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Abstract: The activity of serine proteases is influenced by their substrate specificity as 

well as by the physicochemical conditions. Here, we present the characterization of key 

biochemical features of the two SPATE members EspPα and EspI from Shiga-toxin 

producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC). Both proteases 

show high activity at conditions mimicking the human blood stream. Optimal activities 

were observed at slightly alkaline pH and low millimolar concentrations of the divalent 

cations Ca
2+

 and Mg
2+

 at physiological temperatures indicating a function in the human 

host. Furthermore, we provide the first cleavage profile for EspI demonstrating pronounced 

specificity of this protease. 
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1. Introduction 

The serine protease autotransporters of Enterobacteriaceae (SPATE) are a family of virulence 

factors, which are transported via the type V or classical autotransporter pathway. SPATEs harbor a 

serine protease motif inside their passenger domain and it is believed that SPATE proteins mediate 

their virulence—at least partially—via proteolytic cleavage of host proteins. The plasmid-encoded 

extracellular serine protease EspP belongs to the SPATE family and is present in the supernatant of 

Shiga-toxin producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) [1,2]. Five 

subtypes of EspP have been described (EspPα-EspPε) [3,4] from which EspPα is clearly associated 
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with highly pathogenic EHEC serotypes and with isolates from patients with severe disease [3,5]. 

EspPα has been shown to cleave porcine pepsin A, coagulation factor V, apolipoprotein A-I, the 

complement factors C3 and C5, and EHEC-hemolysin [1,6–8]. E. coli secreted protease, island-encoded 

(EspI) is a further member of the SPATE family and is found, like EspP, in Shiga-toxin producing  

E. coli [6]. Notably, this SPATE is associated with less pathogenic STEC [6,9–11]. It has been shown 

that EspI, like EspPα, cleaves porcine pepsin A and apolipoprotein A-I [6]. The physiological function 

of EspI remains to be elucidated. 

EspI has not been characterized systematically on functional level and studies concerning 

functionality of EspPα have focused mainly on potential implications of this virulence factor in terms 

of pathogenicity of EHEC infection [1–3,7,8,12–14]. The activity of serine proteases is influenced 

besides the inherent substrate specificity by physicochemical aspects, such as temperature, pH, and 

composition of the solvent [15]. Studies addressing these biochemical aspects of EspPα and EspI are 

still lacking. Therefore, we present here the determination of temperature and pH-optima and the 

influence of divalent ions such as Mg
2+

 or Ca
2+

 on proteolytic activity, which allows to estimate to a 

certain extend for which environmental conditions the respective enzymes might be optimized. 

Furthermore, we present a cleavage profile of EspI using short chromogenic peptides as substrates to 

elucidate specificity of this protease. 

2. Results and Discussion 

2.1. Purification of EspPα and EspI 

EspPα and EspI were purified from culture supernatants using ammonium sulfate precipitation  

and liquid chromatography. Purity was verified via SDS-PAGE (Figure 1) and the identity of 

autoproteolysis bands was verified by MALDI-TOF-MS (data not shown). As expected, EspPα 

samples showed a pronounced protein band at ~104 kDa representing the intact EspPα. Another band 

at ~80 kDa was identified as an autoproteolysis product of EspPα. The protein pattern of the EspI 

sample showed a protein band at ~110 kDa (intact EspI), as well as two autoproteolysis products of 

EspI at ~60 and 50 kDa, respectively. Autoproteolysis products of both proteases are still active even 

after long term incubation (data not shown). 

2.2. Temperature Optimum of EspPα and EspI 

The influence of the incubation temperature on the activity of EspPα and EspI was investigated using 

the chromogenic oligopeptide substrate succinic acid-alanine-alanine-proline-leucine-(para-nitroaniline) 

(Suc-Ala-Ala-Pro-Leu-pNA) in a temperature profile ranging from 20 °C to 55 °C for EspPα and  

10 °C to 60 °C for EspI, respectively. For EspPα, maximum relative activity was observed at ~40 °C 

(Topt) and 50% activity values at ~26 °C and ~45 °C, respectively (Figure 2a). Activity decreased 

rapidly when temperature exceeded Topt and complete loss of activity was observed at 50 °C (Figure 2a). 

In order to investigate if rapid loss of activity at increased temperatures is due to irreversible heat 

denaturation or reversible misfolding, EspPα was pre-incubated for 30 min at temperatures ranging 

from 50 °C to 70 °C followed by determination of residual activity at 37 °C (Figure 2b). No loss of 

activity was observed after pre-incubation at 50 °C, indicating that decreasing activity of EspPα in the 
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temperature range from 40 to 50 °C is due to reversible structural alterations of EspPα. This assumption 

was further supported by the observation that also prolonged pre-incubation at 50 °C up to 240 min 

only slightly affected the residual activity of EspPα (data not shown). Increasing heat denaturation 

occurred at temperatures exceeding 50 °C with complete loss of activity after 30 min of pre-incubation 

at 60 °C or higher temperatures (Figure 2b). 

Figure 1. Purification of EspPα and EspI (left) SDS-PAGE of purified EspPα. *, EspPα 

autoproteolysis product; (right) SDS-PAGE of purified EspI. *, EspI autoproteolysis 

product. M = Molecular weight marker. Purity (including autoproteolysis products) of both 

samples was >95% as determined by densitometrical analysis of SDS-PAGE gels. 

 

Figure 2. Temperature optimum and heat denaturation of EspPα (a) Relative activity of 

EspPα at varying incubation temperatures. Relative activity is normalized to Topt at ~40 °C, 

n = 8; (b) Effect of 30 min pre-incubation at elevated temperatures on the activity of EspPα 

at 37 °C. Pre-incubation temperatures are given in the x-axis and the relative activity was 

subsequently determined at 37 °C. The negative control was incubated for 30 min at 20 °C. 

Relative activity is normalized to the negative control, n = 8. 
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The temperature dependence of EspI-activity is similar to EspPα. Maximum relative activity of 

EspI was observed at ~38 °C (Topt) and 50% values at ~20 °C and ~45 °C, respectively (Figure 2a). 

EspI activity increased linearly from 10 °C to Topt. and further temperature increase resulted in rapid 

reduction of EspI activity with complete loss of activity at ~50 °C (Figure 3a). In contrast to EspPα, 

pre-incubation at 50 °C lead to significant loss of activity (residual activity < 40%) indicating EspI is 

more prone to heat denaturation than EspPα. Pre-incubation at 55 °C and 60 °C leads to almost 

complete loss of activity (Figure 3b). 

Figure 3. Temperature optimum and heat denaturation of EspI (a) Relative activity of EspI 

at varying incubation temperatures. Relative activity is normalized to Topt at ~38 °C, n = 3; 

(b) Effect of 120 min pre-incubation at elevated temperatures on the activity of EspI at  

37 °C. Pre-incubation temperatures are given in the x-axis and the relative activity was 

subsequently determined at 37 °C. The negative control was incubated for 120 min at 20 °C. 

Relative activity is normalized to the negative control, n = 3. 

 

2.3. pH Optimum of EspPα and EspI 

Determination of pH dependence of EspPα activity revealed a pronounced optimum at pH values of 

~7.5 and relative activity of 50% at pH 6.6 and 8.4 (Figure 4). Buffer conditions with pH values below 

6.0 or above 9.0 resulted in nearly complete loss of proteolytic activity of EspPα, indicating that this 

protease is highly optimized for environmental conditions in a slightly alkaline milieu between pH 7 and 8. 

Figure 4. Determination of the pH optimum of EspPα. Activity of EspPα was determined 

in the pH range from 5.5 to 9.1. The proteolytic activity is expressed relative to pHopt  

at ~7.4, n = 5. 
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EspI activity shows a pronounced maximum at pH ~7.5 and relative activity of 50% at pH 6.8 and 8.7. 

Decreasing pH values lead to rapid loss of activity while more alkaline conditions led to only slow 

reduction of activity (Figure 5). 

Figure 5. Determination of the pH optimum of EspI. Activity of EspI was determined in 

the pH range from 5.9 to 9.4. The proteolytic activity is expressed relative to pHopt at ~7.5. 

Note that EspI activity in TRIS buffer is higher than in tetraborate buffer. n = 4. 

 

2.4. Effect of Buffer Composition 

The addition of divalent cations significantly affected proteolytic activity of EspPα. Supplementation 

with up to 8 mM CaCl2 resulted in nearly fourfold increased activity of EspPα in a dose-dependent 

manner when compared to the respective buffer lacking divalent cations. Further increase of the Ca
2+

 

concentration resulted in plateau formation of EspPα activity, suggesting saturation with Ca
2+

 (Figure 6). 

The addition of MgCl2 led to similar effects though the activity plateau was reached at higher 

concentrations (Figure 6). Supplementation with NaCl resulted in moderate increase of activity in a 

linear correlation (Figure 6) and plateau formation at concentrations between 150 and 200 mM  

(data not shown). 

Figure 6. Influence of buffer composition on the activity of EspPα. Relative activity is 

normalized to the maximal activity observed for 82.5 mM Mg
2+

. n = 8. 
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Influence of cations on EspI activity is less pronounced compared to EspPα. Activity of EspI is 

independent of Na
+
 (Figure 7a) while the addition of Ca

2+
 and Mg

2+
 resulted in a slight increase in 

activity. More specific, EspI activity is increased ~1.4-fold by addition of ~10 mM of the divalent 

cations (Figure 7b). Addition of higher concentrations of Ca
2+

 or Mg
2+

 did not further increase activity 

(Figure 7a). 

Figure 7. Influence of buffer composition on the activity of EspI. (a) Relative activity is 

normalized to the maximal activity observed for 186 mM Mg
2+

, n = 4; (b) Detailed view of 

cation concentrations in the range from 0 to 9.6 (Na
+
) or 9.3 mM (Ca

2+
, Mg

2+
). 

 

 

2.5. Cleavage Profile of EspI 

Dutta et al. (2002) performed a substrate screening with chromogenic peptides for different SPATE 

members including EspPα [12]. Highest activity of EspPα was observed in this study for Succinic 

acid-alanine-proline-leucine-(para-nitroaniline) (Suc-Ala-Pro-Leu-pNA) and was confirmed by our 

group [2,3,12]. However, we did not observe cleavage of H-Arg-Arg-pNA or Bz-Arg-pNA as 
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described in the initial study (data not shown). To elucidate substrate specificity of EspI, we incubated 

different chromogenic peptide substrates with EspI and changed substrate recognition sites according 

to the nomenclature of Schechter and Berger [16] (Figure 8). Like EspPα, EspI efficiently cleaved  

Suc-Ala-Ala-Pro-Leu-pNA. Modification of substrate sites P1–P4 resulted in significant reduction of 

relative activity. Hydrophobic amino acids other than leucine at position P1 prevented cleavage nearly 

completely. Also, exchange of alanine-alanine (P3–P4) to histidine (P3) significantly reduced cleavage 

of peptide substrates, indicating that EspI exhibits high substrate specificity and an elastase-like 

substrate profile. High substrate specificity has also been reported for other SPATE members [12,17], 

and is confirmed for EspI, which belongs to the elastase-like branch of SPATE proteases. 

Figure 8. Cleavage profile of EspI. Chromogenic substrates were incubated with  

EspI. Activity is normalized to the maximal activity observed after incubation of  

Suc-Ala-Ala-Pro-Leu-pNA, n = 3. 

 

3. Experimental Section 

3.1. Purification of EspPα and EspI 

EspPα was purified from clone HB101 (WB4-5k) containing espP from E. coli O157:H7 strain 

EDL933 [1]. The inactive EspPα mutant S263A served as a negative control [2] and EspI was purified 

in the same way from clone DH5α/pZH4 containing espI from E. coli O91:H
−
 strain 4797/97 [3,6]. 

Strains were grown overnight in 1 L of LB broth at 37 °C with vigorous shaking. The cultures were 

centrifuged (6000× g, 30 min, 4 °C), supernatants were passed through 0.2 µm Supor machV bottle-top 

filters (Nalgene, Rochester, NY, USA), and the supernatant was concentrated 20-fold using Vivaflow 

200 PES membrane with 50 kDa molecular weight cut off (Vivascience, Hannover, Germany) and 

Masterflex easy-load peristaltic pump (Cole Parmer, Vernon Hills, Chicago, IL, USA). Proteins were 

precipitated (3 h, 4 °C) by adding ammonium sulfate (Merck, Darmstadt, Germany) to 55% saturation. 

The precipitate was collected by centrifugation (6000× g, 30 min, 4 °C) and the pellet was  

dissolved. For purification of EspPα, the precipitate was dissolved in 10 mM HEPES  

(N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer containing 150 mM NaCl (pH 7.4). 
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EspPα was purified via liquid chromatography (äkta prime FPLC, GE Healthcare, Uppsala, Sweden) 

using HiTrap Benzamidine FF columns (GE Healthcare, München, Germany) according to the 

manufacturer’s instructions. For purification of EspI, the precipitate was dissolved in 20 mM Tris 

(tris(hydroxymethyl)aminomethane) buffer containing 50 mM NaCl (pH 6.5). EspI was purified via 

liquid chromatography using HiPrep 16/10 DEAE FF columns (GE Healthcare, München, Germany) 

and HiTrap Benzamidine FF columns according to the manufacturer’s instructions. Fractions 

containing EspPα or EspI were collected and concentrated with 10 kDa VivaSpin spin-down filter 

(Sartorius Stedim Biotech, Göttingen, Germany). 

To verify purification of EspPα and EspI, proteases were separated via SDS-PAGE [18,19]  

and stained with Coomassie blue. Purity was determined (semiquantitatively) by densitometric 

analysis of Coomassie-stained SDS-PAGE gels using the Chemidoc XRS imager and the  

Quantity One Software package (both Biorad, Munich, Germany) Proteolytic activity was  

assessed via incubation of the proteases with chromogenic oligopeptide substrates. 2 µg of  

EspPα were incubated in a total volume of 100 µL HEPES buffer containing 150 mM NaCl and  

2 mM succinic acid-alanine-alanine-proline-leucine-(para-nitroaniline) (Suc-Ala-Ala-Pro-Leu-pNA) 

(Bachem, Weil am Rhein, Germany) (pH 7.4) for 15 h at 37 °C. EspI cleaves the chromogenic 

oligopeptide substrate considerably faster. Therefore, smaller amounts of EspI were used. Since EspPα 

was incubated in the buffer used for its purification, the same strategy was applied for EspI. 0.2 µg of 

EspI were incubated in a total volume of 100 µL PBS (phosphate buffered saline, 7.0 mM Na2HPO4, 

3.0 mM KH2PO4) buffer containing 100 mM NaCl and 4.5 mM KCl) and 2 mM Ala-Ala-Pro-Leu-pNA 

(pH 7.4) for 15 h at 37 °C. The inactive EspPα mutant S263A served as a negative control and was 

incubated in the same way as EspPα. Activity was analyzed by the photometrical determination of 

para-nitroaniline release from the chromogenic substrate in a 96-well format using the Dynex Opsis 

plate reader (Dynex Opsys MR, Berlin, Germany). 

3.2. Temperature Optimum of EspPα and EspI 

Samples of 2 µg of EspPα were incubated in a total volume of 100 µL HEPES buffer containing 

150 mM NaCl and 2 mM of the chromogenic oligopeptide substrate Suc-Ala-Ala-Pro-Leu-pNA  

(pH 7.4) for 12.5 h at temperatures ranging from 16.0 to 54.0 °C. Samples of 0.2 µg of EspI were 

incubated in a total volume of 100 µL PBS buffer containing 100 mM NaCl and 4.5 mM KCl) and  

2 mM Ala-Ala-Pro-Leu-pNA (pH 7.4) for 15 h at temperatures ranging from 10.0 to 60.0 °C.  

To ensure optimal temperature control, the incubation was performed in parallel in a gradient 

thermocycler (Biometra Gradient Cycler, Göttingen, Germany) at the respective temperatures.  

The negative control was stored at −20 °C during incubation. Relative activity of EspPα or EspI was 

analyzed subsequently as the amount of cleaved chromogenic substrate by photometrical determination 

of released para-nitroaniline at 405 nm in a plate reader using 96-well plates. 

3.3. pH Optimum of EspPα and EspI 

For the determination of pH optimum, 4 µg of EspPα were incubated for 15 h at 37 °C in either  

166 mM potassium-phthalate buffer (pH 5.4 to 6.4) or in 166 mM Tris buffer (pH 6.0 to 9.1) with 2 mM 

of the chromogenic substrate Ala-Ala-Pro-Leu-pNA in a total volume of 200 µL. 0.2 µg of EspI were 
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incubated for 15 h at 37 °C in a total volume of 100 µL with 2 mM Suc-Ala-Ala-Pro-Leu-pNA in 

either 150 mM Tris buffer (pH 5.9 to 8.9) or in 25 mM tetraborate buffer (pH 8.5 to 9.4) because this 

protease showed activity in a more alkaline environment than EspPα. The pH of the individual buffer 

stock solutions was adjusted with 2 M HCl or 1 M NaOH, respectively, and re-examined after  

addition of EspPα or EspI and the chromogenic substrate. The relative activity was analyzed by the 

photometrical determination of para-nitroaniline release from the chromogenic substrate in a 96-well 

format using the Dynex Opsis plate reader. 

3.4. Effect of Buffer Composition 

For incubation of EspPα, stock solutions each containing 100 mM CaCl2, MgCl2 or NaCl in 25 mM 

HEPES, pH 7.4 were diluted with 25 mM HEPES to obtain concentrations of the respective cations 

ranging from 0 to 82.5 mM. As the HEPES was used as Na-salt, the lowest concentration of Na
+
 was 

25 mM in all experiments. In the case of EspI, stock solutions containing 200 mM CaCl2, MgCl2 or 

NaCl in 100 mM Tris, pH 7.4 were diluted with 100 mM Tris leading to concentrations of the 

respective cations ranging from 0 to 186 mM. As the purified EspI was present in PBS, the lowest 

concentration of Na
+
 was 0.3 mM in each experiment. These conditions allowed us to investigate a 

possible effect of even small amounts of Na
+
 on EspI. 2 µg of EspPα or 0.2 µg of EspI were incubated 

for 15 h at 37 °C with 2 mM of the chromogenic substrate Suc-Ala-Ala-Pro-Leu-pNA in the respective 

buffer solutions and activity was assessed by photometrical determination of released para-nitroaniline 

at 405 nm in a Dynex Opsys plate reader. 

3.5. Cleavage Profile of EspI 

To determine a cleavage profile for EspI, the chromogenic peptides valine-alanine-(para-nitroaniline) 

(H-Val-Ala-pNA), succinic acid-histidine-proline-leucine-(para-nitroaniline) (Suc-His-Pro-Leu-pNA), 

succinic acid-alanine-alanine-valine-(para-nitroaniline) (Suc-Ala-Ala-Val-pNA), succinic acid-alanine-

alanine-proline-phenylalanine-(para-nitroaniline) (Suc-Ala-Ala-Pro-Phe-pNA), acetyl-tyrosine-valine-

alanine-aspartic acid-(para-nitroaniline) (Ac-Tyr-Val-Ala-Asp-pNA), succinic acid-alanine-alanine-

proline-leucine-(para-nitroaniline) (Suc-Ala-Ala-Pro-Leu-pNA), benzoyl-arginine-(para-nitroaniline) 

(Bz-Arg-pNA), and methionine-(para-nitroaniline) (H-Met-pNA) (all Bachem, Weil am Rhein, 

Germany) were dissolved in dimethylsulfoxide (DMSO). 0.2 µg EspI were incubated for 15 h at 37 °C 

with 2 mM of chromogenic peptide in 100 µL PBS (pH 7.4) containing 5% DMSO. Activity was 

assessed by photometrical determination of released para-nitroaniline at 405 nm in a BMG LABTECH 

FLUOstar Optima plate reader. 

4. Conclusions 

The analysis of various optima of EspPα regarding temperature, pH, and composition of the solvent 

suggests that this protease is seemingly well optimized for the conditions at the site of action. EspPα is 

expressed by EHEC during infection as indicated by the presence of anti-EspPα antibodies in the sera 

of patients suffering from EHEC [1]. Presumed that EspPα is expressed to act in the human host, the 

observed temperature optimum is with ~40 °C very close to the situation in the native environment. 
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This observation is however no matter of course for proteases. As with enzymes in general, the activity 

of proteases at elevated temperatures is limited mainly by the structural stability of the protein. Rising 

temperatures lead to increased substrate turnover rates and thus increased enzymatic activity. As a rule, 

an increase in temperature of 10 °C leads to an approximately twofold elevated enzymatic activity [15]. 

This principle holds true as long as the native fold of the protease is sustained at the given temperature. 

As a consequence, proteases with more rigid structures are known, which display temperature optima 

far beyond their native environmental conditions [20–22]. Based on the data presented in this study, 

EspPα seems to be ―as temperature-stable as necessary‖ but ―as flexible as possible‖. This assumption 

is supported by recent hypotheses concerning the autotransport mechanism of SPATE proteins [23]. 

During secretion EspPα retains a loosely folded state which is maintained by interaction with several 

chaperones [24–27]. After translocation through the bacterial outer membrane folding of the 

proteolytic domain of EspPα is initiated [24]. In addition, Jong et al. (2007) have shown that the 

related SPATE protein Hbp needs a certain degree of flexibility for the efficient translocation through 

the bacterial cell envelope [28]. Moreover, results of the structure-function analysis of EspPα are in 

accordance with these findings [2]. It is therefore likely that EspPα is optimized for proteolytic activity 

at physiological temperatures in the human host but has to retain in addition maximal structural 

flexibility to fulfill autotransport. 

Optimal proteolytic activity of EspPα was observed at slightly alkaline conditions and Ca
2+

 or Mg
2+

 

concentrations of approximately 8 mmol/L, suggesting that these conditions mimic best the natural 

environment of EspPα. Notably, the pH within the human bloodstream is constant between 7.35–7.45 

and the concentrations of Ca
2+

 and Mg
2+

 are ~2.5 and ~1 mmol/L and approximately 140 mmol/L  

Na
+
 [29]. Investigation of the activity of EspPα suggests that Ca

2+
-binding sites within the molecule 

might contribute to the stability of EspPα. It has been shown for the protease family of subtilases that 

binding of calcium ions is essential for correct folding and stability [30]. The SPATE protein Hbp/Tsh 

also exhibits a Ca
2+

-binding domain [31]. Ca
2+

 does not affect the proteolytic activity which lead to the 

suggestion that it is important for the stability of this protease [31]. Notably, the investigation of 

potential calcium-binding sites within the crystal structure of EspPα (pdb: 3SZE) [32] using the 

WebFEATURE program [33] indicated that Ca
2+

 binding might occur at the interfacing α-helical 

region connecting the proteolytic domain1 and the β-helical backbone as well as in loop 165 (data not 

shown). Mutagenesis experiments within these regions of EspPα have shown that alterations lead to 

the loss of proteolytic activity and diminished autotransport, respectively [1,2]. The diminished 

proteolytic activity of the EspP subtypes β and δ underlies, at least in parts, the modification of the  

α-helical interface [3]. It is therefore tempting to speculate, that the specific alterations in the 

proteolytic inactive subtypes β and δ might also affect calcium-binding and thus leads to reduced 

structural stabilization and consequently to diminished proteolytic activity. 

EspI shows, in general, similar biochemical characteristics compared to EspPα. With a temperature 

optimum of ~38 °C, EspI might also be optimized to act in the human host during STEC infection. 

Like EspPα, it rapidly loses activity at higher temperatures, demonstrating that this SPATE protease 

also shows certain flexibility in folding and limited temperature-stability, which might be a necessary 

feature for autotransport. In direct comparison to EspPα, EspI possibly needs a slightly higher degree 

of flexibility as demonstrated by the fact that irreversible heat denaturation occurs at lower 

temperatures. Presuming that the underlying secretion mechanism of EspI is identical as for EspPα [23], 
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EspI requires a flexible structure during transport across the bacterial outer membrane. Outside of the 

bacterial outer membrane the flexible passenger domain of EspI might begin to fold, like EspPα, 

providing a part of the energy necessary for secretion. The EspI precursor, as well as the passenger 

domain, are slightly larger than the equivalent regions in EspPα and, therefore, might need more 

temperature sensitive flexible regions to facilitate autotransport. With a pH optimum at slightly 

alkaline conditions and increased activity at low millimolar concentrations of Ca
2+

 and Mg
2+

, EspI 

might, like EspPα, be suited to act in the human blood stream. It has however to be noted that the 

molecular basis of differences in biochemical characteristics between EspPα and EspI still remain 

elusive as no structure is available for EspI. 

Concerning substrate specificity, it is in general believed that differences in specificity amongst 

SPATE proteins translate into different biological functions including pathogenicity. EspI cleaved  

Suc-Ala-Ala-Pro-Leu-pNA with high specificity. Exchange of amino acids at position P1 as well as at 

position P3/P4 strongly reduced cleavage. This high degree of specificity might be associated with 

specific physiological functions of this protease, which need to be elucidated in future studies. 
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