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SUMMARY

A unique subpopulation of spleen dendritic cells
(DCs) that express the CD8 surface marker efficiently
present phagocytosed antigens to CD8+ T lympho-
cytes in a process called ‘‘crosspresentation,’’ which
initiates cytotoxic immune responses. We now show
that the small GTPase Rac2 plays a critical role in
antigen crosspresentation selectively in this DC
subpopulation. In CD8+ DCs, Rac2 determines the
subcellular assembly of the NADPH oxidase complex
(NOX2) to phagosomes, whereas in CD8� DCs, Rac1
mediates the assembly of NOX2 at the plasma
membrane. In the absence of Rac2, the production
of reactive oxygen species (ROS) in DC-phagosomes
was abolished, the phagosomal pH dropped, and the
efficiency of antigen crosspresentation was reduced.
We conclude that the activity of Rac1 and 2 control
crosspresentation in DC subpopulations through the
regulation of phagosomal oxidation and pH.

INTRODUCTION

Antigen processing and presentation determine the specificity of

immune recognition during adaptative immune responses.

Dendritic cells (DCs) are the most potent initiators of T cell-medi-

ated immune responses, at least in part because of their unique

capacity for antigen processing and presentation. Unlike other

antigen-presenting cells, after antigen phagocytosis, DCs

present antigenic peptides on both MHC class I and class II mole-

cules and efficiently activate both CD4+ and CD8+ T cells. DCs

are particularly efficient, as compared to other antigen-present-

ing cells, for the presentation of phagocytosed antigens to

CD8+ T cells, a process called ‘‘crosspresentation’’ (Bevan,

1976). The molecular mechanisms that make DCs such a unique

antigen crosspresenting cell are still unclear. Several recent

studies, however, showed that DCs have adapted their endocytic
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and phagocytic pathways to the crosspresentation function.

These adaptations seem to concur to limit the proteolytic activity

in endosomes and phagosomes of DCs (Jancic et al., 2007;

Savina et al., 2006). In several experimental settings in vitro and

in vivo, low proteolytic activity in the internalization pathway

correlates with high antigen crosspresentation, and vice versa.

The mechanisms that limit endo-phagocytic proteolysis in

DCs include low expression levels and low recruitment of proteo-

lytic enzymes to phagososmes (Lennon-Dumenil et al., 2002),

limited acidification by the V-ATPase (Trombetta et al., 2003),

and active alkalinization of the endosomal and phagosomal

lumen by the NADPH oxidase NOX2 (Savina et al., 2006).

Thus, after internalization in DCs, antigens are exposed to

a nearly neutral pH, oxidative, lowly proteolytic milieu. This is in

marked contrast to what happens in macrophages or neutro-

phils, the two types of phagocytes in which phagocytosis has

been analyzed in some detail. In macrophages, the phagosomal

pH drops to values around 5.5 in the first 30 min after engulfment

(Lukacs et al., 1990; Yates et al., 2007). The proteolytic activity is

extremely high and most proteins are rapidly degraded into

amino acids. In neutrophils, a transient and alkalinization of the

phagosomal pH results in a subsequent cascade of ionic fluxes

that activates proteolytic enzymes before the pH acidifies

strongly (Jiang et al., 1997; Reeves et al., 2002). Here too,

proteins are rapidly degraded into amino acids. The results pub-

lished thus far suggest that DCs limit their endo-phagosomal

proteolytic capacity to ‘‘preserve’’ peptides from complete

degradation. These ‘‘protected’’ peptides could then be loaded

on MHC molecules and serve as a basis for immune recognition.

One of the main limitations with the studies analyzing phago-

cytic functions in DCs is that they have mainly been performed

with in vitro generated DCs (from the bone marrow, in general).

Very little, in contrast, is known about the DCs that reside in

lymphoid organs. In both spleen and lymph nodes, murine DCs

can be divided into several subpopulations via different surface

markers (Vremec et al., 1992). One of these subpopulations

expresses CD8aa homodimers and is referred to as ‘‘CD8+’’

DCs. This subpopulation was shown in many different experi-

mental systems to crosspresent antigens more efficiently than

mailto:ariel.savina@curie.fr
mailto:sebastian.amigorena@curie.fr


Immunity

Rac2 Controls Antigen Crosspresentation
did other DCs subsets (collectively referred to as ‘‘CD8–’’) (Iyoda

et al., 2002; Pooley et al., 2001; Schnorrer et al., 2006; Schulz

and Reis e Sousa, 2002).

We have analyzed the phagocytic pathway in these two main

DC subpopulations of the spleen. In CD8–, but not in CD8+,

DCs, phagosomes acidified in the first hours of phagocytosis.

High phagosomal pH was maintained in CD8+ DC phagosomes

by the assembly of the NADPH oxidase NOX2 cytosolic subunits

(including p47phox) to the membrane subunits (gp91phox and

gp22phox). Phagosomal assembly of the complex in CD8+ DCs

caused the production of ROS inside phagosomes and prevented

acidification. In CD8– DCs, in spite of very high amount of total

ROS production, no phagosomal assembly of NOX2 or produc-

tion of ROS was observed. These differences in the phagosomal

function in CD8+ and CD8– DCs were, at least in part, because

of Rac2. Indeed, in Rac2-defective DCs, like in gp91phox-defec-

tive DCs, the production of ROS, the phagosomal pH, and the

crosspresentation capacities were all similar in CD8+ and CD8–

spleen DCs.

RESULTS

NOX2 Alkalinizes Phagosomes and Endosomes in CD8+

but Not in CD8� Spleen DCs
By using bone marrow-derived DCs, we have previously shown

that crosspresentation requires high pH in phagosomes (Jancic

et al., 2007; Savina et al., 2006). In the spleen, crosspresentation

is a specific attribute of a particular DC subpopulation, the CD8+

DCs (Pooley et al., 2001; Schnorrer et al., 2006). In order to deter-

mine the pH in the endo-phagocytic pathway in spleen DC

populations, enriched CD11c+ splenocytes were allowed to

phagocytose latex beads bearing a mixture of pH-sensitive

and -insensitive dyes. The phagosomal pH was measured by

FACS as described previously (Savina et al., 2006). As shown in

Figure 1A (left), phagosomes in CD8+ DCs maintain a pH above

7 during the first hours after phagocytosis. In contrast, the pH

in CD8– phagosomes was more acidic (by more than one pH

unit) than in the CD8+ DC phagosomes.

Because we have already demonstrated that bone marrow-

derived DCs generated in vitro bear a phagosomal NOX2-

dependent alkalinization system for the regulation of the pH

(Savina et al., 2006), we hypothesize that NOX2 could also be

responsible for the high pH in splenic CD8+ phagosomes. We

therefore tested the pH in phagosomes from CD8+ and CD8–

DCs from gp91phox-defective mice (Cybb�/� mice). As shown

in Figure 1A (right), the phagosomal pH in NOX2-defective

CD8+ DCs dropped to values similar to the ones found in CD8–

DCs. The phagosomal pH in CD8– DCs, in contrast, was not

appreciably affected in the absence of NOX2. Similar results

were obtained in phagosomes from WT DCs after treatment

with DPI, a potent inhibitor flavin-containing enzymes, such as

NOX2 (Figure 1C). Therefore, NOX2 activity is required to main-

tain the high pH observed in CD8+ DCs phagosomes, but its

absence does not affect phagosomal pH in CD8– DCs.

We also measured the endosomal pH in both cell populations

with fluorescent dextransand FACS-basedapproach on enriched

CD11c+ splenocytes. After 10 min of endocytosis in CD8+ DCs,

the endosomal pH was around 7 (Figure 1B, left). The pH in endo-

somes then acidified slowly, to reach values around 6.5 after 2 hr
A

B
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Figure 1. Only CD8+ DCs Alkalinize Their Phagosomes and Endo-

somes in a NOX2-Dependent Manner

(A and B) Enriched WT (left) or Cybb�/� (right) CD11c+ splenocytes were

allowed to phagocytose latex beads bearing a mixture of pH-sensitive

and -insensitive dyes (A) or to internalize a mix of fluorescent pH-sensitive

and -insensitive 40 KD dextrans (B). After a pulse and different times of chase,

the cells were stained with anti-CD8 and analyzed by FACS. pH values were

determined for CD8+ and CD8– splenic DCs populations by FACS as described

in Experimental Procedures.

(C) Enriched CD11c+ splenocytes were allowed to phagocytose latex beads

bearing a mixture of pH-sensitive and -insensitive dyes in the presence or

not of 10 mM DPI for 15 min and then extensively washed in cold PBS-BSA.

Cells were resuspended in complete medium containing or not 10 mM DPI

and chased for 45 min. After CD8 staining, the pH was determined by FACS

as described in Experimental Procedures.

(D) Enriched CD11c+ splenocytes were allowed to intrenalize a mixture of

pH-sensitive and -insensitive 40KD dextrans in the presence or not of 10 mM

DPI for 15 min. After washing, cells were chased for different times. After

CD8 staining, the pH was determined by FACS as described in Experimental

Procedures.

Data show mean ± SEM from triplicates values and are representative of three

or more independent experiments.
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of internalization. In CD8– DCs, the pH after 10 min of endocytosis

was already lower than 6, and acidified to reach 5.5 after 2 hr of

endocytosis. In the DCs from NOX2-defecient mice (Figure 1B,

right) or in WT DCs in the presence of DPI (Figure 1D), the endoso-

mal pH in CD8+ DCs was decreased to values similar to the ones

found in CD8– DCs. Neither DPI, nor the absence of NOX2,

affected the endosomal pH in CD8– DCs. We conclude that

NOX2 alkalinizes phagosomes and endosomes selectively in

CD8+, but not in CD8–, spleen DCs. In the absence of NOX2,

both DC subpopulations display similar pH in their endocytic

and phagocytic pathways.

CD8+ DC Crosspresentation Capacity Is Lost
in the Absence of NOX2 Activity
The high crosspresentation ability of CD8+ DCs is due both to the

phagocytic receptors they express (Iyoda et al., 2002; Schulz and

Reis e Sousa, 2002) and to post-internalization differences in

A
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Figure 2. Crosspresentation Ability of CD8+

DCs Is NOX2 Dependent

(A) CD8+ and CD8– DCs having phagocytosed one

single OVA-coated latex bead were sorted by

FACS. Equal numbers of the two DC subpopula-

tions were then incubated with CFSE-labeled

OVA-specific transgenic T cells (OT-I) and cross-

presentation was assessed through T cell prolifer-

ation (as evaluated by CFSE staining).

(B) A control of OVA peptide (SIINFEKL, the

minimal peptide already processed) presentation

was performed with the two DC populations after

sorting.

(C and D) CD8+ and CD8– DCs from WT mice (C)

and Cybb�/� mice (D) were sorted and incubated

with different concentrations of OVA for 45 min.

After washing, cells were incubated with CFSE-

labeled OVA-specific transgenic T cells (OT-I)

and crosspresentation was assessed through

T cell proliferation (as evaluated by CFSE staining).

(E and F) Sorted CD8+ and CD8– DCs from WT

mice (E) and Cybb�/� mice (F) were incubated

with different concentration peptide control for

45 min. After washing, cells were incubated with

CFSE-labeled OVA-specific transgenic T cells

(OT-I) and presentation of minimal peptide was

assessed through T cell proliferation.

antigen processing (Dudziak et al., 2007;

Schnorrer et al., 2006). CD8+ and CD8�

DCs that have phagocytosed one single

ovalbumin-coated bead were FACS

sorted (Figure S1 available online) and

crosspresentation was assayed with

OVA-specific OT-I T cells. As shown in

Figure 2A, CD8+ DCs crosspresented

OVA more efficiently than did CD8– DCs,

although both subpopulations presented

the synthetic peptide with similar efficien-

cies (Figure 2B).

Because pH regulation and protein

degradation are intimately related and

considering that CD8+ and CD8– DCs

display different pH in their internalization pathways, we next

analyzed proteolytic degradation in the two DC subpopulations.

Degradation of OVA was followed in vitro on purified CD8+ and

CD8– DCs after different times of internalization via immunoblot

analysis. As shown in Figures S2A and S2B, CD8– DCs degraded

internalized OVA more efficiently than did CD8+ DCs, suggesting

that CD8+ DCs display reduced activity of endolysosomal prote-

ases, as compared to CD8– DCs. In order to measure the phago-

somal proteolytic activity directly, phagosomes were isolated after

1 hr of phagocytosis from purified CD8+ or CD8– DCs, and the

activity of lysosomal enzymes at two different fixed pHs (7.4 and

6.5, the actual pH found in CD8+ and CD8– phagosomes, respec-

tively) was quantified with synthetic fluorescent substrates. As

shown in Figure S2C via a mixture of substrates specific for

cathepsins B-L, L, H, G, and asparagine endopeptidase (AEP),

the proteolytic activity at pH 6.5 was higher than at pH 7.4 in

both phagosomes from CD8+ and CD8– DCs. As expected, the
546 Immunity 30, 544–555, April 17, 2009 ª2009 Elsevier Inc.
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proteolytic activity in phagosomes is therefore strongly dependent

on the pH. At the physiological pH values in phagosomes from

CD8+ (7.4) and CD8– (6.5) DCs (see the asterisk in Figure S2C),

phagosomes from CD8– DCs showed stronger proteolytic activity

than did phagosomes from CD8+ DCs. The activity of cathepsin S

(CatS), in contrast, was higher in phagosomes from CD8+ than

from CD8– DCs, especially at pH 7.4, the optimal pH for this

enzyme (Claus et al., 1998) (Figure S2D). Consistently, the expres-

sion of CatS was also higher in CD8+ than in CD8– DCs (Figures

S2E and S2F). We conclude that the proteolytic activity in phago-

somes from CD8+ and CD8– DCs is regulated by the pH and that at

their physiological pH, the overall proteolytic activity is superior in

phagosomes from CD8– DCs, whereas the activity of CatS is

greater in phagosomes from CD8+ DCs.

A B

C
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D

Figure 3. NOX2 Activity Is Differentially

Regulated in Spleen DC Subtypes

(A) Total ROS production in purified DCs subpopu-

lations from WT (pretreated or not with 10 mM DPI)

or Cybb�/� mice upon stimulation with 0.5 mg/ml

PMA was measured over time via luminol-ampli-

fied chemiluminiscence assay.

(B) gp91phox was detected in whole-cell lysates

from purified CD8+ and CD8– DCs by immunoblot.

a-actin was used as a loading control. Densitom-

etry quantification normalized as percentage of

CD8+ DC level of five different experiments is

shown in the lower panel.

(C and D) Enriched CD11c+ spleen DCs from WT

mice (C) or gp91phox-deficient mice (D) were

allowed to phagocytose latex beads coupled to

dihydrorhodamine 123 (DHR) for a 15 min pulse

and 45 min chase in the presence or absence of

PMA . Phagosomal oxidation in CD8+ and CD8–

subtypes was detected by FACS as described in

Experimental Procedures. A set of WT cells was

pretreated with DPI as negative control. Data

show mean ± SEM from triplicate values.

(E and F) gp91phox and p47phox were detected by

immunofluorescence after 1 hr of phagocytosis in

purified CD8+ (E) and CD8� DCs (F) via confocal

microscopy.

Data are representative of three or more indepen-

dent experiments.

In order to address whether the unique

capacity of CD8+ DCs for crosspresenta-

tion is due to their pH, we subsequently

tested OVA crosspresentation in the

different DC subsets from NOX2-deficient

spleens. As expected, in WT mice, CD8+

DCs crosspresented OVA much more effi-

ciently than did CD8– DCs (Figure 2C).

NOX2-deficient CD8+ DCs, however, lost

their capacity for OVA crosspresentation

(Figure 2D), although the presentation of

the minimal peptide was not affected

(Figures 2E and 2F). The low levels of

crosspresentation observed in CD8– DCs

were also not affected by the absence of

NOX2 activity (Figures 2C and 2D). Thus,

efficient crosspresentation in CD8+ DCs

requires active NOX2. In the absence of NOX2, both DC subtypes

crosspresent OVA with similar low efficiencies.

Subcellular Control of NOX2 Assembly
In contrast to CD8+ DCs, the absence of NOX2 activity in CD8–

DCs affected neither the phagosomal pH nor crosspresentation.

The simplest explanation for this lack of effect is that NOX2 is not

expressed or not active in CD8– DCs. In order to address this

possibility, we measured the total cellular ROS production by

CD8+ and CD8– DCs. We used the conventional luminol-based

assay and PMA as stimulus, which induces strong ROS produc-

tion. Surprisingly, total ROS production is much stronger in CD8–

than in CD8+ DCs (Figure 3A). Both DC subsets from Cybb�/� or

DPI-treated WT DCs fail to show any activity, confirming that
Immunity 30, 544–555, April 17, 2009 ª2009 Elsevier Inc. 547
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ROS production is due to NOX2 (Figure 3A). Consistently, CD8–

DCs express higher amounts of gp91phox, as detected by

immunoblot (Figure 3B).

To measure the phagosomal production of ROS, we used

dihydrorhodamine (DHR, a nonfluorescent dye that becomes

fluorescent upon oxidation) bound to latex beads and FACS anal-

ysis, as described previously (Savina et al., 2006). ROS produc-

tion in phagosomes followed a very different pattern. After 1 hr

of phagocytosis, phagosomal ROS was undetectable in CD8–

DCs, whereas effective ROS activity was found in phagosomes

from CD8+ DCs (Figure 3C). Treatment with PMA (which activates

all cellular NOX2) increased ROS production in CD8+ DC phago-

somes, but it had no effect on phagosomal ROS in CD8– DCs,

showing the inherent inability of this DCs subtype to produce

ROS in the lumen of their phagosomes. As expected, ROS

production in CD8+ DC phagosomes was inhibited by DPI

(Figure 3C). In CD8+ DCs from Cybb�/� mice, phagosomal ROS

generation was undetected, confirming that the oxidation of

DHR in those phagosomes is due to the activity of NOX2. We

conclude that in spite of the high amounts of NOX2 expression

and total ROS production, CD8– DCs are not competent for

ROS generation in phagosomes. CD8+ DCs, in contrast, display

relatively low total NOX2 activity, but strong phagosomal ROS

production, as compared to CD8– DCs.

To analyze the mechanism of this difference in phagosomal

ROS production, we analyze the recruitment of the cytosolic

subunit p47phox to phagosomal membranes in the two DC

subpopulations. Confocal immunofluorescence images revealed

a clear labeling of phagosomal membranes for gp91phox and

p47phox in CD8+ DCs, indicating effective assembly of active

NOX2 on phagosomes (Figure 3E). In CD8– DCs, gp91phox

was present both at the plasma membrane and at the membrane

of phagosomes (Figure 3F). Nevertheless, p47phox was not

detected around phagosomes in CD8– DCs, indicating that

CD8– DCs fail to assemble NOX2 at the membrane of phago-

somes (Figure 3F). These results indicate that the lack of ROS

production in phagosomes in CD8– DCs is due to their inability

to assemble the cytosolic subunits of the NOX2 complexes on

their phagosomal membranes.

Rac1 and Rac2 Expression and Subcellular Distribution
in CD8+ and CD8– DCs
Why, then, do CD8– DCs fail to assemble NOX2 complexes on

phagosomes? We showed previously that phagosomal NOX2

activity is dependent on Rab27a. However, in the absence of

Rab27a, the total NOX2 activity was also decreased (Jancic

et al., 2007). Even though the expression of Rab27a was slightly

higher in CD8+ DCs (Figures S3A and S3B), because of the high

total NOX2 activity CD8– DCs (Figure 3A), a role for Rab27a in

the differences observed between the two DC subpopulations

is unlikely. We therefore turned to other potential regulators of

NOX2 subcellular assembly. Rac proteins are essential for recon-

stituted oxidase activity in vitro and in vivo, as revealed initially by

chronic granulomatous disease (CGD, where NOX2 activity is

absent) in patients bearing mutations in Rac GTPases (Bokoch,

2005; Bokoch and Diebold, 2002; Williams et al., 2000). Previous

reports suggested that the two main Rac isoforms, Rac1 and

Rac2, may also influence the intracellular sites (phagosomes

versus plasma membrane) of NOX2 assembly in neutrophils
548 Immunity 30, 544–555, April 17, 2009 ª2009 Elsevier Inc.
and macrophages (Michaelson et al., 2001; Werner, 2004;

Yamauchi et al., 2004).

To determine a possible role for Rac proteins in the differential

NOX2 assembly in CD8+ and CD8– DCs, we first analyzed Rac

expression. As shown in Figures 4A and 4B, CD8+ DCs display

higher total Rac expression, as detected with an antibody that

recognizes both isoforms. Strikingly, a Rac1-specific antibody

revealed similar expression in the two cell types (Figures 4A

and 4B, right), suggesting that CD8+ DCs express increased

amounts of Rac2. Because all the Rac2 antibodies tested failed

to reveal Rac2 in DCs extracts by immunoblot, we used intracel-

lular FACS labeling. As shown in the fluorescence intensity

histograms in Figure 4C, Rac2 labeling is higher in CD8+ than in

CD8– DCs. DCs from Rac2-deficient mice displayed very low

amounts of fluorescence, controlling for the specificity of the

labeling (Figures 4C and 4D). Intracellular FACS labeling with

the antibodies specific for total Rac and for Rac1 confirmed

that the total amounts of Rac are higher in CD8+ DCs, whereas

the expression of Rac1 is similar in the two cell types

(Figure S4). These results show that the Rac2/Rac1 ratio is higher

in CD8+ than in CD8– DCs.

The subcellular distribution of the two Rac isoforms was also

distinct in DCs after 1 hr of phagocytosis. Rac1 was detected

on disperse intracellular structures, at the plasma membrane,

and around phagosomes (Figure 4E) in both CD8+ and CD8–

DCs (the presence of Rac1 at the plasma membrane was more

evident in CD8– DCs). The distribution of Rac2 in the two DC

subpopulations, in contrast, was very different. In CD8+ DCs,

Rac2 strongly accumulated around phagosomes, whereas it

shows a disperse distribution, and no phagosomal accumula-

tion, in CD8– DCs (Figure 4F). We conclude that the two Rac iso-

forms are differentially expressed and distributed in CD8+ and

CD8– DCs. Rac2 concentrates selectively on CD8+ DC-phago-

somes, suggesting that it may somehow be involved in phagoso-

mal function in this DC subpopulation.

The Assembly and Activation of NOX2
in CD8+ DC-Phagosomes Is Rac2 Dependent
In order to analyze the role of Rac2 in the assembly and activation

of NOX2, CD8+ and CD8– DCs were purified from Rac2-deficient

mice. Rac2-deficient DCs were phenotypically identical to WT

DCs (as judged by the surface expression of CD11c, CD80-86,

and CD40, not shown). The total production of ROS was partially

decreased in CD8– DCs, and slightly diminished in CD8+ DCs, as

compared to WT DCs (Figure 5A). In contrast, the phagosomal

activity of NOX2, which was only detectable in WT CD8+ DCs,

was decreased to background expression in the absence of

Rac2 (Figure 5B). Therefore, Rac2 is dispensable for total ROS

production, but absolutely required for phagosomal ROS gener-

ation, suggesting that Rac2 may selectively control the phagoso-

mal assembly of NOX2 in CD8+ DCs.

We addressed this possibility by analyzing the subcellular

distribution of gp91phox and p47phox by using confocal micros-

copy. Accumulation of gp91phox was observed around phago-

somes in WT CD8+ DCs (Figures 3E and 5C), with virtually no

labeling at the plasma membrane. Consistent with the sustained

production of ROS in CD8+ DC phagosomes (Figure 3C),

p47phox was effectively recruited to the phagosomal gp91phox

(Figure 5C). In contrast, in Rac2-deficient CD8+ DCs, gp91phox
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accumulated mainly at the plasma membrane and no labeling of

p47phox around phagosomes was observed, even when several

confocal planes were analyzed (Figure 5D). In Rac2-deficient

CD8– DCs, we observed no differences, as compared to their

WT counterparts, in the subcellular distribution of gp91phox

and p47phox (Figure S5). We conclude that Rac2 controls the

phagosomal assembly and activation of NOX2 complex selec-

tively in CD8+ DCs. In the absence of Rac2 (when only Rac1 is

present), NOX2 assembly in phagosomes is not observed.

Interestingly, in the absence of any stimuli, gp91phox was

mainly present at the plasma membrane in WT CD8– DCs and

on disperse cytoplasmic structures in CD8+ DCs. The distribution

of these two NOX2 subunits was not affected in Rac2�/� CD8–

DCs (Figure 5E, top), but a strong redistribution of gp91phox

from the cytoplasm to the plasma membrane was observed in

CD8+ DCs lacking Rac2 (Figure 5E, bottom). Therefore, at the

steady state, the distribution of gp91phox in Rac2-deficient

A B

C D

E F

 -/-

Figure 4. Expression and Subcellular Local-

ization of Rac Isoforms Vary between CD8+

and CD8– DCs

(A) Total Rac (top) and Rac1 (middle) were detected

in whole-cell lysates from purified CD8+ and CD8–

DCs by immunoblot. a-actin was used as a loading

control (bottom).

(B) Densitometry quantifications normalized as

percentage of CD8+ DC amounts in five different

DC purifications are shown.

(C) Typical FACS profiles for Rac2 intracellular

staining (and isotype antibody control) for each

cell type from one DC purification are shown.

(D) Quantification of Rac2 (and isotype control)

intracellular staining of CD11c+ purified spleen

cells from three different mice. Data are represen-

tative of three independent experiments.

(E and F) Confocal images of immunofluorescent

detection of Rac1 (C) and Rac2 (D) on purified

CD8+ and CD8– DCs after 1 hr phagocytosis of

latex beads are shown.

CD8– and CD8+ DCs was indistinguish-

able. As expected, p47phox remained

mainly cytosolic in all cases, because

there is almost no active NOX2 under

these steady-state conditions. Together,

these results show that Rac2 was essen-

tial to the phagosomal assembly and

ROS production in CD8+ DCs, whereas

Rac1 directed the assembly of the

complex to plasma membrane in both

CD8– DCs and Rac2-deficient CD8+ DCs.

Rac2 Controls the Phagosomal pH
and Crosspresentation in DCs
Contrary to our expectations, the phago-

somal pH was only slightly decreased (by

0.5 pH units) in CD8+ DCs (Figure S6A) or

in bone marrow-derived DCs (not shown)

from Rac2-deficient mice. To investigate

the possible reasons of this low degree

of acidification in spite of the absence of

ROS production in phagosomes, we analyzed the expression of

the V-ATPase in the Rac2-deficient DCs. Strikingly, the expres-

sion of the Vo membrane subunit of the V-ATPase, an essential

player in phagosome acidification, was strongly decreased in

Rac2�/� DCs (Figure S6B). Downmodulation of the V-ATPase

could explain the low degree of phagosomal acidification

observed in Rac2-deficient DCs, suggesting that CD8+ DCs

somehow compensate the absence of Rac2 expression by

limiting acidification through decreased expression of the

V-ATPase. Consistent with this observation, no important inhibi-

tion of crosspresentation was observed in CD8+ DCs (Figure S6C)

and BMDC (data not shown) from Rac2�/�mice.

We reasoned that if CD8+ DCs indeed compensate the

absence of Rac2 by decreasing the expression of the V-ATPase,

the effect of reducing Rac2 expression directly in immature DCs

should have stronger effects on the phagosomal pH and on

crosspresentation. We therefore genetically targeted Rac2 by
Immunity 30, 544–555, April 17, 2009 ª2009 Elsevier Inc. 549
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using lentivirus-delivered short hairpin RNAs (shRNA). As shown

in Figure 6A, two different shRNAs targeting Rac2 inhibit the

expression of Rac2, as compared to DCs transduced with the

scramble shRNA. Rac2 depletion caused a strong inhibition of

ROS production in phagosomes (Figure 6B). Likewise, the phag-

osomal pH acidified strongly (by around 2 pH units) after 1 hr of

phagocytosis, as compared to cells infected with the scrambled

shRNA control lentivirus (Figure 6C). No inhibition of the expres-

sion of the V-ATPase was detected in the DCs infected with the

Rac2 shRNA lentivirus, as compared to the control infected

DCs (Figure S7A). Crosspresentation was assayed with latex

beads coated with different ratios of OVA/BSA or with soluble

A

C

D

E

B Figure 5. Rac2 Controls the Phagosomal

Activity of NOX2 in CD8+ DCs

(A) Total ROS production in purified DCs subpop-

ulations from WT or Rac2�/� mice was evaluated

during 90 min after PMA stimulation via a lumi-

nol-amplified chemiluminiscence assay.

(B) Enriched CD11c+ spleen DCs from WT or

Rac2-deficient mice were allowed to phagocytose

DHR-coated beads for 15 min. After washing, the

cells were chased for 45 min. Oxidation in phago-

somes in CD8+ and CD8– subtypes was detected

by FACS as described in Experimental Proce-

dures. A set of WT cells was pretreated with DPI

as negative control. Data show mean ± SEM

from triplicate values.

(C and D) gp91phox and p47phox were detected

by immunofluorescence after 1 hr phagocytosis

of latex beads on purified CD8+ and CD8– DCs

from WT (C) or CD8+ Rac2�/� (D) mice. Three

different confocal planes are depicted in (D).

(E)gp91phox andp47phoxwere detectedby immu-

nofluorescence in steady-state purified CD8+ and

CD8– DCs from WT or Rac2�/�mice.

Data are representative of three or more indepen-

dent experiments.

OVA. As shown in Figure 6D, crosspre-

sentation was strongly inhibited by the

Rac2 shRNAs, as compared to the control

shRNA. No effect of the shRNAs on the

presentation of the peptide was observed

(Figure 6E). In one of the experiments, the

inhibition of Rac2 expression was partially

achieved with one of the shRNAs (Rac2 # 1

construct; Figure S8A). The phagosomal

pH and crosspresentation were only

partially affected (Figures S8B–S8D) by

this shRNA, indicating that the effects of

the shRNAs on pH and crosspresentation

are a direct consequence of the amount

of Rac2 expression. In all cases, the

phagocytic capacity of the infected DCs

was not modified in absence of Rac2

(Figure S7B). Crosspresentation of soluble

OVA was alsodefective inabsence ofRac2

(Figure S9A). However, antigen presenta-

tion in the MHC class II context was not

importantly affected (Figure S9B). We

conclude that Rac2 controls ROS production in phagosomes

and endosomes, thereby preventing effective acidification of

endo-phagocytic pathway and promoting antigen crosspresen-

tation.

DISCUSSION

The functional organizationof thephagocyticpathway is a charac-

teristic of different phagocytes. Accordingly, macrophages,

neutrophils, and DCs show quite different phagosomal pathways

in terms of oxidation, pH, and degradation. Neutrophils and

macrophages have highly cytotoxic and degradative phagocytic
550 Immunity 30, 544–555, April 17, 2009 ª2009 Elsevier Inc.
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A

D E

B C Figure 6. Phagosomal pH and Crosspre-

sentation Are Controlled by Rac2 in DCs

(A) DCs were infected with three different lentivirus

encoding a random sequence (Scramble) and two

different shRNA targeted to Rac2 (Rac2 # 1 and

Rac2 # 2). After selection, DCs were analyzed at

day 7 by quantitative RT-PCR to evaluate the

decreased expression of Rac2. Results are ex-

pressed as a ratio relative to GAPDH.

(B)TransducedDCs atday 7 wereallowed tophago-

cytose DHR-coated beads for 15 min. After

washing, the cells were chased for 45min. Oxidation

inphagosomes was detectedbyFACSasdescribed

in Experimental Procedures. A set of WT cells was

pretreated with DPI as negative control. Data show

mean ± SEM from triplicate values.

(C) Phagosomal pH of transduced DCs was

measured by FACS after 15 min of pulse and

30 min of chase of latex beads coated with pH-

sensitive and nonsensitive dyes. Data show

mean ± SEM from triplicate values.

(D) Crosspresentation in transduced DCs was as-

sayed via beads (dilution 1:200) coated with

different ratios of OVA/BSA protein concentra-

tions. T cell proliferation was evaluated by CFSE

staining of OVA-specific transgenic T cells (OT-I).

(E) A control with OVA peptide was done with the

same DCs. Data show mean ± SEM from triplicate

values.

Data are representative of at least three indepen-

dent lentivirus infections.
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pathways, adapted to their role in the killing of microbes and clear-

ance of apoptotic cells. DCs, in contrast, have a nonacidic, lowly

degradative phagocytic pathway, most likely devoted at

producing partial proteolytic products for immune recognition.

The present study shows that different DC populations display

different functional phagocytic organisations. Although both

subpopulations display ‘‘mild’’ phagocytic pathways as com-

pared to macrophages or neutrophils, CD8+ DCs seem to

‘‘borrow’’ certain functional features from neutrophils, whereas

the phagocytic pathway of CD8– DCs seems to be closer to

macrophages’ phagocytic pathways. The distinction between

these two phagocytic organisations relies on Rac2: in the absence

of Rac2, CD8+ and CD8– DCs are very similar in terms of phago-

somal acidification, ROS production, and crosspresentation.

The functional relevance of the existence of different myeloid

DC subpopulations is still unclear. These subpopulations express

different sets of receptors, including receptors for microorgan-

isms (lectins, PRRs, including TLRs), cytokines and chemokine

receptors, and receptors for dead cells (Edwards et al., 2003).

The different subpopulations also produce different cytokines

and chemokines and present antigens more or less efficiently

to different types of T lymphocytes (Maldonado-Lopez et al.,

2001). The heterogeneity in DC subpopulations therefore seems

to correspond to a double functional purpose. First, because they

express different phagocytic receptors, the two main spleen DC

subpopulations take up different pathogens or, more generally,

different types of particles. CD8+ DCs, for example, phagocytose

apoptotic cells much more efficiently than do CD8– DCs (Iyoda

et al., 2002; Schulz and Reis e Sousa, 2002). Leishmania, as

another example, infects CD8– DCs preferentially (Ritter et al.,

2004). Second, because they express different TLRs or T cell
costimulation molecules, and because they produce different

cytokines, different DC populations may initiate different types

of immune responses (Maldonado-Lopez et al., 1999). There is

therefore no question that myeloid DC subpopulations may

play selective roles in the initiation of adaptative immune

responses.

The specialization of different subpopulations of DCs for

antigen presentation was reported by several groups (Iyoda

et al., 2002; Pooley et al., 2001; Schulz and Reis e Sousa,

2002), but direct evidence showing that their differential presen-

tation abilities are a consequence of postinternalization events

was published only recently. Indeed, Villadangos’s group

analyzed antigen presentation to CD8+ and CD4+ T cells by

DCs from either subpopulation that had phagocytosed on

a single antigen-coupled latex bead (the cells were FACS

sorted). Even though all the DCs had internalized the same

amount of antigen, CD8+ DCs presented them more efficiently

to CD8+ T cells, whereas the opposite was found in CD8– DCs

(Schnorrer et al., 2006). Dudziak et al. (2007) showed subse-

quently that in vivo targeting of ovalbumin to the two DC subpop-

ulations with two different monoclonal antibodies also resulted in

more efficient CD8+ T cell activation by CD8+ DCs and more effi-

cient activation of CD4+ T cells by CD8– DCs. Although this group

showed that the overall expression of certain genes involved in

MHC class I versus MHC class II-restricted antigen presentation

were slightly overexpressed in the corresponding DC subpopu-

lations, no evidence that these differences were responsible for

the selectivity of antigen presentation were presented.

Our results show that the absence of expression of gp91phox

or Rac2, both causing a loss of phagosomal ROS production

in CD8+ DCs, also abolish the high efficiency of antigen



Immunity

Rac2 Controls Antigen Crosspresentation
crosspresentation to CD8+ T cells. Importantly, both gp91phox

and Rac2 deficiencies caused the endophagocytic pathway of

CD8+ DCs to resemble that of CD8– DCs (i.e., reduced ROS

production and increased acidification). As a consequence,

CD8+ DCs failed to crosspresent antigens efficiently, indicating

that high ROS production and low acidification in endosomes

and phagosomes are required for efficient crosspresentation.

These results establish that the functional organization of DCs’

internalization pathway critically controls their crosspresentation

capacities.

How do the two splenic DC subpopulations regulate the

subcellular localization of ROS production? Rac proteins have

previously been shown to participate in the assembly of the

NADPH oxidase in neutrophils and macrophages (Bokoch and

Zhao, 2006). In mammalian cells, three Rac isoforms have

been identified: Rac1, Rac2, and Rac3. Rac1 and Rac3 are

widely expressed whereas Rac2 expression is highly restricted

to hematopoietic cells (Werner, 2004). In neutrophils, Rac-

dependent NOX2 activation is selective for Rac2, even though

these cells express both Rac1 and Rac2 at similar amounts as

in mice (unlike human neutrophils, which express predominantly

Rac2) (Werner, 2004). In contrast, in human and murine macro-

phages, Rac1 is the most abundant Rac isoform. Rac1 and

Rac2, however, display extremely high amino acid identity

(92%). The main difference between them is in the hypervariable

C-terminal tail, which is believed to confer distinct localization of

small GTPases and specificity for ROS production (Yamauchi

et al., 2004). Indeed, previous reports showed that Rac1 has

a preferential localization to the plasma membrane and Rac2

localizes mainly to intracellular membranes (Filippi et al., 2004;

Michaelson et al., 2001; Yeung et al., 2008). In DCs, we observed

that Rac1 was mainly present at the plasma membrane (with

some faint labeling around phagosomes), whereas Rac2 was

found exclusively on phagosomes.

Because it is well known that Rac1 is essential for the phagocy-

tosis process and regulates the actin cytoskeleton (Greenberg,

1999; Niedergang and Chavrier, 2005), its presence around

phagosomes in DCs is not surprising. The observation that

Rac1 is present on CD8– DC phagosomes, which are incompe-

tent to assemble and activate NOX2, suggests that this GTPase

is not involved in phagosomal ROS production. Indeed, in

Rac2-deficient DCs (which express normal amounts of Rac1),

the phagosomal assembly of NOX2 was not observed, confirm-

ing that Rac1 fails to mediate the assembly NOX2 on phago-

somes. In contrast, in Rac2-deficient DCs, the plasma membrane

assembly of NOX2 was more evident than in the WT, suggesting

that the two Rac isoforms somehow compete for the assembly at

these two alternative subcellular locations. These experiments

also show that CD8+ DCs express all the machinery required

for the plasma membrane assembly of NOX2. Nevertheless, it

is also possible that the reason why CD8– DCs (which also

express Rac2, although at lower amount) fail to assemble

NOX2 on phagosomes is related to the expression of Rac effec-

tors. The selective expression of Rac1-specific GEFs (such as

b-Pix) (ten Klooster et al., 2006) or the lack of Rac2-specific effec-

tors, GAPs, and/or GEFs (P-Rex1 and Vav1 are Rac GEFs that

favor activation of Rac2 versus Rac1) (Dong et al., 2005; Ming

et al., 2007; Welch et al., 2002) could contribute to NOX2

assembly at different sites. Indeed, we found that Vav1 expres-
552 Immunity 30, 544–555, April 17, 2009 ª2009 Elsevier Inc.
sion is higher (by at least 2-fold) in CD8+ than CD8– DCs (not

shown). Accordingly, it has recently been shown that Vav is

required for both maintaining the phagosomal pH in DCs and

for OVA crosspresentation (Graham et al., 2007). It is also

possible that under certain conditions, such as stimulation of

particular TLRs, the activation of the two Rac isoforms is modi-

fied, inducing changes in the phagosomal fate and in crosspre-

sentation. Such a regulation of the phagosomal function could

explain why CD8– DCs can crosspresent antigens in vivo after

injection of OVA immune complexes (Pooley et al., 2001). Never-

theless, our results show that after stimulation, CD8– DCs

produce ROS at the plasma membrane, suggesting that extracel-

lular ROS production may be involved in some other biological

process, such as inflammation, as shown in macrophages (For-

man and Torres, 2001).

Interestingly, all our observations for the regulation of the

phagosomal pH are also valid for endosomes. This is quite

surprising because phagocytosis is known to activate NOX2,

but this was not the case for endocytosis (a constitutive

process). Several different possibilities could account for these

observations. First, DCs, in contrast to other phagocytes, could

display low basal NOX2 assembly on endosomes. Indeed, we

also showed that the NOX2 assembles on endosomes in human

DCs (Mantegazza et al., 2008). Second, NOX2 activation could

occur selectively on macropinosomes, which are known to

form constitutively in DCs, and not in macrophages. Finally,

very small LPS contamination in the dextrans (which, however,

fail to cause complete DC activation) used to measure endoso-

mal pH could eventually cause the activation of ROS.

The most direct, but not the only, explanation for the critical role

of ROS production and the pH in crosspresentation, relates to the

proteolytic activity in the endocytic and phagocytic pathways of

DCs. Several groups showed previously that the proteolytic

activity in DC-lysosomes (Trombetta et al., 2003) and -phago-

somes (Lennon-Dumenil et al., 2002) is lower than in macro-

phages. Limited proteolysis is in part due to low levels of

expression of certain proteolytic enzymes in DCs (Delamarre

et al., 2005). Likewise, a recent paper shows slight differences

in the levels of mRNA encoding several cathepsins in between

CD8+ and CD8� DCs (Dudziak et al., 2007). This is not, however,

the case for all proteases, as shown by the fact that CatS is clearly

overexpressed in CD8+ DCs. Interestingly, and consistent with

our pH measurements in DC phagosomes and endosomes,

CatS has optimal activity at neutral pH, in contrast to many other

lysosomal proteases. According to this, CD8+ phagosomes dis-

played higher CatS activity than phagosomes from CD8– DCs,

especially at 7.4. Overall, however, the proteolytic activity of the

rest of proteases tested was lower in CD8+ than in CD8– DCs,

in part at least due to the pH differences. Taken together, our find-

ings show that the differences in the phagocytic environment

between CD8+ and CD8– DCs are complex. Not only is the

pH regulated differentially, but the relative abundance and the

activity of different cathepsins are also selectively controlled.

Whereas the phagosomes from CD8– DCs are somehow similar

to phagosomes from macrophages (although probably less

acidic and less degradative), phagosomes from CD8+ DCs are

very different, with low levels and low activity of most cathepsins,

whereas CatS is both very abundant and very active at the high

pH found in CD8+ DC phagosomes. The observation that the
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pH in phagosomes and endosomes in DCs specialized in cross-

presentation is maintained at the optimal values for CatS, and not

for other proteases, suggests that CatS is a critical player in

antigen breakdown for crosspresentation (as already suggested

by Shen et al. [2004]). Interestingly, the activity of this protease

decreases with the reduction of the peptide length (Lutzner and

Kalbacher, 2008), indicating that CatS is a self-limiting protease

and may be specialized in the production of relatively long

peptides. Besides the proteolytic activity, phagosomal ROS

production and high pH may favor other intracellular steps

involved in crosspresentation, such as peptide loading (if it can

occur in phagosomes, which is still unclear) or antigen export to

the cytosol.

This study provides evidence that the differentiation of myeloid

DC subpopulations implicates specializations of their endopha-

gocytic pathways. Such a degree of control of the internalization

pathway suggests an evolutionary pressure on this particular

function. If the main purpose of this phagocytic specialization

was related to crosspresentation (which we do not know, but

is suggested by our results), these results would support a critical

role of crosspresentation in immunological defense against

pathogens.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice (WT) and C57BL/6 recombination activating gene 1-deficient

OT-1 TCR (Va2, Vb5) transgenic mice were obtained from Charles River Labo-

ratories and Centre de Distribution, Typage et Archive Animal (Orleans,

France). Cybb�/� mice (C57BL/6 background) were originally provided by

M. Mallat (Hôpital de la Salpêtriere, Paris) and raised in the Curie Institute

animal facility. Rac2�/� mice (C57BL/6 background) (Roberts et al., 1999)

were provided by D. Williams (Cincinnati Children’s Research Foundation,

Cincinnati, OH) and V. Tybulewicz (National Institute for Medical Research,

London, UK). All mice were used according to the guidelines and regulations

of the French Veterinary Department.

Crosspresentation Assay

For crosspresentation assays with soluble OVA (Worthington Biochemical

Corporation), sorted DCs were incubated with different concentrations of

soluble OVA or different concentrations of the minimal peptide as control of

surface MHC class I amount. 45 min later, cells were washed three times

with PBS plus 0.5%BSA and cocultured with CFSE-OT-I T cells for 3 days.

For monitoring T cell proliferation, diminution of CFSE staining on TCR+-

CD8+ population was measured by FACS. Alternatively, OVA-BSA-coated

beads were prepared by attaching different ratios of OVA and BSA protein

concentrations (OVA 10 mg ml�1 alone; OVA 3.33 mg ml�1/BSA 6.67 mg ml�1;

OVA 1.11 mg ml�1/BSA 8.89 mg ml�1; OVA 0.37 mg ml�1/BSA 9.63 mg ml�1;

and BSA 10 mg ml�1 alone) to 3 mm latex beads by passive adsorption in

PBS at 4�C ON, and extensive washed in PBS. DCs were incubated with

3 mm OVA-BSA-coated latex beads or with the specific OVA peptide 257-

264 (SIINFEKL) (Neosystem) for 45 min. After washing with PBS plus

0.5%BSA and cocultured with CFSE-OT-I T cells for 3 days, T cell proliferation

was assayed by FACS.

For some experiments, OVA-Biotin was conjugated to streptavidin fluores-

cent latex beads (Streptavidin fluoresbrite YG Microspheres 1.0 micron from

Polyscience, Inc.) as described elsewhere (Schnorrer et al., 2006). After isola-

tion from spleens, enriched CD11c+ cells were allowed to phagocytose OVA-

Biotin-coated fluorescent latex beads for 15 min. After extensive washing, the

cells were chased for 45 min more. Phagocytosis was stopped by adding cold

PBS-BSA. The cells were then stained with anti-CD11c and anti-CD8 and

subsequently sorted in CD8+ and CD8– populations for cells that have phago-

cytosed one latex bead. Equal numbers of the two DC subpopulations were

then incubated with CFSE-labeled OVA-specific transgenic T cells (OT-I)
and crosspresentation was assessed through T cell proliferation (as evaluated

by CFSE staining).

Intracellular Staining

Purified CD11c+ cells from spleens were staining with an FITC anti-CD8 at 4�C.

After washing, the cells were treated for intracellular staining according to

manufacturer procedures with the kit Foxp3 Fixation/Permeabilization

concentrate and diluent (eBioscience). Anti-Rac, anti-Rac1, anti-Rac2, and

isotype antibodies were used at 1.5 mg/ml and the secondary antibodies (Alexa

647 labeled) at 1 mg/ml. The cells were subsequently analyzed by FACS.

Immunofluorescence Assay

For the detection of Rac1, Rac2, gp91phox, and p47phox, purified DCs were

pulsed or not with latex beads (Polysciences, Inc) (dilution 1:100) for 15 min at

37�C. After extensive washing with cold PBS, the cells were placed on poly-L-

lysine-coated glass coverslips at 37�C in an atmosphere of 5% CO2 during

a short period. Complete medium was added and cells were chased for

another 45 min. After washing, cells were fixed with 2% paraformaldehyde

for 10 min at 4�C and quenched by adding 0.1 M glycine. Cells were permea-

bilized in PBS-0.05% saponin-0.2% BSA for 20 min, washed, and then incu-

bated with the primary and secondary antibodies. After labeling and extensive

washing with PBS-0.05% saponin-0.2% BSA, the coverslips were mounted

with Fluoromount G and the cells were analyzed by confocal microscope

(Zeiss confocal microscope [LSM Axivert 720], 63 3 1.4 NA oil immersion

objective). For z-stack acquisition, several images (step 0.3 mm) to cover

most of the cell volume were acquired.

pH Measurement

pH in phagosomes was determined as described previously (Savina et al.,

2006). In brief, 3 mm polybeads amino were covalently coupled with 1 mg/ml

FITC (pH sensitive) and 1 mg/ml FluoProbes 647 (pH insensitive) in the pres-

ence of sodium hydrogen carbonate buffer at pH 8 for 2 hr at room tempera-

ture. After extensively washing with glycine 100 mM, the beads were

suspended in PBS. Enriched CD11c+ spleen DCs were pulsed in a small

volume CO2-independent medium without serum with the coupled beads for

15 min in a water bath at 37�C and then extensively washed (2 times) in a large

volume of cold PBS-0.5% BSA. In each wash, the cells were centrifuged at

1000 rpm for 4 min to pull down only the cells avoiding the no internalized

beads. After washing, the cells were resuspended in complete medium incu-

bated at 37�C (‘‘chased’’) in the incubator for the indicated times and immedi-

ately placed on ice. CD8a (1 mg/ml) staining was done and then the cells were

analyzed by FACS, via a gating FSC-CD8a+ selective for cells that have phago-

cytosed one latex bead. The ratio of the mean fluorescence intensity (MFI)

emission between the two dyes was determined. Values were compared

with a standard curve obtained by resuspending the cells that had phagocy-

tosed beads for 30 min at fixed pH (ranging from pH 5.5 to 8) and containing

0.1% Triton X-100 for 8 min. The cells were immediately analyzed by FACS,

to determine the emission ratio of the two fluorescent probes at each pH. Alter-

natively, phagosomal pH was measured in Rac2-depleted BMDC. For this

purpose, after 15 min pulse and 30 min chase, infected BMDC were placed

on ice and stained for CD11c. The FACS analysis for pH measurement was

done gating CD11c+ cells.

pH in endosomes was determined as follows. Enriched CD11c+ spleen DCs

were pulsed in a small volume CO2-independent medium containing a mix of

40,000 MW Dextran fluorescein (5 mg/ml) and 40,000 MW Dextran Alexa 647

(5 mg/ml) for 7 min in a water bath at 37�C and then extensively washed in

a large volume of cold PBS-0.5% BSA. After washing, the cells were resus-

pended in complete medium incubated at 37�C (‘‘chased’’) in the incubator

for the indicated times and immediately placed on ice. To determine the endo-

cyting population, a control at 4�C during pulse and chase was done. CD8a

(1 mg/ml) staining was done and then the cells were analyzed by FACS, via

a gating FSC-CD8a+ selective for cells that have internalized dextrans. The

ratio of the mean fluorescence intensity (MFI) emission between the two

dyes was determined. Values were compared with a standard curve obtained

by resuspending the cells that had phagocytosed beads for 30 min at fixed

pH (ranging from pH 5.5 to 8) and containing 0.1% Triton X-100 for 8 min.

The cells were immediately analyzed by FACS to determine the emission ratio

of the two fluorescent probes at each pH.
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Analysis of NOX2 Activity

Detection of Phagosomal ROS Production via a Fluorescent Probe

3 mm polybeads amino were covalently coupled with DHR (1 mg/ml) and

FluoProbes 647 (1 mg/ml) in the presence of sodium hydrogen carbonate

buffer at pH 8 for 2 hr at room temperature. After extensively washing with

glycine 100 mM, beads were resuspended in PBS. Enriched CD11c+ spleen

DCs were pulsed in a small volume CO2-independent medium containing

DHR-coupled beads during 15 min and then extensively washed in a large

volume of cold PBS-0.5%BSA. In each wash, the cells were centrifuged at

1000 rpm for 5 min. After washing, the cells were resuspended in complete

medium incubated at 37�C (‘‘chased’’) in the incubator for the indicated times

and immediately placed on ice. CD8a (1 mg/ml) staining was done and then the

cells were analyzed by FACS, via a gating FSC/CD8+ selective for cells that

have phagocytosed one latex bead. Because mean fluorescence intensity

(MFI) of FluoProbes 647 is constant over time, only the variation of DHR MFI

was determined. For DPI assay, cells were incubated in the presence of

5 mM DPI for 30 min before and during the 15 min pulse.

Alternatively, phagosomal oxidation was measured in Rac2-depleted

BMDC. For this purpose, after 15 min pulse and 30 min chase with DHR/Fluop-

robes 647-coated beads, infected BMDC were placed on ice and stained for

CD11c. The FACS analysis was done gating CD11c+ cells.

Measurement of Total NOX2 Activity by Chemiluminiscence

5 3 105 purified CD8+ DCs and CD8�DCs were resuspended in 200 ml of CO2-

independent medium containing 10 mM luminol (the probe which releases

energy as visible light upon oxidation) and 5 units of horseradish peroxidase.

Cell suspensions were preheated to 37�C in the thermostated chamber of

the luminometer (Berthold Centro LB 960) and allowed to stabilize. Changes

in chemiluminiscence were measured over the indicated times. An injection

of 0.5 mg/ml PMA after 5 min was used as stimulus.

Lentiviral shRNA Knock Down of Rac2

Generation and Titer of Lentivirus

Plasmids encoding lentiviruses expressing shRNAs were obtained from the

library of The RNAi Consortium (TRC) (Moffat et al., 2006). Plamids were puri-

fied with the QiaPrep miniprep kit (QIAGEN, Valenica, CA). Plasmids were then

transfected into HEK293T cells with a three-plasmid system to produce lenti-

virus with a very high titer of �107 CFU/ml (Moffat et al., 2006; Naldini et al.,

1996). We initially tested five different hairpins directed against Rac2 and

compared their efficiency by RT-PCR against a control hairpin (a scramble

sequence against GFP). We found Rac2#2 (target sequence GCCAAGT

GGTTCCCTGAGGTA) and Rac2#1 (target sequence GATTCAGTCAAGTAC

TTGGAA) to be the most efficient.

Dendritic Cell Infection

Mouse bone marrow cells were plated on a 96-well plate (round bottom) at

a concentration of 105 cells per well with 200 ml of GM-CSF medium. After

48 hr, the medium was carefully removed without disturbing the cells at the

bottom. We added 10 ml of virus and the pellet was resuspended 3 to 5 times.

40 ml of polyB in GM-CSF medium were added (1:1000 final concentration)

and we centrifuged the plate at 2200 rpm for 90 min at 37�C. After the centrifu-

gation, all medium was removed and 200 ml/well of fresh GM-CSF medium were

added. The plates were incubated for 48 hr and then the cells were selected with

5 mg/ml of puromycin. Cells were collected for analysis 72 hr after selection.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and nine

figures and can be found with this article online at http://www.immunity.

com/supplemental/S1074-7613(09)00137-X.

ACKNOWLEDGMENTS

We are grateful to J. Villadangos and P. Schnorrer (Melbourne University) for

help with the DC sorting protocols. We also specially thank A. Boissonnas,

C. Hivroz, S. Dogniaux, S. Krumeich, and K. Chemin for experimental help

and reagents and A. Lennon for comments on the manuscript. This work

was supported by Institut National de la Santé et de la Recherche Médicale
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