+).

FP probe identiWcation

The challenges posed by the lack of functional groups
and the structure complexity of CsA leave a rather limited
opportunity for semisynthetic chemistry modiWcations.
The intensity-based [D-Lys(Dns)]8-CsA probe was accom-
plished through a total synthesis of D-Lys8-CsA [33]. We
were able to semisynthesize several CsA analogs through
the chemical modiWcation of the MeBmt group at posi-
tion 1 of CsA and test them in the traditional coupled
activity assay. The structure and activities for these three
analogs are shown in Scheme 5. ModiWcations of the
hydroxyl group of the MeBmt side chain in CsA analogs 1
and 2 were less favorable. The CsA analog 3 was found to
inhibit the CypA PPIase activity at 130 nM. Therefore,
CsA analog 3 was chosen to be linked with the Xuorescein
molecule to make the FP assay probe. When the FP probe
was assayed in the activity assay, an IC50 of 0.49 �M
(Fig. 1) was obtained.

Fig. 1. IC50 plot of Xuorescein-labeled CsA analog in the coupled Xuoro-
genic assay. Inhib, inhibition.
  
   

  
   

  
   
Scheme 5. Structures and activities of several CsA analogs.
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FP competition assay development

The parallel and perpendicular intensities of the FP
probe were analyzed at various probe concentrations. The
parallel and perpendicular intensities of the probe are linear
from 0.01 to 2 nM. The mP signals are between 240 and 70
and reach a plateau at 2 nM (Fig. 2). When using 1 nM of
the probe and various concentrations of hCypA, we
obtained a saturating binding curve with a Kd of 0.5 �M
(Fig. 3). The FP competition assay was set up to use 1 nM

Fig. 2. Fluorescence intensities and mP of the Xuorescein-labeled CsA
analog at concentration ranges from 0.01 to 0.2 nM (�) and from 0.2 to
2 nM (�). (A) FP probe parallel intensity versus probe concentration. (B)
FP probe perpendicular intensity versus probe concentration. (C) FP
probe mP versus probe concentration.
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of the FP probe and 0.5�M of the CypA. When various
concentrations of CsA were included, the mP of the probe
decreased with the increasing concentration of CsA and
provided a Kd of 14 nM in this FP competition assay
(Fig. 4).

FP competition assay validation

Four CsA analogs—CsB, CsC, CsD, and CsH—and
CsA itself were tested in FP competition assays, activity-
based coupled Xuorogenic assay, activity-based direct spec-
trophotometric assay, and binding-based Trp enhancement
assays. The Kd and IC50 values are summarized in Table 1.
As seen from the table, the Kd values of the CsA analogs
obtained in the FP competition assay were in excellent
agreement with IC50 or Kd values obtained by the other
assays.

Conclusion

The identiWcation of nonimmunosuppressive CypA
binders has important implications for preventive and/or
therapeutic applications in infectious diseases and other
diseases. As such, a body of knowledge enhancing the abil-
ity to identify and design novel small molecules that bind to
CypA has emerged [34,35,24]. In the absence of an HTS
assay, a scientist must rely on other approaches, such as
“virtual screening” and rational structure-based drug
design, for identifying inhibitors of CypA [36,37]. In this
article, we have reported a Xuorescence polarization-based

Fig. 3. Binding curve of Xuorescein-labeled CsA analog to CypA.

Fig. 4. Binding curve of CsA in the FP competition assay.
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assay for hCypA that can be adapted to HTS for drug dis-
covery. In general, competition assays measure the binding
of a labeled ligand (also called reference or tracer peptide)
in the presence of various concentrations of an unlabeled
ligand (also called the competitor or inhibitor) to CypA.
The advantage of this approach is that, because only a ref-
erence ligand is labeled, an adverse eVect on aYnity poten-
tially caused by the labeling process does not aVect the
comparison of the unlabeled ligands. This type of assay is
not only conceptually simple but also a sensitive and most
viable alternative for high-throughput applications.
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