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Effects of adrenomedullin on systolic and diastolic myocardial function§
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A B S T R A C T

Adrenomedullin (AM) effects were studied in rabbit papillary muscles by adding increasing con-

centrations (10�10 to 10�6 M) either alone or after pre-treatment with L-NNA, indomethacin, AM22–52

(AM receptor antagonist), CGRP(8–37) (CGRP receptors antagonist), KT5720 (PKA inhibitor), as well as

after endocardial endothelium (EE) removal. Passive length–tension relations were constructed before

and after a single concentration of AM (10�6 M). AM concentration-dependently induced negative

inotropic and lusitropic effects, and increased resting muscle length (RL). At 10�6 M, AT, dT/dtmax and dT/

dtmin decreased 20.9 � 4.9%, 18.3 � 7.3% and 16.7 � 7.8%, respectively, and RL increased to 1.010 � 0.004 L/

Lmax. Correcting RL to its initial value resulted in a 26.6 � 6.4% decrease of resting tension, indicating

decreased muscle stiffness, also patent in the down and rightward shift of the passive length–tension

relation. The negative inotropic effect of AM was dependent on its receptor, CGRP receptor, PKA, the EE and

NO, while the effects of AM on myocardial stiffness were abolished by EE damage and NO inhibition. This

latter effect represents a novel mechanism of acute neurohumoral modulation of diastolic function,

suggesting that AM is an important regulator of cardiac filling.

� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Adrenomedullin (AM) is a peptide identified and isolated
from human pheochromocytoma [27], and initially annotated as a
vasodilator peptide. AM acts as a circulating hormone, which
elicits various biological activities in a paracrine or autocrine
manner.

Human AM (hAM) is a 52 amino acid peptide with structural
homology to calcitonin gene-related peptide (CGRP) [27]. AM is
produced in several tissues (kidney, lung, and heart) [28], and its
production is upregulated by several factors such as oxidative
stress, pro-inflammatory cytokines, angiotensin II, hypoxia,
hyperglycemia, infusion of natriuretic peptide, and aldosterone,
among other factors [1].

There is increasing experimental and clinical evidence in
support of an important role of AM in the pathophysiology of a
variety of cardiovascular diseases. In spite of its relatively low
plasmatic levels [27], various clinical studies have shown that they
correlate with the severity of diseases, such as heart failure (HF),
acute myocardial infarction, and hypertension [23,24,36,40,42].
§ Presented in part at the American Heart Association Scientific Sessions

conference, 2007, in Orlando, FL.
* Corresponding author at: Department of Physiology, Faculty of Medicine,
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At the cardiovascular level, AM can be synthesized and secreted
from various cells, including vascular endothelial cells, vascular
smooth muscle cells, cardiomyocytes and fibroblasts [1,13].
Furthermore, AM and its receptors are expressed in the normal
and failing myocardium [44,46].

In normal animals [47] and in an ovine model of pacing-induced
HF [53], AM was shown to reduce peripheral resistance and to
increase cardiac output. These data have led investigators to
suggest that AM may be involved in the control of cardiac function
and that AM is activated in HF to modulate the opposing effects of
the vasoconstricting and sodium-retaining factors endothelin-1
(ET-1) and angiotensin II.

The direct myocardial effects of AM remain, however, largely
unknown. With regard to contractility, positive [2,20,60], negative
[19,22,35,38,52], and no significant [41,54,55,59] inotropic effects
have been reported. On the other hand, its effects on the diastolic
properties of the myocardium were not yet investigated. Recent
evidences have shown that these properties and more specifically
myocardial stiffness can be acutely modulated by nitric oxide (NO)
[57], ET-1 [31], angiotensin II [32] and urotensin II [15].

Diastolic HF has emerged over the last two decades as a
separate clinical entity. Approximately half of the patients pre-
senting with symptoms of congestive HF exhibit a near normal left
ventricular systolic function at rest, which is thought to be caused
by a predominant abnormality in diastolic function [49]. Deter-
minants of diastolic function include myocardial relaxation and
passive properties of the ventricular wall, such as myocardial
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stiffness, wall thickness and chamber geometry (size or volume).
Other determinants include the structures surrounding the
ventricle, the left atrium, pulmonary veins and mitral valve, and
heart rate [30].

So, the present study was conducted to characterize the systolic
and diastolic myocardial effects of AM and to clarify the
intracellular pathways that underlie them.

2. Materials and methods

2.1. Animals and tissue preparation

This investigation conforms to the Guide for the Care and Use of

Laboratory Animals published by the US National Institutes of
Health (NIH Publication No. 85-23, Revised 1996).

2.2. Myocardial effects of adrenomedullin

2.2.1. Experimental preparation

Isometric and isotonic contractions were measured in papillary
muscles isolated from the right ventricle of rabbits. Male New
Zealand White rabbits (Oryctolagus cuniculus; 1.3–2.6 kg; n = 38)
were anesthetized with intravenous sodium pentobarbital
(25 mg kg�1). A left thoracotomy was performed, and beating
hearts were quickly excised and immersed in a modified Krebs–
Ringer (KR) solution (composition in mM: 98 NaCl, 4.7 KCl, 2.4
MgSO4�7H2O, 1.2 KH2PO4, 4.5 glucose, 1.8 CaCl2�2H2O, 17 NaHCO3,
15 sodium pyruvate, 5 sodium acetate, and 0.02 atenolol) at 35 8C
with cardioplegic 2,3-butanedione monoxime (BDM; 3%) and 5%
Newborn calf serum. Atenolol was used to prevent b-adrenergic-
mediated effects. The solutions were in equilibrium with 95% O2

and 5% CO2, to obtain a pH between 7.38 and 7.42.
The time from thoracotomy to dissection was�3 min. The right

ventricle was opened and papillary muscles were isolated by first
dividing the chordae tendinae at the muscle tip and then freeing
the muscle base and a small amount of surrounding myocardium
from the ventricular wall. Only long, thin, uniformly cylindrical
muscles were used.

After dissection, papillary muscles (n = 62; length: 4.9 �
0.2 mm; weight: 3.9 � 0.2 mg; preload: 3.4 � 0.1 mN) were mounted
vertically in a 10-ml plexi glass organ bath containing the afore-
mentioned KR solution at 35 8C. The lower muscular end was fixed in
a phosphorbronze clip, and the upper tendinous end was attached
to an electromagnetic length–tension transducer (University of
Antwerp, Belgium).

Preload was initially set between 3 and 4 mN according to
muscle dimensions. The preparations were stimulated at 0.6 Hz
with a voltage of 10% above threshold (typically 30–60 mV) by
rectangular pulses of 5 ms duration through two platinum
electrodes arranged longitudinally alongside the entire muscle.
After 20 min later, bathing solutions were replaced by correspond-
ing KR solutions without BDM and the muscle started to contract.
One hour later, bathing solution was replaced by corresponding
serum-free KR solution. During the next 2 h, the muscles were
stabilized. Finally, the muscles were stretched to a muscle length at
which active force development was maximal. At this point, this
length (mm) known as maximum physiological length (Lmax) was
measured with a microruler. During the experiment, changes in
diastolic muscle length and muscle shortening were measured by
the isotonic transducer. Protocols were initiated after obtaining
two similar isotonic and isometric control twitches separated by a
10 min interval.

At the end of the experiment the muscles were removed, lightly
blotted and then weighed. Muscle cross-sectional area was
calculated by dividing the weight of the muscle by its length at
Lmax. A cylindrical shape and a specific gravity of 1.0 were assumed
[15]. Muscle tension was then expressed as force normalized per
cross-sectional area (mN mm�2).

2.2.2. Experimental protocols

Effects of increasing concentrations of human AM-(1–52)
(C264H406N80O77S3) (AM; 10�10 to 10�6 M) on contraction, relaxa-
tion, and diastolic properties of the myocardium were studied in
rabbit papillary muscles in the following conditions: (A) control
muscles with intact endocardial endothelium (EE), (B) after
selective removal of EE by a brief (1 s) immersion of the papillary
muscle in a weak solution (0.5%) of the detergent Triton X-100
[6,7], followed by abundant wash with Triton-free KR solution, and
(C) in muscles with intact EE in the presence of: (i) NG-nitro-L-
arginine (L-NNA; 10�5 M), a NO synthase inhibitor; (ii) indo-
methacin (Indo; 10�5 M), a cyclooxygenase inhibitor; (iii) human
AM-(22–52) (C159H252N46O48) (AM22–52; 10�6 M), an antagonist
of AM receptor; (iv) a-CGRP(8–37) (C139H230N44O38) (CGRP(8–37);
10�6 M), a selective antagonist for CGRP receptors; (v) KT5720 (KT,
10�6 M), an inhibitor of PKA. These substances were dissolved in
the KR solution before the addition of AM, and muscle twitches
were recorded after a stable response was obtained, typically 15–
20 min later. After that, AM was added cumulatively without any
washout between. Finally, in another subset of muscles, passive
length–tension relations were constructed in the absence and in
the presence of the highest concentration of AM. Of note, that in
each experimental protocol, all papillary muscles were obtained
from different animals.

2.2.3. Data acquisition and analysis

Isotonic and isometric twitches were recorded and analyzed with
dedicated software (University of Antwerp, Belgium). Selected
parameters included: resting tension (RT; mN mm�2), active tension
(AT; mN mm�2); maximal velocities of tension rise (dT/dtmax;
mN mm�2 s�1) and decline (dT/dtmin; mN mm�2 s�1); peak isotonic
shortening (PS; %Lmax); maximal velocities of shortening (dL/dtmax;
Lmax s�1) and lengthening (dL/dtmin; Lmax s�1); time for half-
relaxation (tHR, ms); and time to active tension (tAT; ms).

In the various protocols, results are given as percent change
from baseline. For the parameters that are expressed as negative
values (e.g. dT/dtmin) such percent change refers to the absolute
values. When a pharmacological inhibitor was used or the EE
damaged, the term baseline refers to the performance in the
presence of those inhibitors or after damage of EE, before the
addition of AM.

2.3. Drugs and materials

Drugs were obtained from the following sources: human AM-
(1–52), human AM-(22–52) and human a-CGRP(8–37): Bachem
(Bubendorf, Switzerland); all other chemicals: Sigma Chemical Co.
(St. Louis, MO, USA). Stock solutions of all chemicals were dissolved
in distilled water and stored at �20 8C until use.

2.4. Statistical methods

Values are presented as means � standard error of mean (S.E.M.)
and n represents the number of experiments. Effects of increasing
concentrations of AM alone on the different experimental parameters
were analyzed by one-way repeated-measures ANOVA. Effects of
increasing concentrations of AM under various experimental condi-
tions were analyzed with a repeated-measures two-way ANOVA.
Effects on the various parameters of a single concentration of the
antagonists were analyzed with a paired t-test. When significant
differences were detected with any of the ANOVA tests, the Student–
Newman–Keuls test was selected to perform pairwise multiple
comparisons. P < 0.05 was accepted as significant.



Table 1
Morphologic and contractile characterization of papillary muscles (n = 62).

Parameter Value

Length (mm) 4.9 � 0.2

Weight (mg) 3.9 � 0.2

Preload (mN) 3.4 � 0.1

AT (mN/mm2) 22.1 � 1.4

dT/dtmax (mN/(mm2 s)) 142.8 � 10.3

dT/dtmin (mN/(mm2 s)) �120.7 � 7.5

tHR (ms) 409.3 � 9.4

tAT (ms) 260.0 � 6.2

AT: active tension; dT/dtmax, dT/dtmin: maximum velocity of tension rise and

decline, respectively; tHR: time for half-relaxation; tAT: time to active tension.

Values are means � S.E.M.

Fig. 2. Effect of increasing concentrations of adrenomedullin (AM, 10�10 to 10�6 M,

n = 9) on (a) resting muscle length (L/Lmax). Data are mean � S.E.M., expressed as

percent variation from baseline. P < 0.05: a vs. baseline, b vs. 10�10 M AM, g vs. 10�9 M

AM, d vs. 10�8 M AM, e vs. 10�7 M AM. Panel (b) shows a representative example of

isotonic twitches at baseline and in the presence of increasing concentrations of AM.
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3. Results

Morphometric characteristics and baseline performance of
papillary muscles did not vary significantly between the different
experimental groups (means � S.E.M. presented in Table 1). Con-
centration–response curves to AM in the various experimental
conditions are illustrated in Figs. 1–6.

Effects of increasing concentrations of AM on myocardial
contractility (inotropy) and relaxation (lusitropy) are illustrated
in Fig. 1, where it can be seen that these concentrations decreased
both contractility (AT and dT/dtmax) and lusitropy (dT/dtmin). The
highest concentration of AM (10�6 M) decreased 20.9� 4.9% AT,
18.3� 7.3% dT/dtmax, 16.7� 7.8% dT/dtmin, 11.9� 3.8% PS, 13.7� 4.8%
dl/dtmax, 10.9� 5.3% dl/dtmin (P < 0.05). Effects on tHR and tAT (onset
of relaxation) were not statistically significant.

With regard to the diastolic properties of the myocardium, we
observed that AM progressively increased resting muscle length
(Fig. 2) at a constant resting tension. Correcting muscle length, at
the end of the experiment, to its initial value resulted in a
26.6 � 6.4% decrease of resting tension, without altering the other
contractile parameters. These results indicate an increase in muscle
distensibility, or on the other hand, a decrease in muscle stiffness.
This aspect is further explored in Fig. 3 where passive length–tension
relations at baseline and in the presence of AM (10�6 M) are depicted.
In this figure, it can be seen that this relation is right and downward
shifted by AM. In other words, at each resting tension, muscle length
was always significantly greater in the presence of AM, indicating that
this peptide acutely increases distensibility and lowers stiffness of the
myocardium.

Effects of AM after damaging the EE, in the presence of a
selective AM receptor antagonist (AM22–52) or a selective CGRP
Fig. 1. Effect of increasing concentrations of adrenomedullin (AM, 10�10 to 10�6 M,

n = 9) on active tension (AT) and peak rates of tension rise and decline (dT/dtmax and

dT/dtmin, respectively). P < 0.05: a vs. baseline, b vs. 10�10 M AM, g vs. 10�9 M AM, d
vs. 10�8 M AM, e vs. 10�7 M AM.
receptors antagonist (CGRP(8–37)), or after inhibition of cycloox-
ygenase (Indo), NO synthase (L-NNA), or PKA (KT) are illustrated in
Figs. 4–6. While AM22–52, CGRP(8–37), Indo and KT did not
significantly modify per se any of the analyzed contractile
parameters, selective destruction of the EE or the presence of L-
NNA resulted in a significant decrease of AT by 33.1 � 5.6% and
Fig. 3. Passive length–tension relations at baseline and in the presence of

adrenomedullin (AM, 10�6 M, n = 6). Data are mean � S.E.M. P < 0.05: a vs. baseline.



Fig. 4. Effect of increasing concentrations of adrenomedullin (AM, 10�10 to 10�6 M)

on a active tension and b passive muscle length (L/Lmax) in the absence (n = 9) or

presence of damaged endocardial endothelium (TRX, n = 9), NO synthase inhibition

(L-NNA, 10�5 M, n = 7), cyclooxygenase inhibition (INDO, 10�5 M, n = 9). Data are

mean � S.E.M., expressed as percent variation from baseline. P < 0.05: a vs. baseline, b
vs. 10�10 M AM, g vs. 10�9 M AM, d vs. 10�8 M AM, e vs. 10�7 M AM, * vs. AM alone.

Fig. 5. Effect of increasing concentrations of adrenomedullin (AM, 10�10 to

10�6 M) on (a) active tension and (b) passive muscle length (L/Lmax) in the

absence (n = 9) or presence of selective AM receptor antagonist (human AM-(22–

52)) (AM22–52, 10�6 M, n = 8), PKA inhibitor (KT5720) (KT, 10�6 M, n = 7) or

selective CGRP receptors antagonist (a-CGRP(8–37)) (CGRP(8–37), 10�6 M,

n = 7). Data are mean � S.E.M., expressed as percent variation from baseline.

P < 0.05: a vs. baseline, b vs. 10�10 M AM, g vs. 10�9 M AM, d vs. 10�8 M AM, e vs.

10�7 M AM, * vs. AM alone.
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5.8 � 2.4%, dT/dtmax by 31.5 � 6.4 and 4.6 � 3.1% and dT/dtmin by
27.0 � 6.8 and 6.5 � 3.4%, respectively.

The myocardial effects of AM were also significantly altered
by these agents. For instance, the negative inotropic effect of AM
was abolished when the EE was damaged or in the presence of
L-NNA (Fig. 4a). Furthermore, in the latter condition the effects
of AM on passive muscle length were no more statistically
significant, having been totally abolished when the EE was
damaged (Figs. 4b and 6). On the other hand, AM22–52, CGRP(8–
37) and KT blunted the negative inotropic effect of AM (Fig. 5a),
but did not alter the effect of AM on resting length and tension
(Figs. 5b and 6). Finally, none of the effects of AM were altered by
Indo (Figs. 4a and b and 6).

4. Discussion

The present study shows that AM induces significant concen-
tration-dependent negative inotropic and lusitropic effects, and an
acute increase in myocardial distensibility. The former effects are
completely abolished by AM or CGRP receptors blockade, PKA
inhibition, EE removal or NO synthase inhibition. In contrast, the
effect of AM on myocardial distensibility was no more observed
when the EE was damaged or NO synthase inhibited. These
observations suggest that this novel effect of AM requires an intact
EE and is dependent of NO release.

A negative inotropic effect of AM was previously found in vitro
[2,22,38,52], which is in line with our results. Nevertheless, this
effect is apparently in disagreement with data from other in vitro
studies [2,20,60], and from some in vivo studies [39,45] in which
acute AM infusion increased cardiac index and stroke volume
index. In vivo, this increase in cardiac output has been primarily
attributed to a fall in cardiac afterload as a result of decreasing
mean arterial pressure. A lack of inotropic and lusitropic effects of
AM has also been reported in normal and heart-failure dogs [29].
Reasons for these discrepancies between studies presumably
include species differences and distinct experimental models.

Though the major signal transduction pathway activated by AM
appears to be Gs-mediated adenylate cyclase/cAMP/PKA system
[20], not all effects of AM can be explained by this pathway [18]. A
previous study suggested a contribution of NO to the negative
inotropic effect promoted by AM in adult rabbit cardiac ventricular
myocytes, which decreased intracellular Ca2+ concentration
through a cGMP-dependent mechanism [22]. In the present study,
besides NO and PKA, the negative inotropic effect of AM was also
modulated both by its receptor, CGRP receptor and by the EE.
Although the activation of the adenylate cyclase–cAMP system is
one of the major pathways for the stimulation of cardiac
contractility in the mammalian hearts [37], a recently published
study observed a switch from Gs coupling to PKA-dependent Gi

coupling with AM. This resulted in a shift from positive inotropy to
negative inotropy, which was time dependent and dose dependent
[34] and is consonant with our results.



Fig. 6. Effects of adrenomedullin (AM, 10�6 M) on (a) resting tension and (b) resting

muscle length (L/Lmax) in the absence (n = 9) or presence of damaged endocardial

endothelium (TRX, n = 9), NO synthase inhibition (L-NNA, 10�5 M, n = 7),

cyclooxygenase inhibition (INDO, 10�5 M, n = 9), selective AM receptor antagonist

(human AM-(22–52)) (AM22–52, 10�6 M, n = 8), PKA inhibitor KT5720 (KT, 10�6 M,

n = 7) or selective CGRP receptors antagonist (a-CGRP(8–37)) (CGRP(8–37), 10�6 M,

n = 7). Data are means� S.E.M., expressed as percent variation from baseline. P < 0.05:

a vs. baseline, b vs. AM alone.
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Likewise other neurohumoral agents, such as NO [50], ET-1
[31], angiotensin II [32] and urotensin II [15], we observed that AM
acutely modulates myocardial stiffness, which is an important
determinant of ventricular filling and, therefore, of diastolic
function [30]. This effect was significantly blunted by EE removal
and by inhibition of NO. The EE has also been involved in the effect
on distensibility of some of these neurohumoral agents [5,9,51].
Similarly to vascular endothelial dysfunction [11], it seems that
cardiac endothelial dysfunction is present and/or may contribute
to HF progression [4]. So, considering that cardiac endothelium,
both vascular and endocardial, regulates performance of under-
lying cardiac muscle, the results of the present study could help to
better understand the pathophysiology of HF.

Given that NO is one of the most important endothelial
mediators and that many of the actions of AM occur via AM
stimulated synthesis of NO, we investigated how this agent
modulates the myocardial effects of this peptide. In vivo studies in
rat [14], sheep [10], and humans [61] have suggested that AM-
induced vasodilatation is mediated in part by stimulation of NO
release from endothelial cells. This idea has been confirmed by in
vitro studies, which showed that AM increases endothelial NO
synthase activity by elevating intracellular-free calcium concen-
tration ([Ca2+]i) [3,58] or by activating phosphatidylinositol 3-
kinase and protein kinase B/Akt [43]. In cardiac myocytes, AM
augments NO production via a cAMP-dependent signaling path-
way [21], and, as cited earlier, NO mediates an AM-induced
decrease in contractility of isolated myocytes [22].

In the current study, we found that after blocking NO release,
AM-induced increase in resting muscle length (enhanced myo-
cardial distensibility) was no more observed. In fact, it has been
previously suggested that NO has an important role not only in the
regulation of cardiac contractility [26], but also in the increase of
diastolic distensibility [48,50]. Although our findings suggest that
AM stimulates NO release from endocardial endothelium cells, in
the present study we did not provide direct evidence of this fact,
which represents a limitation of the study.

Specific AM receptors coupled to stimulation of adenylyl
cyclase have been reported in myocardial tissue [25]. In addition,
there is evidence for receptor sites that bind both AM and CGRP
with fairly high affinity [63]. It was recently shown that the
calcitonin receptor-like receptor (CRLR) can function either as an
AM receptor or as a CGRP receptor, depending on the expression of
different members of a novel family of single-transmembrane-
domain proteins called receptor-activity-modifying proteins
(RAMPs) [33,62]. So far, the RAMP family has been shown to
consist of three isoforms: RAMP1, RAMP2 and RAMP3 [17,33,56].
Thus, the combination of CRLR plus RAMP2 results in an AM
receptor 1 (AM1), whereas CRLR co-expression with RAMP3 results
in an AM receptor 2 (AM2) [8,16].

In the present study, AM-induced negative inotropic effect was
effectively blocked by both CGRP(8–37) and AM22–52, which
suggests that AM may regulate cardiac function mediated by CGRP
receptors and AM specific receptors in cardiac tissue. On the other
hand, AM was observed to promote an increase of myocardial
distensibility, through the activation of CGRP(8–37) or AM22–52
insensitive receptors. Although the AM peptide fragment AM22–
52 has been described as an antagonist of both AM1 and AM2

receptors [12], a recent study demonstrated that AM22–52 is a
more selective antagonist at the AM1 (CRLR/RAMP2) than at the
AM2 (CRLR/RAMP3) receptor [17]. So, we hypothesize that the
increase in myocardial distensibility induced by AM is possibly
modulated by the AM2 rather than by the AM1 receptor, although
further studies are needed to clarify these issues.

Finally, concerning the pathophysiologic relevance of our
findings, we must point out that a decrease of 27% in passive
tension of the isolated muscle indicate that AM might allow the
ventricle to reach the same diastolic volume with almost 30% lower
filling pressures, which is undoubtedly a potentially important
adaptation mechanism. As the acute effects of AM on diastolic
function were determined in an in vitro model, it allows
determining the effects of AM on intrinsic myocardial diastolic
properties, excluding those resulting from load and coronary tonus
changes. However, the effects of AM in vivo, where other important
adaptation mechanisms also affect diastolic filling pressures, may
differ from those reported here.

On the other hand, the results of the present study emphasize
that humoral influences on diastolic cardiac function are modu-
lated by the interaction with EE and its mediators, such as NO,
which being altered in the failing heart might provide new
elements for the comprehension of the pathophysiology of HF.

5. Conclusions

Since its discovery, there has been great interest in AM as a
promising endogenous peptide for the treatment of cardiovascular
diseases. The present study provided new insights into the
direct cardiac actions of AM. It described, for the first time, the
modulation of diastolic function by AM, which represents a
potentially powerful regulator of cardiac filling. These findings
might improve our understanding about the role of AM, namely on
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diastolic function, which has been greatly overlooked in most
studies.
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