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Angiotensin-(1-7) antagonist, A-779, microinjection into the caudal ventrolateral
medulla of renovascular hypertensive rats restores baroreflex bradycardia
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a Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
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A B S T R A C T

In the present study we evaluated the effect of caudal ventrolateral medulla (CVLM) microinjection of

the main angiotensin (Ang) peptides, Ang II and Ang-(1-7), and their selective antagonists on baseline

arterial pressure (AP) and on baroreceptor-mediated bradycardia in renovascular hypertensive rats

(2K1C). Microinjection of Ang II and Ang-(1-7) into the CVLM of 2K1C rats produced similar decrease in

AP as observed in Sham rats. In both Sham and 2K1C, the hypotensive effect of Ang II and Ang-(1-7) at the

CVLM was blocked, for up to 30 min, by previous CVLM microinjection of the Ang II AT1 receptor

antagonist, Losartan, and Ang-(1-7) Mas antagonist, A-779, respectively. As expected, the baroreflex

bradycardia was lower in 2K1C in comparison to Sham rats. CVLM microinjection of A-779 improved the

sensitivity of baroreflex bradycardia in 2K1C hypertensive rats. In contrast, Losartan had no effect on the

baroreflex bradycardia in either 2K1C or Sham rats. These results suggest that Ang-(1-7) at the CVLM

may contribute to the low sensitivity of the baroreflex control of heart rate in renovascular hypertensive

rats.

� 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The neural control of arterial pressure (AP) is mainly based on
changes in sympathetic and parasympathetic outflow which, in
turn, influences cardiac output and the total peripheral resistance.
Increases in peripheral sympathetic activity and alterations in
arterial baroreflex function appear to contribute to the pathogen-
esis of hypertension. The baroreceptor reflex acts basically through
independent pathways that control sympathetic and parasympa-
thetic outflow. The primary medullary circuitry of the baroreflex
includes inhibition of sympathoexcitatory neurons of the rostral
ventrolateral medulla (RVLM) by gabaergic neurons of the caudal
Abbreviations: 2K1C, Goldblatt renovascular hypertension 2-kidney, 1-clip; Ang II,

angiotensin II; Ang-(1-7), angiotensin-(1-7); AP, arterial pressure; AT1, angiotensin

II type 1 receptor; AT2, angiotensin II type 2 receptor; CVLM, caudal ventrolateral

medulla; HR, heart rate; MAP, mean arterial pressure; ms, millisecond; NA, nucleus

ambiguus; NTS, nucleus tractus solitarii; PI, pulse interval; RAS, renin–angiotensin
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ventrolateral medulla (CVLM) [1,25,51,54]. In addition, CVLM
neurons appear to play a role in the regulation of sympathetic
vasomotor tone and AP through gabaergic neurons that are
tonically activated by inputs independent of arterial baroreceptors
or the nucleus tractus solitarii (NTS), providing a gabaergic-
mediated inhibition of the presympathetic RVLM neurons that is
autonomous of baroreceptor inputs [45]. The CVLM baro-
dependent and baro-independent inhibitory mechanisms of
presympathetic RVLM neurons may play an important role in
determining the long-term level of sympathetic vasomotor tone
and AP. Inhibition or destruction of the CVLM produces severe
acute hypertension, consistent with blockade of baroreceptor
reflexes and withdrawal of inhibition of RVLM sympathoexcitatory
neurons. Further, other studies have shown that in spontaneously
hypertensive rats (SHR), CVLM produced inhibition of the RVLM
neurons seems to be attenuated, which might explain the
increased sympathetic drive to the periphery that is observed in
this model of hypertension [34,48].

CVLM is under the modulatory influence of the renin–
angiotensin system (RAS). Angiotensin-(1-7) is now recognized
as an important mediator of the RAS in different tissues, especially
in the heart and vasculature [9,18,44]. In the brain, Ang-(1-7) and
its selective receptor Mas [43] were described to be present in
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Fig. 1. Averaged changes in mean arterial pressure (MAP, mmHg) and heart rate

(HR, beats/min) produced by the microinjection of saline (100 nl, n = 13–14), Ang-

(1-7) (40 pmol, n = 8) and Ang II (40 pmol, n = 5–6) into the CVLM of Sham and 2K1C

rats. *p < 0.05 in comparison to saline (ANOVA followed by Dunnett’s test).
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different areas related to cardiovascular control [8]. Previous
studies have shown that microinjection of Ang II and Ang-(1-7)
into areas of the ventrolateral medulla (VLM) induces significant
changes in AP [2–5,7,20,29,47]. These peptides also influence
baroreflex control at the VLM in normotensive animals
[6,34,42,47]. In addition, the use of selective angiotensin antago-
nists has produced evidence for the role of Ang II and Ang-(1-7)
endogenous effects at the CVLM in rabbits and rats [16,20,30,53]
and in hypertensive or in normotensive rats [7,32,34].

It is well established that in renovascular hypertensive rats the
baroreflex bradycardia is attenuated [13,26]. However, the
pathophysiological relevance of the CVLM, a key area for the
medullary baroreceptor reflex pathway, for the genesis of
hypertension has only been addressed in SHR [39,51]. It has been
reported that in these animals, the CVLM exerts a lower tonic
sympato-inhibition on the RVLM neurons [34,48,51]. On the other
hand, there is considerable evidence on the overactivity of the
brain RAS in the Goldblatt renovascular hypertension 2-kidney-
1clip (2K1C) model. It is possible that the participation of brain RAS
occurs in either the early phase of 2K1C hypertension, when
plasma Ang II is elevated, or in the late phase, when plasma Ang II
levels are back to normal [27,28].

The objective of the present study was to test the hypothesis
that alterations of RAS components in the CVLM would contribute
to tonic and reflex AP changes observed after hypertension.
Therefore, we investigate the cardiovascular effects of CVLM
microinjection of Ang II and Ang-(1-7) and the effect of selective
AT1 and Mas receptor antagonists on baroreceptor-mediated
bradycardia in renovascular, 2K1C, hypertensive rats.

2. Materials and methods

2.1. Drugs

Ang II, Losartan, Ang-(1-7) and A-779 were purchased from the
Bachem Chemical Company (St. Louis, MO, USA) or Peninsula
Laboratories (Belmont, CA, USA). Phenylephrine was obtained from
Sigma Chemical Company (St. Louis, MO, USA).

Ang II (2 mg/ml), Losartan (2 mg/ml), Ang-(1-7) (2 mg/ml) and
A-779 (2 mg/ml) were dissolved in sterile isotonic saline (NaCl,
0.9%), aliquoted (10 ml) and stored at �20 8C. Phenylephrine was
dissolved in sterile saline at 1 mg/ml concentration and 100 ml
aliquots were stored at �20 8C. At the moment of the experiment,
the aliquots were diluted to the desired concentrations and used
only once.

2.2. Animals

Experiments were performed in male Fisher rats (n = 49) (ENUT,
UFOP, Brazil). All animal procedures were according to the
Guidelines for Ethical Care of Experimental Animals and were
approved by the Institutional Ethics Committee of the Federal
University of Ouro Preto, MG, Brazil.

2.3. Induction of renal hypertension

Renovascular hypertension was induced according to a
previously described method [41]. Briefly, the rats (150–200 g)
were anesthetized with the mixture of ketamine and xylazine
(50 mg/kg and 10 mg/kg, i.p., respectively) and a silver clip
(0.20 mm ID) was placed around the left renal artery through a
midline incision (Goldblatt renovascular hypertension, 2-kidney,
1-clip model, 2K1C). Other rats were submitted to similar
procedures but without the renal artery clip placement (Sham
group or normotensive rats). Experiment was carried out after 30
days after the surgery (2K1C or Sham).
2.4. Arterial pressure measurements

Pulsatile arterial pressure was monitored by a Gould pressure
transducer (PM-1000, CWE) coupled to a blood pressure signal
amplifier (UIM100A, Powerlab System). Mean arterial pressure
(MAP) and heart rate (HR) were determined by the arterial
pressure wave. All variables were continuously recorded and saved
to a PowerLab digital acquisition system (Powerlab 4/20,
ADInstruments) with an 800 Hz sampling rate.

2.5. CVLM microinjections

After 30 days of surgery, 2K1C and Sham rats (260–300 g) were
anesthetized with urethane (1.2 g/Kg, i.p.) and underwent a
tracheostomy. Next, a polyethylene catheter was inserted into
the abdominal aorta, through the femoral artery for arterial
pressure measurement, and another catheter was inserted into the
inferior cava vein, through the femoral vein for drugs injection. The
animals were placed in a stereotaxic frame (David Kopf instru-
ments, CA) as previously described by Rodrigues et al. [41]

Unilateral microinjections of Ang II, Ang-(1-7), angiotensin
receptor antagonists (Losartan or A-779) or sterile saline (vehicle—
NaCl 0.9%) in a volume of 100 nl were made over a 20–30 s period
into the CVLM (0.7 mm anterior, 1.8 mm lateral to the obex, and
just above pia mater in the ventral surface), as previously described
by Alzamora et al. [5,6]. The dose of the peptides and antagonists
was based in previous studies [5,6,20,41].

2.6. Evaluation of the sensitivity of the baroreflex bradycardia

The baroreflex bradycadia was tested in different groups of
animals, before and 5–10 min after CVLM microinjections of the
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angiotensin antagonists, AT1 Ang II receptor antagonist, Losartan
(n = 5–6) or Ang-(1-7) antagonist, A-779 (n = 5–8). Baroreflex
bradycardia was determined as previously described by Rodrigues
et al. [41].

2.7. Experimental procedures

The arterial pressure and HR of urethane anesthetized Sham
(n = 26) and 2K1C (n = 23) rats were continuously recorded. After
a 10 min stabilization period, the baroreflex bradycardia was
evaluated. The micropipette was then positioned into the
CVLM, Ang II (40 pmol) or saline (NaCl, 0.9%—100 nl) in a
random order in one group, or, Ang-(1-7) (40 pmol) or saline
(NaCl, 0.9%—100 nl) in a random order in another group were
microinjected. Fifteen min after the microinjection of the
peptides, Losartan (86 pmol), A-779 (50 pmol) or saline
(100 nl) was microinjected and after 5, 15 and 30 min Ang II
or Ang-(1-7) was repeated in each group, respectively. The
baroreflex test was evaluated in different groups of animals
before and 5–10 min after CVLM microinjection of the angio-
tensin antagonists, Losartan or A-779.

2.8. Histological verification of injection sites

The histological verification of injection sites was done
accordingly as previously described by Alzamora et al. [5,6] and
by Rodrigues et al. [41].
Fig. 2. Mean arterial pressure changes (DMAP, mmHg) produced by CVLM microinjection

and 5, 15 and 30 min after microinjection of Losartan (86 pmol, panel A) or A-779 (50 p

hypertensive (2K1C, n = 4–8) rats. *p < 0.05 in comparison to before (ANOVA followed
2.9. Statistical analysis

The results are expressed as means � SEM. Comparisons
between two groups were assessed by Student’s t-test. Comparisons
of three or more groups were made by one-way ANOVA followed
by Newman–Keuls or Dunnett’s test, as appropriate. Statistical
analyses were performed with the software Graphpad Prism

(version 4.00). The criterion for statistical significance was set at
p < 0.05.

3. Results

3.1. Baseline values of MAP and HR in 2K1C and in Sham rats

The baseline values of MAP of anesthetized 2K1C
(148 � 4 mmHg, n = 23) were significantly higher than the baseline
values of MAP of anesthetized Sham rats (106 � 2 mmHg, n = 26). The
baseline values of HR were not significantly different between the
Sham group (367 � 10 beats/min, n = 26) and the 2K1C group
(379 � 9 beats/min, n = 23). The relative weight (kidney weight/body
weight) of the left kidney (clipped) in 2K1C rats was significantly
smaller (0.068 � 0.003, n = 23) in comparison to the relative weight of
the left kidney (non-clipped) in Sham (0.086 � 0.002, n = 26). In
contrast, the relative weight of the right kidney (non-clipped) in 2K1C
rats was significantly greater (0.104 � 0.002, n = 23) in comparison to
the weight of the right kidney (non-clipped) in Sham (0.086 � 0.001,
n = 26).
s of Ang II (40 pmol; panels A and C) or Ang-(1-7) (40 pmol; panels B and D) before

mol, panel B), or saline (100 nl, panels C and D) in normotensive (Sham, n = 4–8) or

by Dunnett’s test).



Fig. 3. Baroreflex mediated changes in heart rate (HR, bpm) expressed as pulse interval (ms) in response to changes in mean arterial pressure (MAP, mmHg) produced by

graded doses of phenylephrine in normotensive (Sham, n = 7–8) or hypertensive (2K1C, n = 7–8) rats. In A, pulsatile (PAP, mmHg), mean arterial pressure (MAP, mmHg) and

heart rate (HR, beats/min) recordings illustrating the typical effect produced by injection of phenylephrine (2.5 mg, i.v.) before and after CVLM microinjection of A-779

(50 pmol) in 2K1C rats. Panels B and C present the averaged baroreflex bradycardia indexes obtained before and after CVLM microinjection of A-779. Panels D and E present

the averaged baroreflex bradycardia indexes obtained before and after CVLM microinjection of Losartan. Lines represent the least-square regression equation fitted through
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Fig. 4. Image of a histological section of the medulla (A) illustrating disruption of the tissue caused by microinjection and diagrammatic representations of frontal sections of

the medulla (13.30–13.80 mm caudal to the bregma); (B) showing the center of the microinjection into the CVLM (shaded area). The diagrams are from the atlas of Paxinos

and Watson [37]. AP: area postrema; Amb: nucleus ambiguus; LR: lateral reticular nucleus; py: pyramidal tract; sol: nucleus of solitary tract; XII: hypoglossal nucleus.
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3.2. Effect of CVLM microinjection of Ang II, Losartan, Ang-(1-7) or A-

779 in 2K1C and Sham rats

Unilateral microinjection of Ang-(1-7) into the CVLM produced
significant decrease in MAP in 2K1C (�14 � 2 mmHg, n = 8 vs.
�2 � 0.6 mmHg, n = 13; saline; Fig. 1), which was similar to that
produced by the microinjection of Ang-(1-7) into the CVLM in Sham
rats (�14 � 2 mmHg, n = 8 vs. �2 � 0.4 mmHg, saline; n = 14; Fig. 1).
In addition, Ang II also induced significant fall in blood pressure in
2K1C (�10 � 0.9 mmHg, n = 5 vs. �2 � 0.6 mmHg, n = 13; saline;
Fig. 1) similar to that observed in Sham rats (�11 � 1.3 mmHg, n = 6
vs. �2 � 0.4 mmHg, saline; n = 14; Fig. 1). The hypotensive effect
induced by angiotensin peptides was not accompanied by significant
changes in HR in both group of animals, Sham or 2K1C (Fig. 1).

The microinjection of the AT1 Ang II antagonist, Losartan and
saline produced similar hypotensive effects in 2K1C and Sham
groups. In contrast, the Ang-(1-7) antagonist, A-779, produced a
significant decrease in AP as compared to saline in 2K1C rats
(�12 � 4 mmHg, n = 6 vs. 2 � 0.6 mmHg, n = 13). In Sham rats, the
effect of A-779 was similar to saline (�5 � 2 mmHg, n = 8 vs.
�2 � 0.4 mmHg, saline; n = 14). HR did not significantly change in
any group after the microinjection of these antagonists (data not
shown).

As shown in Fig. 2, the microinjection of Losartan into the CVLM
abolished Ang II hypotensive effect up to 30 min in Sham and 2K1C
rats (Fig. 2A). Similarly, the microinjection of A-779 into the CVLM
abolished the Ang-(1-7) hypotensive effect up to 30 min in Sham
and 2K1C rats (Fig. 2B). In addition, the Ang II and Ang-(1-7)
depressor effects were not different 5, 15 and 30 min after the
the average points (panels B and D) and the slope of these regression lines, baroreflex

injections of phenylephrine (i.v., in bolus). *p < 0.05 in comparison to the respective Sham

(ANOVA followed by Newman–Keuls test).
CVLM microinjection of saline, respectively (Fig. 2C and D). No
significant changes in HR were observed in all groups at any of the
different time points (data not shown).

3.3. Evaluation of the sensitivity of baroreflex bradycardia in 2K1C

and in Sham rats

As expected, the reflex bradycardia of 2K1C rats
(0.19 � 0.03 ms/mmHg, n = 15) was significantly lower in compar-
ison to that of Sham rats (0.42 � 0.02 ms/mmHg, n = 15). Fig. 3A
illustrates the baroreflex bradycardia induced before and after the
CVLM microinjection of A-779. As shown in Fig. 3B and C, the Ang-(1-
7) antagonist significantly increased baroreflex bradycardia in 2K1C
rats (0.44 � 0.05 ms/mmHg, n = 7 vs. 0.24 � 0.03 ms/mmHg, n = 7;
before A-779). In contrast, the microinjection of Losartan into the
CVLM did not change the baroreflex bradycardia of the 2K1C rats
(0.2 � 0.04 ms/mmHg, n = 7 vs. 0.14 � 0.02 ms/mmHg, n = 8, before
Losartan; Fig. 3D and E). In Sham rats, baroreflex bradycardia was not
significantly altered by the CVLM microinjection of A-779
(0.35 � 0.04 ms/mmHg, n = 7 vs. 0.40 � 0.02 ms/mmHg, n = 7, before
A-779; Fig. 3B and C) or Losartan (0.52 � 0.06 ms/mmHg, n = 8 vs.
0.43 � 0.03 ms/mmHg, n = 8, before Losartan; Fig. 3D and E).

3.4. Histological examination

Fig. 4A shows an image of a histological section of the medulla
illustrating the site of the microinjection in one representative
animal. In Fig. 4B, diagrams of frontal sections of the medulla from
the atlas of Paxinos and Watson [37] show the location (shaded
sensitivity index (ms/mmHg) are presented in panels C and E. Arrows mark the

group (ANOVA followed by Newman–Keuls test). #p < 0.05 in comparison to before
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area) of the center of the microinjections in all animals of this
study. The microinjections into the CVLM were located in the
ventral portion of the lateral reticular nucleus, at the level of�13.3
to �13.8 mm, posterior to the bregma.

4. Discussion

The main finding of the present study was to show that CVLM
blockade of the Ang-(1-7) receptor with A-779 restored the
sensitivity of the baroreflex bradycardia in 2K1C hypertensive rats
to the level of normotensive rats. In addition, no change in
baroreflex bradycardia was observed after administration of the
AT1 antagonist, Losartan. These data suggest that endogenous
CVLM Ang-(1-7), and not Ang II, is contributing to the lower
baroreflex bradycardia of 2K1C rats.

Regardless of the relevance of CVLM neurons for the tonic and
reflex control of the cardiovascular system, the contribution of this
medullary center for the genesis or maintenance of hypertension
has not yet been completely established [7,51]. Brain RAS is
activated in several hypertension models [21,22,27,28]. Muratani
et al. [33] have shown that Ang II microinjection into the CVLM
produces depressor responses that are significantly greater in SHR
than in WKY rats. In contrast, we have recently shown that
microinjection of Ang II into the CVLM had similar depressor
responses in 2K1C rats [41] and in SHR [19], as compared to their
normotensive controls. Similarly, the results of the present study
showed that exogenously administrated Ang II and Ang-(1-7) into
the CVLM produced significant decreases in MAP in 2K1C similar to
that observed in Sham rats. However, studies in literature suggest
that hypertensive rats may have decreased tonic GABAergic inputs
to the RVLM, originated from the CVLM [34,48]. Thus, it is possible
that the similarity of Ang peptides responses in the CVLM of Sham
and 2K1C rats may be related to alterations in the angiotensin
endogenous levels or angiotensin receptor densities among
excitatory and inhibitory neurons or a combination of both, which
could compensate for the decrease in CVLM neuronal activity.

In the present study, we have shown that the Ang II AT1 receptor
antagonist, Losartan significantly blocked Ang II AP effect at the
CVLM for up to 30 min in both Sham and 2K1C rats, suggesting that
AT1 receptors mediate the hypotensive action of exogenously Ang
II in the CVLM. However, in a previous study [41] we have shown in
Sham and 2K1C rats that the Ang II AT2 receptor antagonist,
PD123319, also significantly attenuated Ang II effect at the CVLM,
but for up to 15 min. Taken together, these studies indicate that the
Ang II depressor effect at the CVLM may be mediated by both AT1

and AT2 receptor. With the data available, however, it is difficult to
quantify the relative contribution of each receptor subtype for the
Ang II response at the CVLM of normotensive and hypertensive
animals. Future studies will be necessary to identify the distribu-
tion of the angiotensin receptors, AT1 and AT2, in different subareas
and neuronal cell types of the VLM.

It is well established that Ang-(1-7) acts as a counterregulatory
modulator of Ang II in the baroreflex control in normotensive
[11,18,40] and hypertensive rats [10,14,24,36]. While Ang II
reduces the baroreflex sensitivity [12,23,46], Ang-(1-7) induces
facilitation of the baroreflex both after peripheral [10] and central
microinjection, ICV [10,11,36] and at the NTS [14,15,17]. However,
distinct effects were observed after VLM microinjection of Ang
peptides. We have recently shown [6] that the microinjection of
Ang II at the CVLM induces a facilitatory effect in the reflex
bradycardia while the microinjection of Ang-(1-7) produces a
decrease in baroreflex bradycardia. In addition, the modulatory
effect of Ang-(1-7) on baroreflex control was blocked by peripheral
treatment with methyl-atropine [6], suggesting that these effects
are mediated through modulation of the parasympathetic drive to
the heart. The results of the present study corroborate these data
showing that CVLM microinjection of A-779 improved the
sensitivity of reflex bradycardia, which suggests a tonic inhibitory
effect induced by endogenous Ang-(1-7) at the CVLM, at least in
2K1C hypertensive rats. Most of the CVLM barosensitive neurons
are GABAergic [13,38], however some neurons are catecholami-
nergic [50,52] and some are cholinergic, yet, some of the
cholinergic neurons also express GABA [45]. Although these
neurons are often depicted as simple relays to the RVLM,
GABAergic cells, and possible the others, are likely to innervate
multiple sites to provide a more widespread baroreceptor-
mediated inhibition of other regions of the CNS. A possible
reciprocal pathway between the CVLM and the nucleus ambiguous
(NA) was suggested in previous studies [31,49] and could be the
basis to explain a possible medullary interaction between sites that
control the parasympathetic and sympathetic nervous systems. It
is our hypothesis [6] that Ang-(1-7) facilitates the activity of
inhibitory barosensitive neurons in the CVLM that project to the
NA, while Ang II would induce opposite effect. As the baroreflex
circuit is activated by the pressor response produced by
phenylephrine, there was the expected increase in the activity
of the parasympathetic pre-ganglionic neurons in the NA (through
the NTS–NA pathway), which could be modulated by an inhibitory
barosensitive neurons projection from the CVLM. The alteration of
the parasympathetic drive to the heart would depend upon the
balance between the activities of both pathways (NTS–NA and
CVLM–NA). Facilitation of the inhibitory barosensitive cells
induced by Ang-(1-7) microinjection into the CVLM would
attenuate the HR changes (bradycardia). Future studies will be
necessary to clearly demonstrate the existence of such pathway
and to show whether angiotensin peptides may modulate
parasympathetic activity through this putative CVLM/NA pathway.

Losartan, on the other hand, had no effect on reflex bradycardia
either in 2K1C or in Sham rats. Similar results were also observed
by Sesoko et al. [47] that showed that in normotensive rats the Ang
II antagonist (Sar1, Thr8)-Ang II into the CVLM did not alter
baroreflex bradycardia. The data in normotensive rats suggest that
Ang-(1-7) and Ang II have no tonic effect on baroreflex modulation.
However, an important role for local activation of the brain RAS for
the maintenance of hypertension is suggested by our current data.
In addition, our data are consistent with other reports showing that
renovascular hypertension induces increases in angiotensinogen
mRNA or Ang II levels in different brainstem regions [28,35]. Thus,
taken together, these data suggest a selective alteration of the
brain RAS with a possible increase in Ang-(1-7) or Mas receptor
levels in the CVLM of renovascular hypertensive rats. In fact,
Lazartigues et al. [28] showed that maintenance of hypertension is
associated with greater activation of the brainstem RAS in 2K1C
mice as compared to normotensive control animals. It is possible
that in 2K1C rats the increased level of RAS can also induce an
increase in Mas and/or AT2 receptors expression in the CVLM.

It is interesting to notice that the CVLM microinjection of A-779
induced a significant hypotensive effect, but only in 2K1C
hypertensive rats. It is possible that hypertension may lead to
alteration in the activity of a specific pathway, increase in an
excitatory pathway or attenuation of an inhibitory pathway or
both. In addition, alteration in the expression of the Ang-(1-7)
receptor, Mas, or yet in the enzymatic pathways involved in
angiotensin peptide production may explain the hypotensive
effect observed after A-779 injection in the CVLM of 2K1C.

In summary, our results suggest that Ang-(1-7) at the CVLM
may contribute to the low sensitivity of the baroreflex control of
heart rate in renovascular hypertensive rats. Further, our results
also showed that blockade of the AT1 receptor at the CVLM do not
change the baroreflex bradycardia in renovascular hypertension.
These data suggest that differential activation of the RAS
components in the VLM is induced by renovascular hypertension.
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