








(50 nm, 30 min). As shown in Figure 3, wortmannin inhibits the Ang
(1–7)-induced phosphorylation of Akt on Ser473 confirming that
the Ang (1–7) effect is mediated by PI3K.

3.5 Interactions between Ang II, Ang (1–7),
and insulin on Akt/eNOS axis
To study the influence of Ang II and Ang (1–7) on insulin signalling,
HUVECs were stimulated with insulin, Ang II, and Ang (1–7) alone,
or with a combination of all three hormones. The combined stimula-
tion then was tested in the presence of AT1R, AT2R, and MasR block-
age. Insulin stimulates the serine phosphorylation of Akt/eNOS,
increasing their active portion by 2.5 times (Figure 4). The addition
of Ang II completely inhibits the insulin effects on two enzymes.
This inhibitory effect on insulin signalling is almost completely coun-
tered by the addiction of Ang (1–7). Losartan in combination with
Ang (1–7) completely restores the effects of insulin, eliminating the
deleterious effects of Ang II. The use of PD123319 does not signifi-
cantly modify the Ang (1–7) effect, whereas the addition of D-Ala,
by inhibiting the actions of Ang (1–7), restores the negative effects
of Ang II on insulin signalling (Supplementary material online,
Figure S2).

3.6 Effects of Ang II and Ang (1–7) on IRS1
serine phosphorylation
It has been shown that serine phosphorylation of IRS1 compromises
the ability of this substrate to be phosphorylated in tyrosine by the
IR, thereby impairing the ability to activate PI-3K. In consideration
of the opposite effects of Ang II and Ang (1–7) on insulin signalling,
we tested the effects of both hormones on serine phosphorylation
of IRS1. As shown in Figure 5, the exposure of HUVECs to Ang II
results in a Ser616 phosphorylation of IRS1. This effect is completely
inhibited by the addition of Ang (1–7). Pre-incubation of HUVECs
with losartan restores the baseline phospho-serine IRS1 levels, elimin-
ating the effect of Ang II. Inhibition of AT2R partially reduces the
effects of Ang (1–7), although not significantly (P , 0.08), whereas
the use of D-Ala almost completely blocks the inhibitory effects of
Ang (1–7) on Ang II, by restoring thus the action of Ang II on
serine phosphorylation of IRS1.

Figure 3 Effects of wortmannin on Akt (Ser473) phosphorylation
induced by the Ang (1–7) in HUVECs. Data are means+ SE,
expressed as relative change in comparison with the basal value
(n ¼ 3 for every experiment). *P , 0.05 vs. Ang (1–7).

Figure 4 Effects of Ang II and Ang (1–7) on insulin-induced Akt and eNOS serine phosphorylation in HUVECs. To normalize the blots for protein
levels, after being immunoblotted with anti-phosphospecific antibodies, the blots were stripped and reprobed with anti-eNOS and anti-Akt antibodies.
Data are means+ SE, expressed as relative change in comparison with the basal value (n ¼ 3 for every experiment). *P , 0.05 vs. basal; †P , 0.05 vs.
insulin; ‡ P , 0.05 vs. insulin + Ang II.
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3.7 Effects of Ang II and Ang (1–7) on
insulin-stimulated NO production
We also determined the effects of Ang II and Ang (1–7) on eNOS
activation induced by insulin. eNOS activity was increased by
insulin, whereas Ang II treatment resulted in a 85% decrease in insulin-
stimulated eNOS activity. The addition of Ang (1–7) to HUVECs
reversed the inhibitory effects of Ang II on insulin-stimulated eNOS
activity (Figure 6).

3.8 Effects of Ang (1–7)-induced NO
production
The downstream NO signalling transduction leads to an increase in
intracellular cGMP that in turn is able to activate the PKG. This
event is associated with the vasorelaxation in arteries. We tested
the effectiveness of the Ang (1–7) eNOS activation and NO produc-
tion by measuring the intracellular cGMP and the subsequent PKG-1
activity. As observed in Supplementary material online, Figure S3,
Ang II has no effect on cGMP production and PKG-1 activity with
respect to the control. In contrast, Ang (1–7) is able to increase
the intracellular cGMP in HUVECs (A), by inducing a significant in-
crease in PKG-1 activation (B).

3.9 Endothelium-mediated vasodilatory
effect of Ang (1–7)
To test the functional effect of Ang (1–7)-mediated NO production,
we performed a myographic assay in mesenteric arteries of mice. We
utilized the L-NAME as a specific inhibitor of endothelial NO

Figure 5 Effects of Ang II and Ang (1–7) on the insulin pathway: induction of Ser616 phosphorylation of IRS1 by Ang II and reversibility of the effect
by Ang (1–7). Data are means+ SE, expressed as relative change in comparison with the basal value (n ¼ 3 for every experiment). *P , 0.05 vs.
insulin; †P , 0.05 vs. insulin + Ang II; ‡P , 0.05 vs. insulin + Ang II + Ang (1–7).

Figure 6 The eNOS enzymatic activity assay upon insulin stimula-
tion and Ang II and Ang (1–7) addition on HUVECs. Bars represent
the average radioactivity associated to the 14C-citrulline amount
(means+ SE of three independent experiments) generated with
NO production. *P , 0.05 vs. basal value; †P , 0.05 vs. insulin;
‡P , 0.05 vs. insulin + Ang II.
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synthesis. As shown in Supplementary material online, Figure S4, ACh
was able to induce an endothelium-dependent vasodilation in a dose-
dependent manner; this effect was inhibited in the presence of
L-NAME (A). Similar effects were obtained with Ang (1–7) (C ), dem-
onstrating thus the key role of endothelial NO in the Ang (1–7) func-
tional actions. In contrast, Ang II caused a vasoconstriction at a
maximal efficacy dose of 1027 mol/L (B).

4. Discussion
It is well established that Ang II is implicated in the pathophysiological
mechanisms of both insulin resistance and endothelial dysfunction16–19

that participate to the appearance and progression of atherosclerotic
process. Interestingly, the cross-talk between Ang II and insulin signalling
transduction may explain, at least in part, the impaired metabolic effects
observed in the presence of the insulin resistance status.20–22 At the vas-
cular level, the Ang II-induced inhibition on the IRS1/PI-3 kinase/Akt
/eNOS pathway reduces the endothelial NO production, pre-disposing
to the development of vascular damage.14 In recent years, increasing
interest has exerted the Ang (1–7), a peptide capable to counteract
many actions of Ang II.23–28

In this study, we evaluated the possible mechanisms by which Ang
(1–7) may positively interfere in the cross-talk between RAS and the
signalling of insulin in HUVECs. Our data demonstrate that the expos-
ure of endothelial cells to Ang (1–7) is directly able to activate the
signalling pathway producing NO, a molecule that possesses some
vasoprotective effects. In particular, NO production is associated
with an increase in intracellular cGMP and PKG-1 activation; this
event leads to an effective functional vasodilatory role in the vascula-
ture, as observed in the myographic assay. Akt and eNOS are two
crucial enzymes in this signalling pathway. Their activation is related
to a serine phosphorylation, which is significantly inhibited by Ang II
through the AT1R stimulation. On the contrary, Ang (1–7) counter-
acts the inhibitory effects of Ang II on them.

The use of receptor antagonists indicates that the effects of Ang II
are only attributable to AT1R recruitment, whereas those of Ang (1–
7) are largely mediated by MasR and, minimally, by AT2R. These evi-
dences, as also previously demonstrated by us,5 demonstrate that the
AT2R stimulation does not contribute to the biological effects of the
AT1R block in the insulin signalling transduction.

Moreover, the PI3K activation is an important step for the Akt re-
cruitment that it is necessary to activate the metabolic actions of
insulin, such as the glycogen synthesis and the membrane glucose trans-
port. Our study confirms that the PI3K/Akt axis is also crucial in the
effects mediated by Ang (1–7). In fact, Ang (1–7) is able to promote
the Akt and eNOS serine phosphorylation that is inhibited by the wort-
mannin, a selective PI3K inhibitor. Our data suggest that the exposure of
endothelial cells to Ang (1–7) is directly able to activate the signalling
pathway producing NO, a key biological molecule involved in the pres-
ervation of endothelial function and vascular integrity. The biological
relevance of this finding is supported by the demonstration that Ang
(1–7) is able to induce an endothelium-dependent vasodilation in
mice arteries, similarly to that exerted by muscarinic receptor stimula-
tion. Moreover, Ang (1–7) counterbalances the negative effect of Ang II,
by improving the haemodynamic and metabolic actions of insulin. Thus,
we can presume that in clinical conditions of insulin resistance, in which
Ang II is up-regulated, such as hypertension, diabetes, obesity, and
hypercholesterolaemia, Ang (1–7) could have a positive impact on
insulin sensitivity and haemodynamic properties of vasculature.

Another biologically relevant finding, obtained in this study, is the
demonstration that Ang (1–7) counteracts the inhibitory effects of
Ang II on insulin-induced activation of Akt, with a concomitant in-
crease in eNOS activity. MasR mediates this opposite effect of Ang
(1–7), as confirmed by the effects observed using its selective inhibi-
tor D-Ala. The importance of this finding consists in the fact that
neither AT1R nor AT2R participate in this specific effect of Ang (1–
7) that is instead activated by MasR recruitment. All these evidences
confirm the hypothesis that RAS is a complex system in which several
signalling pathways mediated by AT receptors are involved.

Serine phosphorylation of IRS1 is the most known molecular mech-
anism responsible for insulin resistance.29,30 Many molecules, including
interferons and interleukins, are able to induce serine phosphorylation
of IRS1, compromising the ability of the substrate to be tyrosine phos-
phorylated by IR and to activate PI3K.31 –34 We demonstrated that
Ang II induces a Ser616 IRS-1 phosphorylation, impairing the down-
streaming insulin signalling pathway that is restored by the Ang (1–7)
through the MasR activation. These data confirm the crucial role of
MasR in the modulation of both metabolic and vascular actions of
Ang II. All these evidences have clinical relevance because some of non-
haemodynamic effects of sartans are mediated, at least in part, by an
increased bioavailability of Ang (1–7).

On the basis of these results, we hypothesized that Ang (1–7) posi-
tively interferes with insulin action in the endothelium. Thus, a greater
bioavailability of Ang (1–7), opposing the negative effects of Ang II,
could have a positive impact on insulin sensitivity and haemodynamic
properties of vasculature in course of many cardiovascular diseases.
On the other hand, Ang (1–7) has been shown to be also effectiveness-
enhancing in cellular systems beyond the endothelium, such as vascular
smooth muscle cells and macrophages, all involved in the pathogenetic
mechanisms of plaque formation. Obviously, further studies would be
necessary to better understand the Ang (1–7) signalling in the anti-
atherosclerotic properties of the vessels and its possible role in the
future therapeutic targets.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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