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Abstract 

 

Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation 

in tissue repair and disease processes. The native HA polymer, which is large (>500kDa), 

contributes to the maintenance of homeostasis.  In remodeling and diseased tissues, polymer size 

is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue 

context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-

inflammatory functions, which result in the activation of multiple receptors, triggering pro-

inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments 

have been developed, which show efficacy in animal models of inflammation.  These studies 

indicate both that HA fragments are key to driving inflammation and that scavenging these is a 

viable therapeutic approach to blunting inflammation in disease processes. This mini-review 

summarizes the peptide-based methods that have been reported to date for blocking HA 

signaling events as an anti-inflammatory therapeutic approach. 
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Hyaluronan, inflammation and disease 

Hyaluronan (HA) is a simple extracellular matrix polysaccharide that a wealth of experimental 

approaches has demonstrated actively regulates inflammation in tissue repair, fibrogenic disease 

processes and cancer progression. Thus, studies show that knockout/knockdown of the proteins 

involved in its production, catabolism, signaling and organization alter inflammation in repair 

and disease models [1-6].  Both these reports and additional in culture analyses point to size-

dependent effects of HA on tissue and cell functions relevant to inflammation. In general, large 

HA polymers, which are mainly present in homeostatic tissues, are immunologically quiescent 

and contribute to enforcing homeostasis. HA fragments are generated by reactive 

oxygen/nitrogen species (ROS/RNS) and hyaluronidases produced during tissue stress and repair 
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[7-14]. HA fragments are considered to belong to the group of damage-associated molecular 

pattern molecules (DAMP) that activate innate immunity [2, 15]. Their functional consequences 

on inflammatory processes have the added complexity of being cell-context specific since 

responses depend not only on the precise polymer size but also on the stimulation status and type 

of cell responding to the fragments [15-18]. For example, 30 kDa endotoxin-free HA fragments 

stimulate the production of inflammatory cytokines (e.g. IL1ß) by B-lymphocytes [19]  

while 20 kDa HA fragments have no effect on the production by bone marrow macrophages 

[17]. Furthermore, since HA fragments activate multiple receptors (Figure 1), they can trigger 

different downstream events depending upon the injury context [1, 3, 20-23].  The inflammation 

and fibrotic stages of remodeling tissues occur in the presence of complex mixtures of high and 

low molecular weight HA polymers raising the possibility that a variety of sizes are required for 

manifestation of its pro-inflammatory properties.   The lack of inflammation resulting from 

treatment of tissues with hyaluronidase (PEGPH20), which generates sizes of HA shown to be 

pro-inflammatory in cultured cells is interesting in this regard. PEGPH20 has a number of 

biological effects on HA signaling[24, 25] but has clearly been shown not to induce 

inflammation[24] and is currently in clinical trials for improving cancer therapy[26]. A likely 

explanation for the lack of inflammation is rapid clearance of fragments from the target 

tissue[27]. Given the overall complexity of HA fragment biology, it is perhaps not surprising that 

the effects of specific sizes of HA polymers on cell functions is currently controversial. The 

design of future experiments intended to clarify and categorize size-dependent functions will 

clearly have to take these complex variables into consideration[28, 29]. 

 

In homeostatic tissues, the majority of HA occurs in its high molecular weight and native form 

(e.g. >500 kDa), which is organized in the extracellular matrix by a variety of extracellular 
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binding proteins but it also occurs as coats around cells that are held in place by interactions with 

constitutively expressed cellular HA receptors such as CD44 [24, 30, 31].  The functions of these 

large HA polymers are understudied, but at a minimum promote tissue hydration, provide 

lubrication, protect against mechanical damage, reduce proliferation, modulate immune 

recognition, promote expression of anti-inflammatory cytokines, such as IL-10, and block 

macrophage functions, such as phagocytosis [4, 7, 9-11, 13, 32]. In contrast to homeostatic 

tissues, HA polymer size in remodeling and diseased tissues is strikingly polydisperse, ranging 

from <10 kDa to >500 kDa [33]. The inflammatory functions of short HA fragments have 

recently been intensely studied, and specific size ranges of these smaller HA fragments are 

reported to promote pro-inflammatory cytokine expression/release as well as regulate innate 

immune cell chemotaxis [3, 5, 34]. In a diseased or stressed tissue context, even high molecular 

weight HA can acquire pro-inflammatory functions by forming cables that provide adhesion sites 

for in-trafficking monocytes [35, 36]. Therefore, remodeling and diseased tissues contain a 

complex mixture of “activated” HA polymer sizes, and the categorization of the net consequence 

of this massive amount of bio-information is a challenge but has the potential to offer exquisite 

fine tuning in the therapeutic intervention of inflammatory processes.  

 

Characterization of the key extracellular HA binding proteins and cellular receptors required for 

responses to HA polymers and development of reagents that block these interactions have greatly 

aided identification of the mechanisms by which HA and its fragments initiate and control innate 

immunity. These approaches have also identified effects of both HA and HA fragments beyond 

their roles in inflammation. These include mesenchymal differentiation [2, 37-39] and cancer 
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metastases [40-45]. This review will focus on the role of HA in inflammation and the 

consequence of blocking its activity, particularly with regard to innate immune cell functions. 

 

There are at least 5 HA receptors expressed on innate immune cells that “sense” or bind to 

complex mixtures of HA polymer sizes and activate pathways required for an inflammatory 

response. These include CD44, receptor for hyaluronan mediated motility (RHAMM), toll-like 

receptors 2 and 4 (TLR2, TLR4), and stabilin 2 (STAB2) [5, 46-48]. CD44, LYVE [49] and 

Stab-2/HARE[50] are endocytic receptors that bind to HA and share a conserved ~100 amino 

acid residue region homologous to the link module of the extracellular HA-binding link protein. 

These HA receptors thus belong to the HA-binding link protein superfamily [51]. This compact 

region is made up of two antiparallel beta-sheets, which are composed of six beta-strands and 

two alpha-helices stabilized by two disulfide bridges. This region binds to a minimum of 6-8 HA 

residues [51, 52]. The CD44 link module is unique since it is extended by four beta-strands on 

the N- and C-terminal sequences flanking the link module, and is further stabilized by a third 

disulfide linkage [53]. LYVE-1 has also been hypothesized to contain an extended structure [54], 

but high resolution structural information is not available to confirm this. A group of proteins 

that bind to HA but lack the link module include RHAMM (gene name HMMR) and Layilin. Of 

these ‘outlier” proteins, the mechanism by which RHAMM binds to HA is best characterized 

[55-57]. RHAMM binds to HA via two domains near the protein’s carboxyl terminus, each of 

which has a BX7B binding motif, where B represents any basic residue and X represents any 

non-acidic residue [56]. These clusters of basic residues allow for ionic interactions with the 

carboxylate ions of the polysaccharide [56]. CD44 has also been reported to contain two regions 

of RHAMM-like clustered basic amino acids which have been implicated in its HA-binding 
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activity [32, 56, 58]. RHAMM-like HA binding motifs are also present in Streptococcal HAS 

that affect polymer size[59]. However, the sequences required for binding HA to Layilin have to 

our knowledge not yet been reported.   

 

HA receptors activate a variety of signaling pathways in innate immune cells that converge on 

NFkB expression/activation with consequent production of inflammatory cytokines. These 

receptors also coordinate signaling through growth factor receptors and other extracellular matrix 

receptors to control innate immune cell adhesion and chemotaxis. This coordination seems to be 

stimulus-specific [11, 23, 32, 45, 60]. For example, in response to HA fragments, CD44 forms 

complexes with TLR4 and MD2/LY96 to promote expression of TGF-ß2 and MMP13 that 

stimulate sterile inflammation [61]. On the other hand, signaling through surfactant protein 

A:TLR2 results in the production of TGF-ß1 production, which promotes HA-RHAMM-

mediated macrophage chemotaxis [62]. TLR2 and 4 are also required for HA fragment:HA 

receptor-regulated NFkB expression and P2X7/inflammasome activation to express, activate and 

release IL1ß in response to tissue damage (Figure 1) [2, 19]. A variety of approaches for 

blocking the pro-inflammatory signaling initiated by HA fragments have been reported in 

experimental models of disease.  These include inhibiting HA synthesis by small molecules (e.g. 

4MU [63, 64]), gene knockdown/knockout, and blocking hyaluronidase expression/ROS 

formation [41, 65, 66], as well as development of hyaluronidase formulations (e.g. PEGPH20) 

[24, 25], modified HA polymers [67], small peptides that bind HA and small peptides that bind 

to HA receptors. At this stage in our as yet limited understanding of the complex biology of HA-

stimulated inflammasome signaling, an approach that in animal models appears to be efficacious 

for most pro-inflammatory stimuli is to block signaling of receptor complexes by sequestering 
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the upstream pro-inflammatory HA polymer sizes. The development of peptide mimics that bind 

to HA fragments has provided proof-of-concept for this therapeutic approach in experimental 

models of inflammation and other diseases. This review focusses upon peptide mimics that bind 

directly to HA fragments and sequester them from activating receptors.  Peptides that block the 

HA binding sites on HA receptors are also reviewed since these may be most useful in 

inflammatory conditions where the target HA receptor is known to be a driver of the disease. 

 

Blocking HA signaling with peptide mimetics as a therapeutic approach 

The goal of creating therapeutics that target HA fragments and HA receptors is challenging, in 

that this requires the targeting of a protein-polysaccharide interaction. Similar to that of targeting 

protein-protein interactions, the large surface area of interaction and the lack of well-defined 

binding pockets limits the ability to utilize small molecules to interfere with these binding 

interfaces. This is further complicated by the conformational changes that these HA receptor 

proteins undergo upon binding to HA [68]. Higher molecular weight entities such as peptides, 

proteins, and antibodies are more readily able to block protein-polysaccharide interactions due to 

their ability to interact over a larger surface area. Peptides are particularly attractive as drug 

candidates for this type of interaction as they are biocompatible with typically low toxicity,  

interact over a large surface area, and are structurally diverse permitting excellent selectivity 

[69]. 

 

The discovery of peptides to modulate HA receptor interactions has focused on two approaches, 

unbiased peptide library screening and rational design based upon known structures or binding 

sites. Unbiased peptide library screening has used phage display, which is a biochemical 
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approach to identify high affinity peptides displayed on a bacteriophage, and one-bead one-

compound (OBOC) libraries, which is a chemical approach of screening peptides using polymer 

beads. These unbiased peptide libraries were primarily used for identifying peptide mimetics that 

scavenge HA and HA fragments, as discussed subsequently in the Peptide library screening 

section. The discovery approaches used for finding HA binding peptides that mimic HA 

receptors have primarily been based upon rational design with structural leads being known 

binding sites for HA. 

 

Peptide library screening for HA- and HA receptor-binding 

The P15-1 peptide (STMMSRSHKTRSHHV) is a 15mer peptide which was the first peptide 

mimetic that was reported to bind specifically to HA fragments of <10 kDa.  It was identified by 

screening a recombinant phage display library with a complexity of approximately 10
13 

transformants for peptides that both bind to HA fragments (MW range 5-200 kDa) linked to 

Sepharose beads and that block cell motility [70]. Two peptide sequences were recovered in the 

screen and of these, P15-1 exhibited the highest affinity for HA fragments (KD = 10
-7

 M), and 

most strongly blocked cell motility. It has low homology with known HA receptors but contains 

a BX7B motif similar to that required for binding of HA to RHAMM [56]. In a model of 

excisional skin injury, P15-1 blunted inflammation and fibrogenesis [70]. Consistent with the 

proposed possibility that P15-1 blocks RHAMM signaling though HA fragments, the 

consequences of this peptide mimetic on skin wound repair is similar to that of the genetic 

deletion of RHAMM [71], which results in blunted responses to HA fragments [72].  For 

example, both conditions block inflammation and fibrogenesis in excisional wounds but neither 

affect the course of incisional repair, which does not involve the massive waves of cellular 
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trafficking and migration that are required for healing of excisional wounds [71, 73, 74]. P15-1 

synthesized entirely with D-amino acids (referred to as HABP42) also reduced bacterial burden 

in surgical skin wounds by modulating neutrophil responses [75, 76].  

 

Pep-1, a 12mer peptide (GAHWQFNALTVR) was identified as an HA binding sequence by 

screening an M13 phage display library expressing random 12mer peptides fused to gene 3 (pIII) 

minor coat proteins with a complexity of approximately 10
9
 transformants [77]. This peptide 

(Pep-1) was isolated by panning the library for sequences that bind to HA-coated plates.  Pep-1 

binds to HA with moderate affinity (KD = 1.4 µM), inhibits HA binding to innate immune cells, 

and was shown to inhibit leukocyte attachment to HA substrates [77, 78]. The systemic, 

subcutaneous or topical administration of this peptide inhibited dinitrofluorobenzene/oxazolone 

induced-contact hypersensitivity by both blocking in-trafficking of inflammatory cells and 

migration of hapten-triggered langerhan (dendritic) cells out of the epidermis [77].  Skin 

dendritic cells utilize HA as a motogenic stimulus for migrating from the epidermis to lymph 

nodes, where they function as antigen-presenting cells, a process that is required for generating 

protective pro-inflammatory and tolerogenic immune responses during tissue injury [79, 80]. 

Aberrant activation of these cells contributes to inflammatory disease processes [80]. These 

results provided early evidence supporting the development of HA inhibitors for inflammatory 

disorders. Pep-1 was later shown to inhibit HA fragment-promoted MIP-2 production by bone 

marrow macrophages [81], reduce bronchial inflammation [82], reduce pro-inflammatory 

cytokine production (TNF-α, IL-6, MMP13 and iNOS), as well as preserve cartilage architecture 

in a mouse model of collagen-induced arthritis [79, 83], and like P15-1, reduced bacterial burden 

in surgical skin wounds of mice by modulating neutrophil response [75]. Pep-1 also dramatically 
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inhibited interleukin-2 (IL-2)-induced vascular leak syndrome (VLS) [84], which may be linked 

to its anti-inflammatory effects. Pep-1 targets multiple cell types that take part in inflammatory 

processes additional to macrophages. For example, this peptide blocks NFkB activation and 

cytokine production by chondrocytes in culture [85]. The efficacy of P15-1 and Pep-1 in 

blunting inflammation in animal models of disease/repair provided the original strong collective 

support for the development of peptide mimetics to block activity of HA fragments in 

inflammatory processes that lead to disease. Additionally, these early peptides have been useful 

in dissecting the signaling pathways that are regulated by HA fragments [70, 86]. Curiously, 

although they have similar functional effects, neither peptide is related to each other at a protein 

sequence level or to characterized HA receptors/binding proteins. 

 

A novel combination of ex vivo and in vivo biopanning of peritoneal disseminated gastric cancer 

cells using a constrained CX7C peptide library displayed on bacteriophage coupled with high 

throughput sequencing, identified a peptide (IP3, CKRDLSRRC) that targets to areas of 

peritoneal tumors rich in macrophages [87].   This peptide contains a RHAMM-like HA binding 

motif [56] and binds to HA-coated plates. IP-3 decorated with silver nanoparticles efficiently 

target these to peritoneal tumors suggesting it may be useful in delivering nanoparticle payloads 

to tumors and likely to areas of chronic inflammation.  

 

Peptide-displaying phage and peptide library technology have also been used to identify peptides 

that mimic carbohydrates [88]. HA peptide mimics that bind with high affinity to recombinant 

RHAMM containing hyaluronan binding sequences, were originally identified by Ziebell, M. et 

al [89, 90]. Two libraries of 8mer peptides were designed to target recombinant RHAMM 
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fragments, with one library consisting of peptides made of entirely random sequences. The 

second library was biased, with alternating acidic residues being incorporated in every other 

position of the sequence, with the intention of mimicking the placement of the glucuronic acid 

moieties of HA [89]. Peptides from the unbiased (random) library that bound in an HA fragment-

dependent manner to recombinant RHAMM with µM to nM affinity, exhibited some similarities 

with respect to regions of hydrophobic residues (e.g. PVY), but contained very few negatively 

charged amino acids. These peptides were then computationally modeled to evaluate their 

binding to an NMR-based model of RHAMM, from which residues within RHAMM were 

identified that were theorized to stabilize RHAMM-HA interactions [90]. However, these 

peptides have not yet been reported to affect cellular functions relevant to inflammation.  

 

Recombinant CD44 protein has also been used to screen peptide libraries [91]. In this study, a 

Ph.D.-12mer phage display peptide library with a peptide complexity of 2.7x10
-9

 was screened 

using recombinant CD44 as bait. The screen isolated several peptides, one of which exhibited a 

KD = 7.5 pM for recombinant CD44. However, none of the isolated peptides were tested for their 

ability to bind to the CD44 HA binding region or assayed for functional effects. Nevertheless, 

these studies show that isolating peptides that bind to HA receptors is a viable approach for 

potentially developing novel inhibitors of HA receptor signaling.    

 

Rational design of peptide mimetics 

RHAMM-based peptide design 

RHAMM is the protein product of the HMMR gene [92]. RHAMM mRNA and protein 

expression is limited during homeostasis but high during injury and in diseased states, such as 
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inflammatory diseases and cancer [22, 32, 93, 94]. Although RHAMM is a cytoplasmic protein, 

it is unconventionally exported during cellular stress, where it partners with CD44 and growth 

factor receptors to activate focal adhesion kinase (FAK) [70], Src [95, 96], PI3K [97, 98], 

ERK1,2 [99-103], and motogenic signaling pathways. As an intracellular protein, it binds to 

microtubules, kinases, such as ERK1,2 [102], AURKA/TPX2 complexes [104-106] and 

transcriptional proteins such as E2F1 [107]. In this multifunctional capacity, intracellular 

RHAMM contributes to the dynamic organization and orientation of mitotic spindles and 

interphase microtubules, subcellular compartmentalization of the above kinases and expression 

of E2F1 regulated target gene expression (e.g. fibronectin [107]). RHAMM is unique amongst 

characterized cellular HA receptors in its relatively high binding affinity for hyaluronan and 

hyaluronan fragments. The binding affinity of purified RHAMM protein for HA was originally 

documented to be in the nM range [108] and a chemically synthesized 7 kDa fragment of 

RHAMM containing the HA binding region has more recently been quantified with a KD of 0.84 

nM for 5-10 kDa HA (Hauser-Kawaguchi, A., et al., submitted). This is a stronger affinity for 

HA than has been reported for other cellular receptors including, CD44 (65.7 M) [109, 110] 

and LYVE-1 (35.6 M) [111, 112]. This property as well as the clear role of RHAMM in disease 

processes and its highly regulated/restricted expression, which predicts limited toxic and off-

target effects of therapeutic intervention, make RHAMM an ideal candidate for designing 

peptides that either sequester HA fragments or bind to and block RHAMM signaling. 

 

To date, several RHAMM-sequence based peptide mimetics have been rationally designed to 

bind to HA fragments and have been shown to have therapeutic effects in a number of processes, 

including inflammation, wound repair, and fibrosis/adipogenesis. One of the first rationally 
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designed HA-binding peptides was based on the RHAMM BX7B HA binding motif, and like 

P15-1, it does not otherwise have any amino acid sequence homology with RHAMM. This 

peptide strongly reduced BAL macrophages in bleomycin-induced lung injury and blunted 

destruction of lung architecture [113], reduced surfactant protein A-induced macrophage 

chemotaxis [62] and ozone induced lung hyper-responsiveness [114]. Another peptide, pep-35 

has 70% homology with RHAMM sequence and essentially joins four RHAMM HA binding 

sequences together. This peptide reduced Staphyloccus aureus burden in infected surgical 

wounds and increased the production of CXCL1,2 by inflammatory cells, which subsequently 

increased neutrophil influx into the wound [76]. Other peptides have been designed to mimic the 

three BX7B motifs of CD44 and although these have not been reported to affect inflammation, 

were shown to block tumor cell growth [115]. Finally, RHAMM sequence mimics (NPI-0102, 

NPI-0104), which do not appear to directly bind to HA but disrupt HA binding to RHAMM, 

have been reported to promote adipogenesis and reduce tissue fibrosis [37]. The effect on 

fibrosis may not directly result from blunting innate immune cell function, as these peptides 

increased the production of adiponectin, which is an anti-fibrogenic adipokine [116, 117]. 

 

In another rationally designed approach, Esguerra et al. developed HA peptide mimics from C-

terminal region of - and -tubulin that bind to RHAMM [118]. Novel 12mer peptide ligands 

were identified that bind with high affinity (nM) to RHAMM and compete with HA for 

RHAMM binding [118]. The strongest binding compounds were those that were taken from the 

negatively charged carboxy terminal tail (CTT) and helix H12 regions of tubulins, and that 

contained a repeating amino acid motif of EEXEE, suggesting both electrostatic forces and 

conformational effects may be important for the development of RHAMM-binding ligands. 
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These compounds block HA binding to tumor cells but have not yet been reported to affect 

inflammatory processes.  

 

Other RHAMM peptide-based therapies could reasonably be developed from varying the peptide 

backbone and/or altering the peptide structure, which may confer improved specificity and 

affinity towards its target. Such strategies include the development of stapled or cyclized 

peptides. These more drug-like peptides could then be optimized for their ability to block 

inflammation by use of a screening funnel such as is modelled in Figure 2, with the intent of 

blocking the inflammasome/NFkB signaling axis.   

 

CD44-based design of small molecule and peptide mimetics 

CD44 is often considered to be the major HA-binding receptor [16, 46, 66] as it is the most 

ubiquitously expressed HA receptor in homeostatic tissues. Like RHAMM and other HA 

receptors, CD44 has multiple functions in innate immunity [5, 11, 23, 119] and is frequently 

highly expressed in inflammation-based [46, 66] and other diseases [45]. Blocking CD44 

function with antibodies has been successful in controlling inflammation in animal models but in 

clinical trials, blocking CD44 variant function with antibodies has had off-target and toxic effects 

[120, 121]. CD44 is activated in order to bind HA, which is a highly regulated process [5, 122], 

and therefore blocking its HA binding functions may be more efficacious and less toxic than 

targeting its variant or standard forms. RHAMM does not always partner with CD44 to mediate 

responses to HA fragments [22, 45, 62], thus, the development of therapies that directly block 

the HA binding properties of CD44 are desirable and represent a feasible alternative and/or 

additional approach to controlling inflammation. However, the development of small molecule 
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or peptidomimetics to directly block HA:CD44 interactions is challenging due the large surface 

area that mediates the interaction between this polysaccharide and CD44 [123]. Nevertheless, a 

number of reports have identified molecules that achieve this.  One of these, A6 peptide, is a 

capped 8mer peptide derived from the connecting peptide domain of human urokinase 

plasminogen activator (uPA). This was shown to block HA:CD44 interactions [124] and cellular 

functions such as migration, but clinical trials showed no efficacy as a cancer treatment [125]. 

Using a combination of binding assays, fragment screening, and crystallographic characterization 

of complexes of the CD44:HA binding domain, one group has reported the formation of a small 

inducible “pocket” adjacent to the binding groove and through fragment screening identified a 

series of small molecules that reduce HA binding to CD44 [123]. Protein-ligand interaction 

studies indicated that the small molecule ligands competed with HA for CD44 binding by surface 

plasmon resonance (SPR); however, optimization of these lead compounds is required before 

advancing to animal models. Nevertheless, further research into the optimization of these 

compounds could result in identification of small molecule, peptide or hybrid peptide/small 

molecule inhibitors capable of disrupting HA binding to CD44 and blocking signaling that leads 

to inflammation. 

 

Conclusions and Future directions 

 

Peptides that scavenge HA fragments offer considerable promise in regulating inflammation-

based diseases and disorders. The opportunities for the development of such peptidomimetics is 

considerable since in addition to HA receptors, a number of extracellular proteins, which bind to 

HA and fragments (e.g. versican [126, 127], TSG-6 [128-130]) could be suitable candidates for 
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peptidomimetic design. In addition, directly targeting HA receptors that activate pro-

inflammatory signaling cascades in response to HA fragments holds promise. Nevertheless, the 

biology of HA receptors appears to be complex in terms of stimuli-specific activation of these 

receptors and use of HA scavenging peptides likely holds more immediate therapeutic promise. 

The possibility of designing small molecule and/or hybrid small molecule/peptide therapies is an 

exciting novel approach. This review did not cover vaccine therapies but reports that RHAMM 

R3 peptide vaccines for the treatment of multiple myeloma and myelodysplastic syndrome [131, 

132] are currently being evaluated in phase I/II clinical trials, predicts that alternate RHAMM-

based peptide therapies can be successfully developed. 
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FIGURE LEGENDS 

 

Figure 1.  Model for initiation of inflammation by HA fragment signaling in macrophages.    

HA fragments bind to HA receptors that are expressed by macrophages (CD44, RHAMM 

shown). Depending upon the initial stimulus, these coordinate with TLR2,4 and P2X7 to activate 

the inflammasome so that activated caspase 1 is produced. HA fragment:HA receptor 

interactions also activate NFkB to produce pro-IL1B and other pro-inflammatory cytokines. Pro-

IL1B is then processed by caspase 1 to a mature form that is released by macrophages.   

 

Figure 2.  Schematic for isolating peptide mimetics to block HA fragment-stimulated pro-

inflammatory signaling.  A. Funnel for screening anti-inflammatory peptide mimetics. Peptides 

isolated from peptide libraries or designed from known HA binding proteins are first assessed for 

their ability to bind to HA fragments (or to receptors such as CD44 and RHAMM, or 

extracellular HA binding proteins), then modified to increase their stability in serum. Peptides 

that can potentially block inflammation are then identified by their ability to reduce NFkB 

activation in response to TLR2 or 4 agonists by macrophages in culture as well as TNF-α 

production induced by LPS in vivo.  B. The active peptides identified in (A) are predicted to 

block inflammation by either sequestering HA fragments or blocking the binding of HA to HA 

receptors (RHAMM shown). This prevents activation of the inflammasome and NFkB so that 

IL1B is not produced and either inflammation is not initiated, or an existing inflammation is 

suppressed.  
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Table 1 – Functional properties of HA binding peptide mimics 

Disease model or context Function of HA fragments 

blocked by peptides  

Peptide studied for 

inhibitory function 

Reference 

Excisional skin wound 

model in mice 

M1 macrophage influx and 

production of TGF-ß1, 

angiogenesis, and 

fibroplasia/fibrosis  

P15-1 [70] 

IL-2-induced vascular leak 

syndrome (VLS) in mice 

 

HA-induced endothelial cell 

permeability 

Pep-1  [84] 

Collagen-induced arthritis 

in a mouse model 

Reduced cartilage 

architecture 

Pep-1 [83] 

Mouse bone marrow 

derived macrophages 

Macrophage release of 

MIP-2  

Pep-1 [81] 

Mouse model of SEB-

induced lung injury in mice 

Peri-bronchial 

inflammation 

Pep-1 [82] 

Contact hypersensitivity in 

mice 

Inhibits leukocyte homing 

to injury and hapten-

induced langerhan cell 

migration 

Pep-1 

 

[77] 

Bleomycin-induced lung 

injury in mice 

Inflammation and fibrosis-

inducing  

RG peptide [113] 

Staphlococcal aureus 

colonization of surgical skin 

wound 

Increased CXCL1, CXCL2 

production and neutrophil 

influx 

Pep-35 [75, 76] 

Subcutaneous mammary fat 

pads in female rats  

Inflammation and obesity NPI-0102 [37] 

NPI-0104 [37] 
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Table 2 -    Functional peptides and their affinities for their targets 

Target Peptide studied 

for inhibitory 

function 

Peptide sequence(s) Binding affinity Reference 

HA P15-1  STMMSRSHKTRSHHV 1 x 10
-7

 M [70] 

Pep-1  GAHWQFNALTVR 1.4 x 10
-6

 M [77] 

NPI-0102 KLKDENSQLKSEVSK ND [37] 

NPI-0104 KSEVSK 

 

ND [37] 

RHAMM Unbiased (random) 

library 

SGRPYKPP 

YXSSNKPG 

EGEWPVYP 

WNYTEAKG 

QAMNKFTF 

NTDSNKNM 

NPVFNDGY 

FLRWFIMI 

EMAQMLLE 

PFLMKFPI 

IYIYPQPQ 

µM to nM affinity [89] 

Rationally 

designed (biased) 

library  

MDYEPEQE 

YDSEYESE 

FDFDSEYE 

EDAENDEE 

µM to nM affinity [89] 

Tubulin-derived 

peptides 

VEGEGEEEGEEY 

FTEAESNMNDLV 

EAFEDEEEEIDG 

EEDFGEEAEEEA 

GEFEEEAEEEVA 

SVEAEAEEGEEY 

nM affinities [118] 

CD44 Ph.D. 12mer Phage 

display library 

WHPWSYLWTQQA 

 

7.5 x 10
-12

 M [91] 

 

  

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

28 

 

Title:  Design of peptide mimetics to block pro-inflammatory functions of HA fragments 
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HIGHLIGHTS 

- Hyaluronan (HA) fragments trigger pro-inflammatory signaling in stressed/injured and 

diseased tissues 

- Peptides that inhibit HA signaling have been developed and show anti-inflammation 

efficacy 

- Peptide mimetics of HA, as well as peptide mimetics of the HA receptors RHAMM and 

CD44, are reviewed 
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