# AGRICULTURAL AND FOOD CHEMISTRY

#### Article

# Salt Taste Enhancing L-Arginyl-Dipeptides from Casein and Lysozyme Released by Peptidases of Basidiomycota

Lisa Harth, Ulrike Krah, Diana Linke, Andreas Dunkel, Thomas Hofmann, and Ralf G. Berger J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.6b02716 • Publication Date (Web): 10 Aug 2016 Downloaded from http://pubs.acs.org on August 16, 2016

### **Just Accepted**

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.



Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

| 1<br>2  | Salt Taste Enhancing L-Arginyl Dipeptides from Casein and Lysozyme Released by Peptidases of Basidiomycota                                                                 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4  | Lisa Harth <sup>1</sup> ; Ulrike Krah <sup>2</sup> ; Diana Linke <sup>*1</sup> ; Andreas Dunkel <sup>2</sup> ; Thomas Hofmann <sup>2</sup> ; Ralf G. Berger <sup>1</sup> . |
| 5<br>6  | <sup>1</sup> Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167<br>Hannover, Germany                                                     |
| 7<br>8  | <sup>2</sup> Lehrstuhl für Lebensmittelchemie und molekulare Sensorik, Technische Universität<br>München, Lise-Meitner-Straße 34, 85354 Freising                           |
| 9<br>10 | *Author to whom correspondence should be addressed: Diana Linke, Tel.: +49 511 4581;<br>Fax: +49 511 4547; E-mail address: Diana.Linke@lci.uni-hannover.de                 |
| 11      |                                                                                                                                                                            |
| 12      |                                                                                                                                                                            |
| 13      |                                                                                                                                                                            |
| 14      |                                                                                                                                                                            |
| 15      |                                                                                                                                                                            |
| 16      |                                                                                                                                                                            |
| 17      |                                                                                                                                                                            |
| 18      |                                                                                                                                                                            |
| 19      |                                                                                                                                                                            |
| 20      |                                                                                                                                                                            |
| 21      |                                                                                                                                                                            |
| 22      |                                                                                                                                                                            |
| 23      |                                                                                                                                                                            |
| 24      |                                                                                                                                                                            |
| 25      |                                                                                                                                                                            |

## 26 Abstract

| 27 | Some L-Arginyl dipeptides were recently identified as salt taste enhancers, thus opening the     |
|----|--------------------------------------------------------------------------------------------------|
| 28 | possibility to reduce the dietary sodium uptake without compromising on palatability. A          |
| 29 | screening of 15 basidiomycete fungi resulted in the identification of five species secreting a   |
| 30 | high peptidolytic activity (>3 kAU/mL; azocasein assay). PFP-LC-MS/MS and HILIC-                 |
| 31 | MS/MS confirmed that L-arginyl dipeptides were liberated, when casein or lysozyme served         |
| 32 | as substrates. Much higher yields of dipeptides (42-75 $\mu$ mol/g substrate) were released from |
| 33 | lysozyme than from casein. The lysozyme hydrolysate generated by the complex set of              |
| 34 | peptidases of Trametes versicolor showed the highest L-arginyl dipeptide yields and a            |
| 35 | significant salt taste enhancing effect in a model cheese matrix and in a curd cheese. With a    |
| 36 | broad spectrum of novel specific and non-specific peptidases active in the slightly acidic pH    |
| 37 | range, T. versicolor might be a suitable enzyme source for low-salt dairy products.              |
| 38 |                                                                                                  |
| 39 | Keywords basidiomycota; casein; lysozyme hydrolysis; salt taste enhancers; L-arginyl             |
| 40 | dipeptides.                                                                                      |
| 41 |                                                                                                  |
| 42 |                                                                                                  |
| 43 |                                                                                                  |
| 44 |                                                                                                  |
| 45 |                                                                                                  |
| 46 |                                                                                                  |
| 47 |                                                                                                  |
| 48 |                                                                                                  |
| 49 |                                                                                                  |

#### 50 Introduction

51 Protein hydrolysates and purified functional peptides are of increasing interest to the food 52 industry. The enzymatic hydrolysis of abundant milk protein fractions and the characteristics of the peptides obtained were subject of numerous studies.<sup>1-3</sup> These focused on techno-53 54 functionalities, such as solubility, emulsifying or foaming properties, and on bioactivities, 55 such as antimicrobial, antiviral, antioxidant, antihypertensive, antithrombotic and taste activities.<sup>2-7</sup> Protein hydrolysis during the fermentation of meat, fish, milk and others is used 56 57 since centuries to generate attractive savory aromas in food and to concertedly produce seasonings, such as soy or fish sauces.<sup>8,9</sup> While L-glutamate was recognized as the key umami 58 molecule and taste enhancer almost a century ago,<sup>5</sup> a series of kokumi taste enhancing  $\gamma$ -59 glutamyl dipeptides<sup>10</sup> and salt enhancing L-arginyl dipeptides<sup>6</sup> have just recently been 60 61 reported, thus opening a new way for highly palatable, but sodium reduced food products. 62 The limitation of sodium intake has become a worldwide public health care issue, as evidence 63 from epidemiological, intervention, migration, animal and meta-analytical studies indicated a 64 correlation of high sodium intake with hypertension, cardiovascular diseases, stroke and dietassociated diseases for a group of genetically pre-disposed persons.<sup>11-15</sup> Currently, the typical 65 66 daily sodium intake is more than twice as high as recommended by the World Health Organization (less than 2 grams of sodium or 5 grams of NaCl per day $^{16}$ ). 67 68 Salt taste enhancing peptides would offer an option to reduce the sodium chloride content of 69 savory foods without impairing taste quality and consumer acceptance of the products. 70 Known salt substitutes, such as alkali or earth alkali salts (e. g. KCl, CaCl<sub>2</sub>, MgCl<sub>2</sub>) and salt 71 taste enhancers such as L-lysine hydrochloride, L-arginine, L-ornithyl- $\beta$ -alanyl hydrochloride, 72 L-ornithyl-tauryl hydrochloride, trehalose, N-geranyl cyclopropyl-carboximide, are all either associated with off-flavors or lack effectiveness for food applications.<sup>17-21</sup> In contrast, the salt 73 74 taste enhancing L-arginvl dipeptides RA, AR, RG, RS, RV, VR and RM did not show any off-

75 flavor in aqueous solution.<sup>6</sup> While organic peptide synthesis requires tedious protecting group 76 chemistry, the controlled enzymatic release of such L-arginyl dipeptides from food proteins 77 appears to be a food-grade route to salt taste enhancing peptide mixtures. The objectives of 78 this study were to characterize extracellular mixtures of endo- and exopeptidases in the 79 culture medium of basidiomycetes, to determine their potential in generating L-arginyl 80 dipeptides (RDP) from casein and lysozyme, and to evaluate the hydrolysates' salt taste 81 enhancing activity in model applications. 82 **Materials and Methods** 83 84 Chemicals 85 All chemicals and solvents were obtained in the required purity from Sigma-Aldrich 86 (Taufkirchen, Germany), Carl Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany) and 87 VWR International GmbH (Darmstadt, Germany). The substrate lysozyme (type c) from 88 chicken egg white was from Fluka (Seelze, Germany), and case in (a mixture of  $\alpha$ -,  $\beta$ - and  $\kappa$ -89 casein) was from Carl Roth. Gluten was from Nestlé Product Technology Centre 90 (Singen/Hohentwiel, Germany). Soy protein was from LSP Sporternährung (Bonn, Germany), 91 and pea and rice proteins from Bioticana (Rendswühren, Germany). LC-MS/MS reference 92 compounds were: RA, RR, RD, ER, RE, RQ, GR, RG, RH, HR, IR, RI, LR, KR, RK, RM, 93 MR, FR, PR, SR, RS (Bachem AG, Bubendorf, Switzerland); RN, DR, RC, TR, WR, YR, 94 RY, VR, RV (EZBiolab Inc, Carmel, USA); L-isoleucine, L-leucine, L-phenylalanine, L-95 proline, L-tyrosine (Sigma-Aldrich); L-histidine (Riedel-de Haen, Seelze, Germany); L-96 tryptophan, L-valine (Merck, Darmstadt, Germany). Stable isotope-labeled amino acids were 97 from Cambridge Isotope Laboratories (Andover, MA, USA). Water used for chromatography 98 was prepared with a Milli-Q Gradient A 10 system (Millipore, Schwalbach, Germany). For 99 sensory analysis, L- alanine, monosodium L-aspartate monohydrate, monosodium L-glutamate

| 100 | monohydrate, L-isoleucine, L-leucine, L-methionine, L-phenylalanine, L-tyrosine (Sigma              |
|-----|-----------------------------------------------------------------------------------------------------|
| 101 | Aldrich); L-lysine monohydrochloride, L-tryptophan, L-valine (Merck) were used.                     |
| 102 |                                                                                                     |
| 103 | Strains                                                                                             |
| 104 | 15 basidiomycetous strains were used in this study: Agaricus bisporus (DSMZ, No. 3054,              |
| 105 | Abi), Fistulina hepatica (DSMZ, No. 4987, Fhe), Fomitopsis pinicola (DSMZ, No. 4957,                |
| 106 | Fpi), Gloeophyllum odoratum (CBS, No. 444.61, God), Grifola frondosa (CBS, No. 480.63,              |
| 107 | Gfr), Hirneola auricula-judae (DSMZ, No. 11326, Haj), Lepista nuda (DSMZ, No. 3347,                 |
| 108 | Lnu), Meripilus giganteus (DSMZ, No. 8254, Mgi), Phanerochaete chrysosporium (DSMZ,                 |
| 109 | No. 1547, Pch), Pleurotus eryngii (CBS, No. 613.91, Per), Schizophyllum commune (DSMZ,              |
| 110 | No. 1024, Sco), Serpula lacrymans (CBS, No. 751.79, Sla), Trametes versicolor (DSMZ, No             |
| 111 | 11269, Tve), Tremella mesenterica (DSMZ, No. 1557, Tme) and Ustilago maydis (DSMZ,                  |
| 112 | No. 17144, Uma) (Centraalbureau voor Schimmelcultures, CBS, Utrecht, Netherlands and                |
| 113 | Deutsche Sammlung für Mikroorganismen und Zellkulturen, DSMZ, Braunschweig,                         |
| 114 | Germany).                                                                                           |
| 115 |                                                                                                     |
| 116 | Cultivation of Basidiomycetes                                                                       |
| 117 | The strains were maintained on standard nutrient liquid (SNL) agar. SNL agar was prepared           |
| 118 | on the basis of the Sprecher <sup>22</sup> medium: D-(+)-glucose-monohydrate 30.0 g/L, L-asparagine |
|     |                                                                                                     |

- 119 monohydrate 4.5 g/L, yeast extract 3.0 g/L, KH<sub>2</sub>PO<sub>4</sub> 1.5 g/L, MgSO<sub>4</sub> 0.5 g/L, 15.0 g/L agar
- 120 agar, 1.0 mL/L trace element solution (FeCl<sub>3</sub>·6 H<sub>2</sub>O 0.08 g/L, ZnSO<sub>4</sub>·7 H<sub>2</sub>O 0.09 g/L,
- 121 MnSO<sub>4</sub>·H<sub>2</sub>O 0.03 g/L, CuSO<sub>4</sub>·5 H<sub>2</sub>O 0.005 g/L, EDTA 0.4 g/L); adjusted to pH 6 with 1 M
- 122 NaOH before sterilization. Submerged pre-cultures were inoculated with 1 cm<sup>2</sup> agar plugs
- 123 with mycelium in 100 mL SNL medium (same medium without agar agar) and homogenized
- 124 using an Ultra-Turrax (Miccra Art, Müllheim, Germany). Pre-cultures were cultivated for 5-
- 125 10 days. Subsequently, mycelium of 25 mL of culture liquid was separated by centrifugation

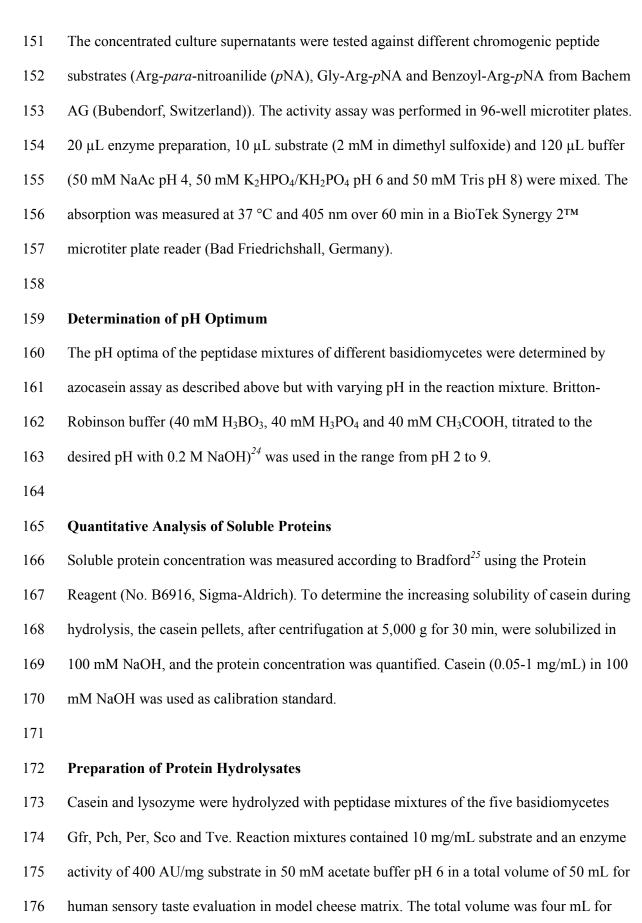
No.

| 126 | (10 min at 4,800 x g), washed twice with sterile $H_2O$ and transferred into 250 mL minimal                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 127 | medium (D-(+)-glucose-monohydrate 10.0 g/L, yeast extract 1.0 g/L, KH <sub>2</sub> PO <sub>4</sub> 1.5 g/L,                                                 |
| 128 | MgSO <sub>4</sub> 0.5 g/L, trace element solution (see SNL); adjusted to pH 6 with 1 M NaOH before                                                          |
| 129 | sterilization). Finally, the cultures were supplemented with 40 g/L dry sterilized substrates                                                               |
| 130 | (casein, gelatin, gluten, egg white powder, pea, rice or soy proteins; each > 80 % protein).                                                                |
| 131 | Submerged cultures were kept at 24 °C in a rotary shaker (Infors, Bottmingen, Switzerland) at                                                               |
| 132 | 150 rpm for up to 16 days. One mL samples were taken every other day, and peptidase                                                                         |
| 133 | activity of the culture supernatant was determined using the azocasein assay. On the day of                                                                 |
| 134 | maximum peptidolytic activity, the cultures were harvested by centrifugation (9,000 x g at 4                                                                |
| 135 | °C for 30 min). The supernatants were filtrated, concentrated about 6-fold (10 kDa molecular                                                                |
| 136 | mass cut off, Sartocon Slice PESU Cassette, Sartorius, Göttingen, Germany) and stored at -20                                                                |
| 137 | °C.                                                                                                                                                         |
| 138 |                                                                                                                                                             |
| 139 | Measurement of Peptidase Activity                                                                                                                           |
| 140 | The azocasein assay of Iversen and Jørgensen was slightly modified. $^{23}$ 100 $\mu L$ substrate (5 %                                                      |
| 141 | azocasein in H <sub>2</sub> O), 375 $\mu L$ buffer (0.1 M K <sub>2</sub> HPO <sub>4</sub> /KH <sub>2</sub> PO <sub>4</sub> pH 6) and 25 $\mu L$ sample were |
| 142 | mixed and incubated for 20 min at 43 °C in a rotary shaker (Thermomixer, Eppendorf,                                                                         |

143 Hamburg, Germany) at 700 rpm. The reaction was stopped with 1 mL trichloroacetic acid

144 (3 % TCA). For the blanks, the enzyme sample was added after TCA. Samples and blanks

145 were subsequently stored on ice for 10 min and centrifuged at 15,000 g and 20 °C for 15 min.


146 Absorbance of the supernatants was measured at 366 nm using a spectrophotometer (UV-

147 1650 PC, Shimadzu, Duisburg, Germany). One arbitrary Unit (AU) was defined as the

148 enzyme activity that increased the absorbance by 0.01 per min at 43 °C.

149

#### 150 Hydrolysis of Synthetic Peptide Substrates



| 177 | measurements of casein solubility, and one mL for SDS-PAGE analysis and quantification of                                                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 178 | L-amino acids and L-arginyl dipeptides. Reaction mixtures for human sensory taste evaluation                                                                             |
| 179 | in curd cheese were performed with 20 mg/mL lysozyme, 400 AU/mg lysozyme, pH 5 in a                                                                                      |
| 180 | total volume of 25 mL. Blanks were performed with heat-inactivated enzymes and without                                                                                   |
| 181 | enzyme addition. After zero, one, five and 24 hours of incubation at 37 °C on a rotary shaker                                                                            |
| 182 | (Thermomixer, Eppendorf, Hamburg, Germany) at 600 rpm, reactions were terminated by                                                                                      |
| 183 | heating (99 °C for 30 min for four, 25 and 50 mL samples or ten min for volumes of one mL).                                                                              |
| 184 | Samples were stored at -20 °C. Samples for quantification of L-arginyl dipeptides or human                                                                               |
| 185 | sensory taste evaluation in cheese matrix were freeze-dried and stored at -20 °C. Samples for                                                                            |
| 186 | human sensory evaluation in curd cheese were used directly after inactivation.                                                                                           |
| 187 |                                                                                                                                                                          |
| 188 | Determination of the Degree of Protein Hydrolysis                                                                                                                        |
| 189 | Released L-amino acids [mM/g substrate] in hydrolysates were quantified using o-                                                                                         |
| 190 | phthalaldehyde (oPA) pre-column derivatization, RP-HPLC and fluorescence detection                                                                                       |
| 191 | (Shimadzu RF-10AxL, Duisburg, Germany; $\lambda_{\text{excitation}} = 330 \text{ nm}$ , $\lambda_{\text{emission}} = 460 \text{ nm}$ ). For <i>o</i> PA                  |
| 192 | derivatization, 100 µL 0.5 M borate buffer pH 10, 20 µL oPA-reagent (100 mg oPA, 1 mL                                                                                    |
| 193 | borate buffer, 9 mL MeOH, and 100 $\mu L$ 3-mercaptopropionic acid), and 10 $\mu L$ diluted sample                                                                       |
| 194 | were mixed. After 2 min, the reaction was stopped with 50 $\mu L$ of 1 M CH_3COOH. HPLC was                                                                              |
| 195 | performed on a Nucleodur C18 Pyramid column (250 mm x 4 mm, 5 µm, Macherey-Nagel,                                                                                        |
| 196 | Düren, Germany). A flow rate of 1 mL/min and the following gradient of MeOH (eluent A)                                                                                   |
| 197 | and 0.1 M sodium acetate containing 0.044 % trimethylamine (adjusted to pH 6.5 with                                                                                      |
| 198 | CH <sub>3</sub> COOH; eluent B) was used: 0-5 min 10 % A, 5-8 min 15 % A, 8-40 min 60 % A, 40-                                                                           |
| 199 |                                                                                                                                                                          |
| 177 | 50 min 100 % A, 50-55 min 10 % A and 55-60 min 10 % A. Measurements were made in                                                                                         |
| 200 | 50 min 100 % A, 50-55 min 10 % A and 55-60 min 10 % A. Measurements were made in duplicates, and concentrations of L-amino acids were calculated using five or six point |
|     |                                                                                                                                                                          |

| 203 | The degree of hydrolysis (DH in %) was calculated after Nielsen: DH [%] = $h/h_{tot} \times 100$ %    |
|-----|-------------------------------------------------------------------------------------------------------|
| 204 | where h is the concentration of L-amino acids per gram substrate after enzymatic hydrolysis           |
| 205 | and $h_{tot}$ is the concentration of L-amino acids per gram substrate after total hydrolysis with    |
| 206 | 6 M HCl at 100 °C for 24 hours. <sup>26</sup>                                                         |
| 207 |                                                                                                       |
| 208 | Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)                                  |
| 209 | SDS-PAGE analyses were performed according to Laemmli, $^{27}$ using 12 and 18 % (w/v)                |
| 210 | polyacrylamide gels, respectively. Samples were diluted 1:2 with denaturing loading buffer            |
| 211 | (0.15 M Tris/HCl pH 6.8, 0.2 M DTT, 4 % SDS, 20 % glycerol, 0.2 % bromophenol blue) and               |
| 212 | incubated at 95 °C for 10 min. After electrophoresis at 15 mA per gel, gels were stained with         |
| 213 | Instant Blue (Expedeon, Cambridgeshire, Great Britain). For molecular mass determination,             |
| 214 | marker proteins from 10 to 250 kDa (Precision Plus Protein Standard <sup>TM</sup> , Bio-Rad, München, |
| 215 | Germany) or from 1 to 26.6 kDa (Ultra-low Range Marker, Sigma-Aldrich) were used.                     |
| 216 |                                                                                                       |
| 217 | Zymography                                                                                            |
|     |                                                                                                       |

- 218 For semi-native PAGE, 12 % (w/v) polyacrylamide gels containing 1 mg/mL casein or
- 219 lysozyme as substrates were prepared. Peptidase samples were mixed 1:2 with native loading
- 220 buffer (like denaturing loading buffer but without DTT) and applied on pre-cooled
- 221 zymography gels. Electrophoresis was carried out at 4 °C with pre-cooled running buffer at
- 222 10 mA per gel. After separation, gels were washed with 2.5 % Triton X-100 and twice with
- H<sub>2</sub>O for 10 min each. After incubation at 20 °C for 16 hours in 100 mL 100 mM phosphate
- buffer pH 6, zymography gels were then stained with Coomassie Brilliant Blue G-250.
- 225 Endopeptidases appeared as white bands on blue background.
- 226

#### 227 Quantitation of Bitter-Tasting L-Amino Acids in Protein Hydrolysates

| 228 | Bitter-tasting amino acids (P, H, L, I, W, Y, F, and V) were quantified by stable isotope                   |
|-----|-------------------------------------------------------------------------------------------------------------|
| 229 | dilution analysis by means of HPLC-MS/MS following standard protocols. <sup>28</sup> The measuring          |
| 230 | system was based on an API 3200 TripleQuad (AB Sciex, Darmstadt, Germany), which was                        |
| 231 | coupled to an HPLC-system of Dionex HPLC UltiMate® 3000 (Dionex, Idstein, Germany).                         |
| 232 | The mass spectrometer with unit mass resolution was operated in the $\mathrm{ESI}^+$ mode with nitrogen     |
| 233 | (1.7 bar) as curtain gas, zero grade air (3.1 bar) as nebulizer gas. The scan mode was multiple             |
| 234 | reaction monitoring (MRM). The measuring system was equipped with a 150 mm $\times$ 2.0 mm                  |
| 235 | i.d., 5 µm, TSKgel Amide-80 column (Tosoh Bioscience, Stuttgart, Germany) using the                         |
| 236 | chromatographic conditions and $\text{ESI}^+$ instrument settings published recently. <sup>28</sup> For LC- |
| 237 | MS/MS analysis of L-amino acids and L-arginyl dipeptides, lyophilisized hydrolysates were                   |
| 238 | diluted by adding 990 $\mu$ L water and 10 $\mu$ L isotope-labeled amino acids (1 mg/L, each) as            |
| 239 | internal standard solution.                                                                                 |
| 240 |                                                                                                             |
| 241 | Quantitation of L-Arginyl Dipeptides in Protein Hydrolysates                                                |
| 242 | For the analysis of L-arginyl dipeptides, a Dionex HPLC UltiMate® 3000 HPLC system                          |
| 243 | (Dionex, Idstein, Germany), operated with two chromatographic set-ups (system I and II),                    |
| 244 | was hyphentated with an API 4000 QTRAP mass spectrometer (AB Sciex, Darmstadt,                              |
| 245 | Germany) as reported recently. <sup>6</sup> The dipeptides RA, AR, RG, GR, RS, SR, RD, DR, RQ, QR,          |
| 246 | RK, KR, RE, ER, RF, FR, RT, TR, RN, NR, RW, and WR were analyzed using the                                  |
| 247 | chromatographic system I consisting of a 150 mm x 2 mm, 3 $\mu$ m TSKgel Amide-80 column                    |
| 248 | (Tosoh Bioscience) operated with a flow rate of 0.2 mL/min and the following gradient of                    |
| 249 | eluent A (acetonitrile/ 5 mM ammonium acetate buffer, pH 3.5; 95/5, v/v) and eluent B                       |
| 250 | (5 mM ammonium acetate buffer, pH 3.5): 0-6 min 5 % B, 25 min 30 % B, 40 min 100 % B,                       |
| 251 | 45-60 min 5 % B. Analysis of the dipeptides RP, PR, RV, VR, RM, MR, RR, IR, RI, RL, LR,                     |
| 252 | RY, and YR was done using chromatographic system II consisting of a 150 mm x 2 mm,                          |
| 253 | 3 $\mu m$ Luna PFP column (Phenomenex, Aschaffenburg, Germany) operated with a flow rate of 10              |

| 254 | 0.2 mL/min and the following gradient of eluent A (acetonitrile with 1 % formic acid) and              |
|-----|--------------------------------------------------------------------------------------------------------|
| 255 | eluent B (1 % formic acid): 0-6 min 100 % B, 10 min 90 % B, 14-19 min 0 % B, 21-30 min                 |
| 256 | 100 % B. In both systems, a sample aliquot of 2 $\mu$ L was injected. The mass spectrometer            |
| 257 | with unit mass resolution was operated in the $\mathrm{ESI}^+$ mode with nitrogen (1.7 bar) as curtain |
| 258 | gas, zero grade air (3.1 bar) as nebulizer gas. The scan mode was multiple reaction monitoring         |
| 259 | (MRM). For MS conditions see supporting info of Schindler et al. (2011). <sup>6</sup> Data2 processing |
| 260 | operations were carried out by Analyst 1.5 (AB Sciex, Darmstadt, Germany). Quantitative                |
| 261 | analysis was performed by means of external standard calibration with 1:10, 1:20, 1:50,                |
| 262 | 1:100, 1:200, 1:500, and 1:1000 dilutions of an aqueous stock solution containing RDP                  |
| 263 | (50 mg/L).                                                                                             |
| 264 |                                                                                                        |
| 265 | Preparation of a Cheese Taste Matrix                                                                   |
| 266 | To evaluate the salt taste enhancing activity of hydrolysates, a cheese taste matrix was               |
| 267 | prepared by mixing all key taste compounds recently identified in a Gouda cheese, each in its          |
| 268 | natural concentration. <sup>29</sup> To achieve this, L-lysine (742.8 mg/L), monosodium L-glutamate    |
| 269 | monohydrate (572.0 mg/L), L-leucine (505.6 mg/L), L-phenylalanine (255.2 mg/L), L-tyrosine             |
| 270 | (180.8 mg/L), L-isoleucine (166.4 mg/L), L-valine (132.9 mg/L), L-methionine (81.1 mg/L),              |
| 271 | L-alanine (77.3 mg/L), monosodium L-aspartate monohydrate (62.4 mg/L), L-tryptophan                    |
| 272 | (38.3 mg/L), sodium chloride (2460.0 mg/L), potassium dihydrogen phosphate (569.3 mg/L),               |
| 273 | lactate (1480.5 mg/L), calcium acetate (372.0 mg/L) and magnesium chloride (582.5 mg/L)                |
| 274 | were dissolved in water (Evian, Danone, Wiesbaden, Germany), followed by an adjustment of              |
| 275 |                                                                                                        |
|     | the pH value to 5.7 by titrating with calcium hydroxide.                                               |
| 276 | the pH value to 5.7 by titrating with calcium hydroxide.                                               |

- 278 Sixteen healthy panelists with no history of known taste or smell disorders had given
- 279 informed consent to participate in the sensory tests and were trained in the sensory evaluation

| 280 | of aqueous solutions of standard taste compounds: $^{28, 30, 31}$ sucralose (1 - 5030 µmol/L) for |
|-----|---------------------------------------------------------------------------------------------------|
| 281 | sweet taste, monosodium L-glutamate (1 - 60 mmol/L) for umami taste, caffeine                     |
| 282 | (0.1 - 10 mmol/L) for bitter taste, citric acid (1 - 80 mmol/L) for sour taste, and NaCl (4 -     |
| 283 | 110 mmol/L) for salty taste. Having participated in sensory experiments on a regular basis for    |
| 284 | at least one year, the panelists were accustomed to the techniques applied.                       |
| 285 | First, a selection of lysozyme hydrolysates (Gfr, Pch, Per, Sco, and Tve, 24 h incubation;        |
| 286 | 0.4 % each) was dissolved in the cheese matrix and then sensorially evaluated by means of a       |
| 287 | profile sensory test. The intensities of the basic taste modalities salty, sweet, umami, bitter,  |
| 288 | and sour were assessed on a scale of 0 (not perceivable) to 5 (strongly perceivable).             |
| 289 | To test the ability of the sensory panel to differentiate different sodium levels in the cheese   |
| 290 | taste matrix, each panelist was asked to arrange three-digit random-coded test samples,           |
| 291 | containing sodium in concentrations varying between 40 and 60 mM sodium (in 10.0, 5.0,            |
| 292 | 2.5 mM steps), according to the perceived salt intensity in the cheese matrix. The so-called      |
| 293 | Friedman value determined for each panelist and calculated as ranking sum of each sample.         |
| 294 | For the determination of the salt taste enhancing (STE) activity of protein hydrolysates, a two   |
| 295 | alternative forced choice (2-AFC) test was performed. Two solutions of the cheese taste           |
| 296 | matrix solution (50 mM sodium), one without and one with protein hydrolysate (0.5 %, w/v)         |
| 297 | added, were randomly presented to the assessors who were asked to identify the sample             |
| 298 | showing the higher salt taste intensity.                                                          |
| 299 | In addition, a 2-AFC test was performed using low-fat (0.3 %) curd cheese as matrix. Two          |
| 300 | samples of the curd cheese, one with water (1 mL/g) and one with hydrolysate (1 mL/g              |
| 301 | ( $\triangleq 0.5$ %, w/v)) added, each with 50 mM NaCl, were randomly presented to the assessors |
| 302 | who were asked to identify the sample showing the higher salt taste intensity.                    |
| 303 |                                                                                                   |

**ACS Paragon Plus Environment** 

#### 304 Identification of Peptidases

- 305 For the identification of peptidases from Tve the concentrated culture supernatant was
- 306 partially purified using ion chromatography. Five mL of the sample were diluted with 40 mL
- 307 running buffer (20 mM Tris pH 7.5), membrane filtered (0.45 μm), and applied to a pre-
- 308 equilibrated HiTrap Q XL (1 mL, GE Healthcare, München, Germany), washed with 50 mL
- running buffer and eluted with elution buffer (20 mM Tris + 1 M NaCl pH 7.5) in a linear 20
- 310 mL gradient. Fractions of 1 mL were collected at a flow rate of 1 mL/min, fivefold
- 311 concentrated, desalted by ultrafiltration (MWCO 10 kDa), and analyzed by semi-native SDS-
- 312 PAGE and zymography. Peptidase bands were cut out of the SDS-gel and hydrolyzed by
- trypsin according to standard protocols. For peptide mass fingerprinting, the amino acid
- 314 sequences of tryptic peptides of peptidases were deduced by ESI-MS/MS mass spectra using a
- 315 maXis QTOF mass spectrometer (Bruker, Bremen, Germany) and the Mascot search
- algorithm together with the NCBI in-house database. A minimum Mascot score of 100 was
- 317 chosen for reliable identifications as described in detail elsewhere.<sup>32</sup>
- 318

#### 319 **Results and Discussion**

#### 320 Peptidolytic Activity of Basidiomycetes

- 321 15 basidiomycetes were submerged cultivated in minimal medium with gluten as major
- 322 carbon and nitrogen source to stimulate the secretion of peptidases (Table 1). The proline-rich
- 323 gluten was chosen because it proved to be a potent substrate for inducing high peptidolytic
- 324 activities in previous studies.<sup>33, 34</sup> After a cultivation time of 15 days, the fungal strains
- 325 reached different maximal peptidolytic activities from less than 0.2 kAU/mL to 6.3 kAU/mL.
- 326 Maximal activities were reached after 6 to 11 days (Table 1). Highest peptidase activities
- 327 were found in the supernatant of *Phanerochaete chrysosporium* with 6.3 kAU/mL and
- 328 Trametes versicolor with 5.7 kAU/mL, respectively. The five most active basidiomycetes

- 329 (Gfr, Pch, Per, Sco and Tve; activity > 3 kAU/mL) hydrolyzed both, casein and lysozyme, as
- 330 was shown by zymography (Figure 1) and SDS-PAGE (Figure 2). Hence, they were thought
- to be suitable for applications in food, with the aim of generating casein and lysozyme
- 332 hydrolysates with functional peptides, such as L-arginyl dipeptides.
- 333

#### 334 Cultivation with Different Protein Substrates

335 Peptidases cutting next to arginine are of particular interest for the release of STE arginyl-

- 336 peptides. In order to examine inducer properties of the protein substrate, the five most active
- 337 basidiomycetes (Gfr, Pch, Per, Sco and Tve) were cultivated with storage protein mixtures
- from pea, rice, gelatin and soy. These proteins were chosen due to their higher arginine
- 339 contents compared to gluten (see Table 2). However, the secretion pattern of peptidases did
- 340 not change in the zymography (data not shown). None of the basidiomycetes showed
- 341 arginine-specific endo-, dipeptidyl- or exopeptidase activity as determined using the artificial
- 342 substrates Bz-Arg-*p*NA, Gly-Arg-*p*NA and Arg-*p*NA. Although the degradation pattern in the
- 343 zymography did not change, overall activities varied strongly, depending on the protein
- 344 substrate used (Table 3). For Tve the activity was enhanced from 5.8 kAU/mL to 15 kAU/mL
- 345 when pea proteins were used instead of gluten, and by a factor of 78 in comparison to SNL
- 346 medium without protein substrate. Rice proteins were most effectively for Per and Sco, pea
- 347 proteins for Pch and Tve, while gluten was best for inducing peptidolytic activity of Gfr.
- 348 Consequently, no general ranking for effective proteins substrates was obtained from the data.
- 349 Egg white and milk proteins were the intended precursor proteins for the generation of STE
- 350 peptides in dairy products. When Tve, one of the most active candidates, was supplied with
- 351 these substrates, fungal growth was slow, and peptidolytic activity (up to 6 kAU/mL) was
- detected towards the end of the cultivation only (day 16, Table 3).
- 353

#### 354 pH Optima of the Peptidases

| 355 | As a synergistic action of different peptidases favors extensive hydrolysis, <sup>35</sup> it was intended |
|-----|------------------------------------------------------------------------------------------------------------|
| 356 | to use concentrated culture supernatants with their complex sets of (exo- and endo-)peptidases             |
| 357 | to generate the target STE peptides. Gfr, Pch, Per, Sco and Tve, which exhibited highest                   |
| 358 | extracellular peptidase activities (Table 3), were used for detailed studies. Maximal enzyme               |
| 359 | activities of Per were detected at pH 6, while Gfr, Pch, Sco and Tve showed highest activities             |
| 360 | at pH 5 (Figure 3). All of the five peptidase mixtures were active in a broad and slightly acidic          |
| 361 | pH range and should, thus, be applicable in fermented dairy products, too. The complexity of               |
| 362 | the peptidase mixture with up to six clearly visible peptidase bands in the casein zymography              |
| 363 | may have contributed to the broad pH activity range (Figure 1).                                            |
| 364 |                                                                                                            |
| 365 | Enzymatic Degradation of Casein and Lysozyme                                                               |
| 366 | The peptidases of the five selected basidiomycetes hydrolyzed casein and lysozyme, as was                  |
| 367 | demonstrated by the analysis of released amino acids, SDS-PAGE and zymography.                             |
| 368 | Moreover, zymography (Figure 1) indicated that the peptidolytic activity of most                           |
| 369 | basidiomycetes was composed of several visible endopeptidases, at least two (Tve) and up to                |
| 370 | six (Pch) enzymes. The copolymerized substrates casein or lysozyme led to bands with                       |
| 371 | different molecular masses and varying band intensities highlighting the individual substrate              |
| 372 | specificity of the peptidases (Figure 1). In the case of Pch, for example, six bands were visible          |
| 373 | in the casein zymography and only one weak band in the lysozyme zymography. Furthermore,                   |
| 374 | the degree of hydrolysis (DH) was determined after zero, one, five and 24 hours of enzymatic               |
| 375 | hydrolysis of casein (Table 4a) and lysozyme (Table 4b). The DH increased significantly with               |
| 376 | extended incubation times and amounted to 14-29 % after 24 hours depending on enzyme mix                   |
| 377 | and substrate. A high DH analytically represents a high concentration of free L-amino acids                |
| 378 | and is a proof for exopeptidase activity in addition to the endopeptidases detected in the                 |
| 379 | zymography. For both substrates, similar DH were obtained after 24 hours of hydrolysis for                 |
| 380 |                                                                                                            |
| 300 | Gfr (16 %), Sco (21-22 %) and Tve (18 %), respectively. In contrast, Pch and Per hydrolyzed 15             |
|     | ACS Paragon Plus Environment                                                                               |

| 381 | casein more efficiently (29 % and 19 %, respectively) than lysozyme (16 % and 19 %,              |
|-----|--------------------------------------------------------------------------------------------------|
| 382 | respectively). Moreover, both fungi showed significantly more endopeptidase bands when           |
| 383 | using casein instead of lysozyme as copolymerized substrate in the zymography.                   |
| 384 | After 24 hours of hydrolysis, the released L-amino acids accounted for 1.1-2.0 mmol/g casein     |
| 385 | and 1.0-1.8 mmol/g lysozyme. The main L-amino acids of casein hydrolysates generated with        |
| 386 | the peptidases of Gfr, Pch, Per and Sco were L-lysine, L-leucine and L-glutamic acid, each       |
| 387 | with 117-257 $\mu$ mol/g substrate. These L-amino acids represent the three major amino acids of |
| 388 | casein. For lysozyme hydrolysates generated with the peptidases of Gfr, Per, Sco and Tve L-      |
| 389 | arginine, L-lysine, L-leucine and L-alanine were most predominant, with 85-258 $\mu mol/g$       |
| 390 | substrate. Apart from L-lysine, these amino acids again represent the main constituents of the   |
| 391 | substrate. These data suggested that the free amino acids resulted from a non-specific           |
| 392 | hydrolysis. In contrast, casein hydrolysis with Tve liberated L-phenylalanine above the          |
| 393 | expected level, and Pch predominantly released L-glutamic acid from lysozyme indicating the      |
| 394 | presence of peptidases with preferred cleavage specificity.                                      |
| 395 | The composition of the hydrolysates was visualized using SDS-PAGE (shown for Tve in              |
| 396 | Figure 2). Among the five basidiomycetes, there were nearly no differences in protein patterns   |
| 397 | after casein hydrolysis. For all basidiomycetes, the soluble casein bands disappeared            |
| 398 | completely within one hour of hydrolysis, but insoluble casein pellets remained (see section     |
| 399 | below). No new bands were visible above 10 kDa. For lysozyme as the substrate, new bands         |
| 400 | appeared between 3.5 and 14 kDa. There were varying peptide patterns between the various         |
| 401 | basidiomycetes, pointing out the different endo-specificities. After 24 hours, there was still   |
| 402 | intact lysozyme left in the case of Pch, Sco and Tve.                                            |
| 403 |                                                                                                  |

## 404 Increase of Casein Solubility

405 Protein solubility, an important requirement for functional and bioactive properties, was
406 improved by peptidolysis, <sup>36</sup> as was also demonstrated along the way in the present study.

407 Hydrolyses were performed at pH 6, where casein is poorly soluble. The residual insoluble 408 pellet decreased with prolonged incubation time. After 24 hours of hydrolysis 88-97 % of the 409 initial insoluble pellets were hydrolyzed by each basidiomycetous peptidase mixture (Table 410 4), similar to case in hydrolysis with the commercial peptidases papain, pancreactin and trvpsin.<sup>3, 36</sup> Especially for Pch, Per, Sco and Tve the increase in solubility was larger than 50 411 412 % after five hours, whereas Gfr increased solubility slowly. After five hours, still more than 413 90 % of the initial pellet remained insoluble. These findings suggest that the peptidases of Gfr 414 were less suitable for heterogeneous catalysis. 415 416 **Quantitation of L-Arginyl Dipeptides in Protein Hydrolysates** 417 For the quantification of released arginyl dipeptides (RDPs), the hydrolysates of lysozyme 418 (Figure 2a, Table 6a) and casein (Figure 2b, Table 6b) prepared by incubation with Gfr, Pch, 419 Per, Sco and Tve, respectively for 24 h, were analyzed by PFP-LC-MS/MS and HILIC-420 MS/MS, respectively. 14 RDPs, namely RP, RA, AR, RG, RS, RV, VR, RM, RR, RD, MR, RO, RK, and KR, were recently reported to exhibit salt taste enhancement.<sup>6</sup> Accordingly, the 421 422 concentration of STE-active RDPs in the hydrolysates was calculated as the sum of RP/PR, 423 RA/AR, RG/GR, RS/SR, RV/VR, RM/MR, RR, RD/DR, RQ/QR, and RK/KR to approximate 424 the STE-activity of the hydrolysates. 425 In general, RDPs were released during all hydrolyses. The yields of RDPs ranged from 43.2 426 to 74.9 µmol/g for lysozyme (Table 4a), and from 1.3 to 3.6 µmol/g for casein (Table 4b). 427 The substrate lysozyme led to much higher yields of RDP for all tested basidiomycetes, at 428 least partly caused by its higher arginine contents compared to case in (see Table 2). The 429 enzymatically released yields of RDPs were between 5 to 10.2 % (Tve) of the maximal 430 theoretical yield. 431 Among the STE-active RDPs, the highest concentration of  $47.6 \,\mu mol/g$  was observed when

432 lysozyme was hydrolyzed using Pch (Table 4a). Furthermore, the LC-MS/MS analysis of

| 433 | RDPs in lysozyme hydrolysates indicated particularly for Gfr, Pch, Sco, and Tve the presence                   |
|-----|----------------------------------------------------------------------------------------------------------------|
| 434 | of salt taste enhancing dipeptides, such as RG and RS in yields of 10 - 22 $\mu$ mol/g lysozyme                |
| 435 | hydrolysate (Figure 4, Table 6a). Several salt taste inhibiting RDPs were also released from                   |
| 436 | lysozyme, for example RH and HR by Pch, Per, Sco, and Tve, and RW/WR by Gfr, Per, Sco                          |
| 437 | and Tve, respectively. STE-active dipeptides (RP, RV, VR) were released in yields of 0.2 to                    |
| 438 | 0.4 $\mu$ mol/g casein, whereas salt taste inhibiting compounds (RJ, JR) were liberated in amounts             |
| 439 | up to 1.4 $\mu$ mol/g casein. In summary, LC-MS/MS analysis of the RDP release patterns                        |
| 440 | showed a high similarity between the different peptidase sources, particularly when lysozyme                   |
| 441 | was the substrate.                                                                                             |
| 442 |                                                                                                                |
| 443 | Sensory Evaluation of Saltiness Enhancement of Lysozyme Hydrolysates                                           |
| 444 | In order to investigate the sensory impact of the increased STE-active RDPs, lysozyme                          |
| 445 | hydrolysates were evaluated by a trained sensory panel of 12 persons who were able to                          |
| 446 | distinguish between 5 mM sodium in a concentration range of 40 to 60 mM sodium. First, the                     |
| 447 | hydrolysates obtained from lysozyme after enzymatic digestion (24 h) with Gfr, Pch, Per, Sco                   |
| 448 | and Tve were evaluated in a cheese taste matrix which was prepared by mixing all key taste-                    |
| 449 | active amino acids, organic acids and minerals, each in its natural concentration as recently                  |
| 450 | determined in a Gouda cheese, <sup>29</sup> and adapted to 50 mM Na <sup>+</sup> . Only the Tve hydrolysate of |
| 451 | lysozyme revealed a significant salt taste enhancing effect (Table 5). Furthermore,                            |
| 452 | hydrolysates were evaluated in low-fat curd cheese with NaCl adjusted to 50 mM. Both, Tve                      |
| 453 | and Gfr, revealed an impact on the perceived salt taste. The panelists specified hydrolysates                  |
| 454 | from Tve as more effective in salt taste enhancement than Gfr hydrolysates. Considering the                    |
| 455 | higher amounts of STE-active RDPs in the lysozyme hydrolysate treated with Pch (47.6                           |
| 456 | $\mu$ mol/g lysozyme) when compared to Gfr and Tve (~25 $\mu$ mol/g lysozyme), other constituents              |
| 457 | than just the STE-active RDPs seemed to contribute to the salt taste enhancing effects                         |
| 458 | perceived.                                                                                                     |

| 459 | As bitter taste is known to lower perceived saltiness, <sup>6</sup> also the bitter taste intensity of the            |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 460 | hydrolysates was sensorially evaluated, and bitter tasting amino acids (P, H, L, I, W, Y, F, and                      |
| 461 | V) were quantitated (Table 5). <sup>37-39</sup> The profile sensory test revealed high bitter scores for              |
| 462 | three basidiomycetes (Sco, Gfr and Pch), whereas for Per and Tve only slight bitterness was                           |
| 463 | detected. Comparing the results with the sum of bitter amino acids, the bitterness of the                             |
| 464 | lysozyme hydrolysate from Pch with a bitter score of 4.7 is explained by the highest release of                       |
| 465 | bitter amino acids (99.9 $\mu$ mol/g lysozyme). Additional bitter peptides seem to influence the                      |
| 466 | bitter score of lysozyme hydrolysates of Gfr and Sco, considering that Tve released                                   |
| 467 | comparable quantities of bitter amino acids. Next to the salt inhibitory effect of bitter amino                       |
| 468 | acids and peptides, the discrepancy between sensory evaluation and STE-active RDP levels                              |
| 469 | indicated the presence of other, currently unknown STE compounds.                                                     |
| 470 |                                                                                                                       |
| 471 | Identification of Peptidases                                                                                          |
| 472 | Several peptidases of the most promising candidate Tve were identified to determine which                             |
| 473 | peptidases might have been involved in the formation of salt taste enhancing hydrolysates                             |
| 474 | (Table S1). The identified enzymes were aspartic A01 peptidases (AC No. EIW62808,                                     |
| 475 | EIW63301), a peptidyl-Lys M35 (XP_008032702) and a M36 (EIW51569) metallopeptidase,                                   |
| 476 | and serine peptidases of the MEROPS families S28 (EIW65216, EIW61562), S41                                            |
| 477 | (XP_008043737) and S53 (EIW61376, EIW61051, EIW59803). Endopeptidases with a broad                                    |
| 478 | cleavage specificity and a preference for hydrophobic amino acids (A01, S53, M36)                                     |
| 479 | predominated. They lead to a rather non-specific hydrolysis. However, the peptidases S28,                             |
| 480 | S41 and the tripeptidyl-peptidase S53 are of special interest. S28 peptidases are proline-                            |
| 481 | specific enzymes. <sup>40</sup> For prolyl-peptidases, a debittering effect was described. <sup>41</sup> Also in this |
| 482 | work, they may have been responsible for a debittering effect, because Tve hydrolysates were                          |
| 483 | less bitter than most other (Table 5). The S41 peptidase is a C-terminal processing enzyme                            |
| 484 | that recognizes a tripeptide and cleaves at a variable distance. <sup>40</sup> A typical cleavage-site                |
|     | 19                                                                                                                    |

| 485 | contains Arg in P1' and an aliphatic amino acid in P2'. The S41 peptidase could be involved                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 486 | in the formation of arginyl-peptides. To our knowledge, only one other fungal S41 peptidase                                  |
| 487 | has been described in literature. <sup>42</sup> S53 tripeptidyl-peptidases release tripeptides and are                       |
| 488 | involved in the formation of small peptides. <sup>40</sup> To our knowledge, a few of these peptidases                       |
| 489 | were found in fungi, such as <i>Rhizopus</i> <sup>43</sup> and <i>Aspergillus</i> <sup>44</sup> , but not in basidiomycetes. |
| 490 | In conclusion, STE peptides were released from food-grade proteins using specific and non                                    |
| 491 | specific peptidases of basidiomycetes. Novel customized peptidases as presented in this study                                |
| 492 | appear to be necessary to release STE peptides, such as RDP, without risking a concurrent                                    |
| 493 | extensive release of bitter peptides and bitter amino acids.                                                                 |

## 495 Abbreviations

| 496 | Gfr | Grifola frondosa            |
|-----|-----|-----------------------------|
| 497 | Pch | Phanerochaete chrysosporium |
| 498 | Per | Pleurotus eryngii           |
| 499 | Sco | Schizophyllum commune       |
| 500 | Tve | Trametes versicolor         |
| 501 | RDP | L-arginyl dipeptides        |
| 502 | STE | salt taste enhancing        |
| 503 | DH  | degree of hydrolysis        |
| 504 | J   | Isoleucin, Leucin           |
| 505 |     |                             |
|     |     |                             |

# 506 Acknowledgments

507 We thank Ulrich Krings (Food Chemistry, Leibniz Universität Hannover) for analytical

508 support.

## 510 Funding sources

- 511 This project (AIF 16721 N) was supported by the Arbeitsgemeinschaft industrieller
- 512 Forschungsvereinigungen "Otto von Guericke" e. V. (AiF) through FEI (Forschungskreis der
- 513 Ernährungsindustrie e. V., Bonn).

514

515 Notes

516 The authors declare no competing financial interest.

#### 517 **References**

- 518 1. Wang, X.; Zhou, J.; Tong, P. S.; Mao, X. Y., Zinc-binding capacity of yak casein hydrolysate and
- 519 the zinc-releasing characteristics of casein hydrolysate-zinc complexes. J. Dairy Sci. 2011, 94, 2731-
- 520 2740.
- 521 2. Rahulan, R.; Dhar, K. S.; Nampoothiri, K. M.; Pandey, A., Aminopeptidase from *Streptomyces*
- 522 gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties.
- 523 *J. Food Sci.* **2012**, *77*, C791-C797.
- 524 3. Luo, Y.; Pan, K.; Zhong, Q., Physical, chemical and biochemical properties of casein
- 525 hydrolyzed by three proteases: partial characterizations. *Food Chem.* **2014**, *155*, 146-154.
- 526 4. Tomita, M.; Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K., Potent
- 527 antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 1991, 74,
- 528 4137-4142.
- 529 5. Aaslyng, M. D.; Martens, M.; Poll, L.; Nielsen, P. M.; Flyge, H.; Larsen, L. M., Chemical and
- 530 sensory characterization of hydrolyzed vegetable protein, a savory flavoring. J. Agric. Food Chem.
- 531 **1998**, *46*, 481-489.
- 532 6. Schindler, A.; Dunkel, A.; Stahler, F.; Backes, M.; Ley, J.; Meyerhof, W.; Hofmann, T.,
- 533 Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by
- means of a sensomics approach. J. Agric. Food Chem. **2011**, 59, 12578-88.
- 535 7. Udenigwe, C. C.; Aluko, R. E., Food protein-derived bioactive peptides: production,
- 536 processing, and potential health benefits. J. Food Sci. 2012, 77, R11-R24.
- 537 8. Behrens, M.; Meyerhof, W.; Hellfritsch, C.; Hofmann, T., Sweet and umami taste: natural
- 538 products, their chemosensory targets, and beyond. *Angew. Chem. Int. Ed.* **2011**, *50*, 2220-2242.
- 539 9. Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann,
- 540 T., Nature's chemical signatures in human olfaction: a foodborne perspective for future
- 541 biotechnology. *Angew. Chem. Int. Ed.* **2014**, *53*, 7124-7143.

10.

Dunkel, A.; Köster, J.; Hofmann, T., Molecular and sensory characterization of γ-glutamyl

- peptides as key contributors to the kokumi taste of edible beans (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2007, *55*, 6712-6719.
  Poulter, N.; Khaw, K.; Hopwood, B.; Mugambi, M.; Peart, W.; Rose, G.; Sever, P., The Kenyan
  Luo migration study: observations on the initiation of a rise in blood pressure. *Bmj* 1990, *300*, 967-72.
  Denton, D.; Weisinger, R.; Mundy, N. I.; Wickings, E. J.; Dixson, A.; Moisson, P.; Pingard, A.
  - 548 M.; Shade, R.; Carey, D.; Ardaillou, R.; Paillard, F.; Chapman, J.; Thillet, J.; Baptiste Michel, J., The
  - 649 effect of increased salt intake on blood pressure of chimpanzees. *Nat. Med.* **1995**, *1*, 1009-1016.
  - 550 13. Nagata, C.; Takatsuka, N.; Shimizu, N.; Shimizu, H., Sodium Intake and Risk of Death From
  - 551 Stroke in Japanese Men and Women. *Stroke* **2004**, *35*, 1543-1547.
  - 14. He, F.; Li, J.; MacGregor, G., Effect of longer-term modest salt reduction on blood pressure.
  - 553 Cochrane Database Syst Rev 2013, 30.
  - 15. Cook, N. R.; Cutler, J. A.; Obarzanek, E.; Buring, J. E.; Rexrode, K. M.; Kumanyika, S. K.; Appel,
  - 555 L. J.; Whelton, P. K., Long term effects of dietary sodium reduction on cardiovascular disease
  - 556 outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ : British
  - 557 *Medical Journal* **2007**, *334*, 885-885.
  - 558 16. WHO, In *Guideline: sodium intake for adults and children*, World Health Organization (WHO):
    559 Geneva, 2012.
  - 560 17. Tamura, M.; Seki, T.; Kawasaki, Y.; Tada, M.; Kikuchi, E.; Okai, H., An enhancing effect on the
  - 561 saltiness of sodium chloride of added amino acids and their esters. Agric. Biol. Chem. 1989, 53, 1625-
  - 562 1633.
  - 18. Nakamura, K.; Kuramitu, R.; Kataoka, S.; Segawa, D.; Tahara, K.; Tamura, M.; Okai, H.,
  - 564 Convenient synthesis of L-ornithyltaurine·HCl and the effect on saltiness in a food material. J. Agric.
  - 565 *Food Chem.* **1996**, *44*, 2481-2485.
  - 566 19. Uchida, Y.; Iritani, S.; Miyake, T., Method for enhancing the salty-taste and/or delicious-taste
  - 567 of food products. In Google Patents: 2000.

- 568 20. Cruz, A. G.; Faria, J. A. F.; Pollonio, M. A. R.; Bolini, H. M. A.; Celeghini, R. M. S.; Granato, D.;
- 569 Shah, N. P., Cheeses with reduced sodium content: effects on functionality, public health benefits
- 570 and sensory properties. *Trends Food Sci. Technol.* **2011**, *22*, 276-291.
- 571 21. Dewis, M. L.; Phan, T. H.; Ren, Z.; Meng, X.; Cui, M.; Mummalaneni, S.; Rhyu, M. R.;
- 572 DeSimone, J. A.; Lyall, V., N-geranyl cyclopropyl-carboximide modulates salty and umami taste in
- 573 humans and animal models. J. Neurophysiol. 2013, 109, 1078-90.
- 574 22. Sprecher, E., On the taste of mushrooms (in German). *Planta* **1959**, *53*, 565-574.
- 575 23. Iversen, S.; Jørgensen, M., Azocasein assay for alkaline protease in complex fermentation
- 576 broth. *Biotechnol. Tech.* **1995**, *9*, 573-576.
- 577 24. Britton, H. T. S.; Robinson, R. A., CXCVIII.-Universal buffer solutions and the dissociation
- 578 constant of veronal. *Journal of the Chemical Society (Resumed)* **1931**, 1456-1462.
- 579 25. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities
- 580 of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, *72*, 248-254.
- 581 26. Nielsen, P. M.; Petersen, D.; Dambmann, C., Improved method for determining food protein
- 582 degree of hydrolysis. J. Food Sci. 2001, 66, 642-646.
- 583 27. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of
- 584 bacteriophage T4. *Nature* **1970**, *227*, 680-685.
- 585 28. Hillmann, H.; Mattes, J.; Brockhoff, A.; Dunkel, A.; Meyerhof, W.; Hofmann, T., Sensomics
- 586 analysis of taste compounds in balsamic vinegar and discovery of 5-acetoxymethyl-2-furaldehyde as a
- 587 novel sweet taste modulator. J. Agric. Food Chem. 2012, 60, 9974-9990.
- 588 29. Toelstede, S.; Hofmann, T., Quantitative studies and taste re-engineering experiments
- 589 toward the decoding of the nonvolatile sensometabolome of Gouda cheese. J. Agric. Food Chem.
- **2008**, *56*, 5299-5307.
- 591 30. Dawid, C.; Hofmann, T., Identification of sensory-active phytochemicals in asparagus
- 592 (Asparagus officinalis L.). J. Agric. Food Chem. 2012, 60, 11877-11888.

| 593 | 31.           | Pickrahn, S.; Sebald, K.; Hofmann, T., Application of 2D-HPLC/taste dilution analysis on taste    |
|-----|---------------|---------------------------------------------------------------------------------------------------|
| 594 | comp          | ounds in aniseed (Pimpinella anisum L.). J. Agric. Food Chem. 2014, 62, 9239-9245.                |
| 595 | 32.           | Linke, D.; Matthes, R.; Nimtz, M.; Zorn, H.; Bunzel, M.; Berger, R. G., An esterase from the      |
| 596 | basidi        | omycete Pleurotus sapidus hydrolyzes feruloylated saccharides. Appl. Microbiol. Biotechnol.       |
| 597 | 2013,         | <i>97,</i> 7241-51.                                                                               |
| 598 | 33.           | Grimrath, A.; Berends, P.; Rabe, S.; Berger, R. G.; Linke, D., Koji fermentation based on         |
| 599 | extra         | cellular peptidases of Flammulina velutipes. Eur. Food Res. Technol. 2011, 232, 415-424.          |
| 600 | 34.           | H. Abd El-Baky, D. L., O. El-Demerdash, W. A. Metry, R G. Berger, Submerged cultured              |
| 601 | basidi        | omycete fungi secrete peptidases with distinct milk clotting properties. Adv. Food Sci. 2011, 33, |
| 602 | 109 -         | 115                                                                                               |
| 603 | 35.           | Byun, T.; Kofod, L.; Blinkovsky, A., Synergistic action of an X-prolyl dipeptidyl aminopeptidase  |
| 604 | and a         | non-specific aminopeptidase in protein hydrolysis. J. Agric. Food Chem. 2001, 49, 2061-2063.      |
| 605 | 36.           | Kilara, A.; Panyam, D., Peptides From milk proteins and their properties. Crit. Rev. Food Sci.    |
| 606 | Nutr.         | <b>2003</b> , <i>43</i> , 607-633.                                                                |
| 607 | 37.           | Ishibashi, N., Taste of proline-containing peptides (Food & Nutrition). Agric. Biol. Chem. 1988,  |
| 608 | <i>52,</i> 95 | 5.                                                                                                |
| 609 | 38.           | Ney, K. H., Prediction of the bitter taste of peptides from their amino acid composition (in      |
| 610 | Germ          | an). Z Lebensm Unters Forsch <b>1971</b> , 147, 64-68.                                            |
| 611 | 39.           | Ishibashi, N., Role of the hydrophobic amino acid residue in the bitterness of peptides (Food     |
| 612 | & Nut         | rition). <i>Agric. Biol. Chem.</i> <b>1988</b> , 52, 91.                                          |
| 613 | 40.           | Rawlings, N. D.; Waller, M.; Barrett, A. J.; Bateman, A., MEROPS: the database of proteolytic     |
| 614 | enzyn         | nes, their substrates and inhibitors. Nucleic Acids Res. 2014, 42, D503–D509.                     |

- 615 41. Mika, N.; Zorn, H.; Rühl, M., Prolyl-specific peptidases for applications in food protein
- 616 hydrolysis. *Appl. Microbiol. Biotechnol.* **2015**, *99*, 7837-7846.

| 61 | 7 | 42. | Iketani, A.; Nakamura, | M.; Suzuki, Y.; Awa | i, K.; Shioi, Y., A | novel serine | protease with | caspase- |
|----|---|-----|------------------------|---------------------|---------------------|--------------|---------------|----------|
|----|---|-----|------------------------|---------------------|---------------------|--------------|---------------|----------|

- and legumain-like activities from edible basidiomycete *Flammulina velutipes*. *Fungal Biol.* **2013**, *117*,
- 619 173-181.
- 43. Lin, J.-S.; Lee, S.-K.; Chen, Y.; Lin, W.-D.; Kao, C.-H., Purification and characterization of a
- 621 novel extracellular tripeptidyl peptidase from *Rhizopus oligosporus*. J. Agric. Food Chem. **2011**, 59,
- 622 11330-11337.
- 44. Reichard, U.; Lechenne, B.; Asif, A. R.; Streit, F.; Grouzmann, E.; Jousson, O.; Monod, M.,
- 624 Sedolisins, a new class of secreted proteases from *Aspergillus fumigatus* with endoprotease or
- tripeptidyl-peptidase activity at acidic pHs. *Appl. Environ. Microbiol.* **2006**, *72*, 1739-48.
- 626 45. Souci, S. W.; Fachmann, W.; Kraut, H., Food Composition and Nutrition Tables. MedPharm,
- 627 Stuttgart: 2008.

| 629 | Figure captions                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------|
| 630 | Fig. 1: Zymography with extracellular basidiomycetous peptidases. Casein (left) and                     |
| 631 | lysozyme (right) were copolymerized. Grifola frondosa (Gfr), Phanerochaete chrysosporium                |
| 632 | (Pch), Pleurotus eryngii (Per), Schizophyllum commune (Sco) and Trametes versicolor (Tve).              |
| 633 | M – Marker (Precision plus Protein <sup>TM</sup> Standard). All fungi showed a variety of extracellular |
| 634 | endopeptidases, visible as white bands.                                                                 |
| 635 |                                                                                                         |
| 636 | Fig. 2a and b: SDS-PAGE analysis of the casein and lysozyme hydrolysates produced by                    |
| 637 | peptidases of <i>Trametes versicolor</i> . The substrates casein (a, 12 % acrylamide) and lysozyme      |
| 638 | (b, 18 % acrylamide) were hydrolyzed for 0-24 h. M – Marker (Precision Plus Protein <sup>TM</sup>       |
| 639 | Standard, Ultra-low Range Marker).                                                                      |
| 640 |                                                                                                         |
| 641 | Fig. 3a and b: Effect of pH on the activity of basidiomycete peptidases. pH optima of                   |
| 642 | basidiomycete peptidases were determined in Britton-Robinson buffer (pH 2 to 9; azocasein               |
| 643 | assay). Relative enzyme activity [%] was defined as the percentage of activity detected with            |
| 644 | respect to the maximum observed peptidase activity for each basidiomycete in the                        |
| 645 | experiment. Values are the average of triplicate experiments, with standard deviation shown             |
| 646 | as error bars. Grifola frondosa (Gfr), Phanerochaete chrysosporium (Pch), Pleurotus eryngii             |
| 647 | (Per), Schizophyllum commune (Sco) and Trametes versicolor (Tve).                                       |
| 648 |                                                                                                         |
| 649 | Fig. 4: Concentrations of L-arginyl dipeptides in hydrolysates of lysozyme and casein                   |
| 650 | from selected peptidases. Grifola frondosa (Gfr), Phanerochaete chrysosporium (Pch),                    |
| 651 | Pleurotus eryngii (Per), Schizophyllum commune (Sco) and Trametes versicolor (Tve).                     |
| 652 |                                                                                                         |
| 653 |                                                                                                         |

## 654 Tables

Table 1: Extracellular peptidase activity of basidiomycetes submerged cultured with gluten.

| Basidiomycete               | abbreviation | peptidase activity<br>[AU/mL] |           | maximal<br>activity [d] |
|-----------------------------|--------------|-------------------------------|-----------|-------------------------|
| Phanerochaete chrysosporium | Pch          | 6294                          | ± 127     | 7                       |
| Trametes versicolor         | Tve          | 5766                          | $\pm 76$  | 9                       |
| Schizophyllum commune       | Sco          | 4014                          | ± 59      | 8                       |
| Grifola frondosa            | Gfr          | 3654                          | $\pm 110$ | 7                       |
| Pleurotus eryngii           | Per          | 3276                          | ±119      | 7                       |
| Tremella mesenterica        | Tme          | 1860                          | $\pm 170$ | 10                      |
| Ustilago maydis             | Uma          | 1716                          | ± 51      | 8                       |
| Fomitopsis pinicola         | Fpi          | 1578                          | $\pm 8$   | 10                      |
| Meripilus giganteus         | Mgi          | 1482                          | $\pm 178$ | 10                      |
| Hirneola auricula-judae     | Haj          | 966                           | $\pm 76$  | 11                      |
| Lepista nuda                | Lnu          | 792                           | ± 51      | 6                       |
| Serpula lacrymans           | Sla          | 216                           | $\pm 17$  | 8                       |
| Fistulina hepatica          | Fhe          | < 200                         | -         | -                       |
| Gloeophyllum odoratum       | God          | < 200                         | -         | -                       |
| Agaricus bisporus           | Abi          | < 200                         | -         | -                       |

656 \* Data expressed as mean  $\pm$  standard deviation of two replicates.

657

Table 2: L-Arginine in different protein substrates. Proteins extracted from wheat, soybean,

659 rice and pea were used.

| arginine [%] <sup>*</sup> |
|---------------------------|
| 3,7                       |
| 4,5                       |
| 6,8                       |
| 7,1                       |
| 7,6                       |
| 12,1                      |
| 14,3                      |
|                           |

<sup>\*</sup> Arginine share of total amino acids [mg/g].<sup>45</sup>

| basidiomycete     | abbreviation | substrate    | maximal peptidase<br>activity [AU/mL] |            | maximal<br>activity [d] |
|-------------------|--------------|--------------|---------------------------------------|------------|-------------------------|
| Grifola frondosa  | Gfr          | gluten       | 3654                                  | ± 110      | 7                       |
|                   |              | pea protein  | < 200                                 | -          | -                       |
|                   |              | rice protein | 1776                                  | ± 153      | 8                       |
|                   |              | soy protein  | 420                                   | $\pm 136$  | 8                       |
| Phanerochaete     | Pch          | gluten       | 6294                                  | ± 127      | 7                       |
| chrysosporium     |              | pea protein  | 13200                                 | $\pm 339$  | 8                       |
|                   |              | rice protein | 3462                                  | $\pm 25$   | 8                       |
|                   |              | soy protein  | 6648                                  | $\pm 356$  | 8                       |
| Pleurotus eryngii | Per          | gluten       | 3276                                  | $\pm 119$  | 7                       |
|                   |              | pea protein  | 4368                                  | $\pm 288$  | 6                       |
|                   |              | rice protein | 5118                                  | $\pm 552$  | 6                       |
|                   |              | soy protein  | 1830                                  | $\pm 212$  | 8                       |
|                   |              | gelatin      | < 200                                 | -          | -                       |
| Schizophyllum     | Sco          | gluten       | 4014                                  | ± 59       | 8                       |
| commune           |              | pea protein  | 7908                                  | $\pm 238$  | 8                       |
|                   |              | rice protein | 9132                                  | $\pm 221$  | 8                       |
|                   |              | soy protein  | 1986                                  | $\pm 178$  | 8                       |
| Trametes          | Tve          | gluten       | 5766                                  | ± 76       | 9                       |
| versicolor        |              | pea protein  | 15060                                 | $\pm 1137$ | 8                       |
|                   |              | rice protein | 2184                                  | $\pm 356$  | 4                       |
|                   |              | soy protein  | 8898                                  | ± 144      | 8                       |
|                   |              | SNL          | < 200                                 | -          | -                       |
|                   |              | MM           | < 200                                 | -          | -                       |
|                   |              | casein       | 6282                                  | $\pm 76$   | 16                      |
|                   |              | egg white    | 3510                                  | $\pm 110$  | 16                      |

Table 3: Extracellular peptidase activity of basidiomycetes submerged cultured with differentsubstrates. (SNL and MM without protein substrates.)

\* Data expressed as mean  $\pm$  standard deviation of two replicates.

665

|     | t [h] | DH   | [%]       | c <sup>1</sup> (RDP) | c <sup>1</sup> (STE RDP) |
|-----|-------|------|-----------|----------------------|--------------------------|
|     |       |      |           | [µmol/g substrate]   | [µmol/g substrate]       |
| Gfr | 0     | 0    | -         | 0.6                  | 0.3                      |
|     | 1     | 2.3  | $\pm 0.2$ |                      |                          |
|     | 5     | 5.6  | $\pm 0.5$ |                      |                          |
|     | 24    | 15.8 | $\pm 2.1$ | 43.2                 | 25.0                     |
| Pch | 0     | 0    | -         | 0.3                  | 0.1                      |
|     | 1     | 0.6  | $\pm 0.2$ |                      |                          |
|     | 5     | 2.3  | $\pm 0.1$ |                      |                          |
|     | 24    | 16.0 | $\pm 0.2$ | 73.2                 | 47.6                     |
| Per | 0     | 0    | -         | 0.7                  | 0.4                      |
|     | 1     | 0.7  | $\pm 0.1$ |                      |                          |
|     | 5     | 5.8  | $\pm 0.1$ |                      |                          |
|     | 24    | 14.3 | $\pm 0.4$ | 67.2                 | 19.1                     |
| Sco | 0     | 0    | -         | 0.5                  | 0.2                      |
|     | 1     | 1.7  | $\pm 0.2$ |                      |                          |
|     | 5     | 10.9 | $\pm 0.4$ |                      |                          |
|     | 24    | 22.0 | $\pm 0.6$ | 61.1                 | 35.5                     |
| Tve | 0     | 0    | -         | 0.2                  | 0.1                      |
|     | 1     | 0.8  | $\pm 0.2$ |                      |                          |
|     | 5     | 5.7  | $\pm 0.2$ |                      |                          |
|     | 24    | 17.6 | ± 0.1     | 74.9                 | 25.7                     |

667 Table 4a: Release of L-arginyl dipeptides from lysozyme by peptidases of basidiomycetes.

668 \* Abbreviations: DH – degree of hydrolysis, t – incubation time,  $c^{1}$  (RDP) – sum of released

669 L-arginyl dipeptides, c<sup>1</sup> (STE RDP) – sum of released salt taste enhancing L-arginyl

670 dipeptides.

671

|     | t [h] | Ľ    | DH [%]    | insoluble casein<br>pellet [%] | c (RDP)<br>[µmol/g<br>substrate] | c (STE RDP)<br>[μmol/g<br>substrate] |
|-----|-------|------|-----------|--------------------------------|----------------------------------|--------------------------------------|
| Gfr | 0     | 0.0  | -         | $100 \pm 1$                    | 1.0                              | 0.2                                  |
|     | 1     | 1.4  | $\pm 0.2$ | $99 \pm 5$                     |                                  |                                      |
|     | 5     | 7.5  | $\pm 0.7$ | $93 \pm 4$                     |                                  |                                      |
|     | 24    | 15.9 | $\pm 0.4$ | $12 \pm 1$                     | 2.1                              | 0.6                                  |
| Pch | 0     | 0.0  | -         | $100 \pm 5$                    | 0.4                              | 0.1                                  |
|     | 1     | 3.9  | $\pm 0.3$ | $76 \pm 3$                     |                                  |                                      |
|     | 5     | 12.5 | $\pm 0.4$ | $32 \pm 3$                     |                                  |                                      |
|     | 24    | 29.1 | $\pm 0.3$ | $5 \pm 0$                      | 2.4                              | 0.3                                  |
| Per | 0     | 0.0  | -         | $100 \pm 5$                    | 0.3                              | 0.1                                  |
|     | 1     | 1.5  | $\pm 0.0$ | $76 \pm 3$                     |                                  |                                      |
|     | 5     | 4.9  | $\pm 0.4$ | $35 \pm 2$                     |                                  |                                      |
|     | 24    | 18.8 | $\pm 0.9$ | $3 \pm 0$                      | 2.8                              | 0.5                                  |
| Sco | 0     | 0.0  | -         | $100 \pm 6$                    | 0.6                              | 0.1                                  |
|     | 1     | 2.9  | $\pm 0.6$ | $98 \pm 4$                     |                                  |                                      |
|     | 5     | 9.9  | $\pm 0.5$ | $33 \pm 8$                     |                                  |                                      |
|     | 24    | 21.0 | $\pm 0.3$ | $6 \pm 1$                      | 1.3                              | 0.4                                  |
| Tve | 0     | 0.0  | -         | $100 \pm 1$                    | 0.1                              | n. n.                                |
|     | 1     | 2.0  | $\pm 0.2$ | $58 \pm 0$                     |                                  |                                      |
|     | 5     | 6.0  | $\pm 0.1$ | $47 \pm 2$                     |                                  |                                      |
|     | 24    | 17.9 | $\pm 0.7$ | $10 \pm 1$                     | 3.6                              | 0.8                                  |

| 672 | Table Aby Delegas of Larging   | dinantidas from | angain by nantidaga   | of basidiamyzatas    |
|-----|--------------------------------|-----------------|-----------------------|----------------------|
| 0/3 | Table 4b: Release of L-arginyl | apepudes nom    | caselli by peptidases | of Dasicionitycetes. |

\* Abbreviations: DH – degree of hydrolysis, t – incubation time, c (RDP) – sum of released L arginyl dipeptides, c (STE RDP) – sum of released salt taste enhancing L-arginyl dipeptides.

676 n. n.: concentration  $< 0.001 \ \mu mol/g \ substrate.$ 

677

Table 5: Salt taste enhancing L-arginyl dipeptides (STE RDP) and bitter amino acids in

679 enzymatic lysozyme hydrolysates in comparison to their sensory characteristics.

|     | $c^{1}$ (STE RDP)  | c <sup>1</sup> (bitter amino acids) | bitter | sweet | STE effect |
|-----|--------------------|-------------------------------------|--------|-------|------------|
|     | [µmol/g substrate] | [µmol/g substrate]                  | score  | score | (a-level)  |
| Per | 19.1               | 19.8                                | 0.7    | 3.3   | > 0.05     |
| Tve | 25.7               | 59.8                                | 1.8    | 1.8   | 0.01       |
| Sco | 35.5               | 55.8                                | 3.5    | 2.5   | > 0.05     |
| Gfr | 25.0               | 45.4                                | 4.0    | 1.3   | > 0.05     |
| Pch | 47.6               | 99.9                                | 4.7    | 0.5   | > 0.05     |

 $c^{1}$  (STE RDP) – sum of released salt taste enhancing L-arginyl dipeptides, <sup>1</sup>less blank value,

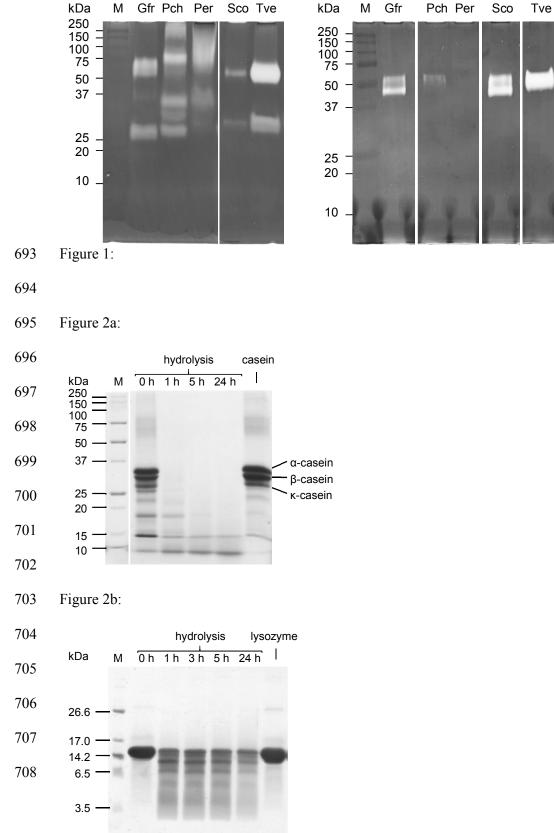
681  $\alpha$  – level of significance.

682

| 684 Table 6a: Concentration of L-arginyl dipeptides in hydrolysates of lysozym |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

685 [μmol/g substrate].

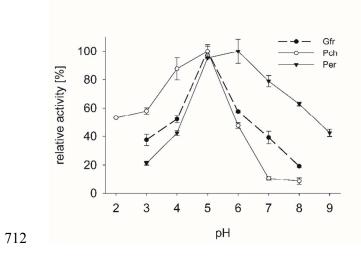
|          | Gfr     | Pch     | Per     | Sco     | Tve     |
|----------|---------|---------|---------|---------|---------|
|          |         |         |         |         |         |
| RP/PR    | 0.367   | 0.171   | 0.199   | 0.344   | 0.097   |
| RA/AR    | 0.309   | 0.372   | 0.468   | 0.515   | 0.364   |
| RG/GR    | 12.317  | 22.573  | 7.330   | 16.497  | 12.734  |
| RS/SR    | 2.763   | 4.547   | 1.233   | 4.019   | 3.403   |
| RV/VR    | 0.249   | 1.229   | 0.579   | 0.522   | 0.534   |
| RM/MR    | 0.491   | 0.428   | 0.058   | 0.480   | 0.317   |
| RR       | 0.641   | 1.259   | 0.365   | 0.408   | 0.499   |
| RD/DR    | 7.820   | 16.541  | 8.690   | 12.443  | 7.453   |
| RQ/QR    | 0.203   | 0.502   | 0.283   | 0.363   | 0.393   |
| RK/KR    | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
| RL/RI/IR | 7.728   | 2.139   | 2.105   | 5.714   | 7.192   |
| RE/ER    | 0.289   | 0.688   | 0.292   | 0.370   | 0.372   |
| RY/YR    | 1.657   | 2.813   | 0.461   | 2.114   | 0.529   |
| RF/FR    | 0.036   | 0.078   | 0.042   | 0.135   | 0.180   |
| RN/NR    | 2.499   | 0.806   | 0.675   | 2.827   | 1.051   |
| RH/HR    | 2.039   | 16.471  | 35.612  | 9.156   | 30.255  |
| RT/TR    | 0.612   | 0.726   | 0.331   | 0.897   | 0.542   |
| RW/WR    | 2.564   | 1.017   | 7.986   | 3.401   | 8.255   |
| RC/CR    | 0.590   | 0.849   | 0.451   | 0.901   | 0.737   |


|          | Gfr     | Pch     | Per     | Sco     | Tve     |
|----------|---------|---------|---------|---------|---------|
| RP/PR    | 0.232   | 0.221   | 0.321   | 0.048   | 0.394   |
| RA/AR    | 0.003   | 0.002   | 0.001   | 0.002   | 0.007   |
| RG/GR    | 0.012   | 0.009   | 0.006   | 0.011   | 0.004   |
| RS/SR    | 0.100   | 0.056   | 0.023   | 0.086   | 0.031   |
| RV/VR    | 0.190   | 0.024   | 0.174   | 0.165   | 0.416   |
| RM/MR    | < 0.001 | 0.012   | 0.002   | 0.003   | 0.006   |
| RR       | < 0.001 | < 0.001 | < 0.001 | 0.002   | < 0.001 |
| RD/DR    | 0.029   | 0.040   | 0.153   | 0.013   | 0.192   |
| RQ/QR    | 0.051   | 0.035   | 0.100   | 0.032   | 0.122   |
| RK/KR    | < 0.001 | 0.011   | < 0.001 | < 0.001 | 0.004   |
| RL/RI/IR | < 0.001 | 1.422   | 1.300   | 0.085   | 1.379   |
| RE/ER    | 0.316   | 0.072   | 0.082   | 0.188   | 0.616   |
| RY/YR    | < 0.001 | < 0.001 | 0.011   | < 0.001 | < 0.001 |
| RF/FR    | 0.032   | 0.102   | 0.278   | 0.009   | 0.101   |
| RN/NR    | < 0.001 | 0.047   | < 0.001 | < 0.001 | 0.023   |
| RH/HR    | < 0.001 | 0.016   | 0.053   | < 0.001 | 0.168   |
| RT/TR    | 0.175   | 0.028   | 0.020   | 0.115   | 0.023   |
| RW/WR    | 0.001   | < 0.001 | 0.001   | 0.001   | < 0.001 |
| RC/CR    | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |

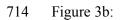
| 687 | Table 6b: 0 | Concentrations of                       | L-arginvl | l dipeptides i | n hvdrolvsates | of casein | [µmol/g substrate]. |
|-----|-------------|-----------------------------------------|-----------|----------------|----------------|-----------|---------------------|
|     |             | • • • • • • • • • • • • • • • • • • • • |           |                |                |           |                     |

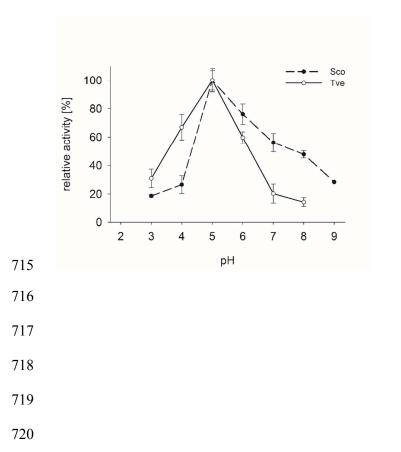
| Peptidase Accession Peptides<br>number |                                                                                                       | Peptides found                                                                                                                                                                                                                                                                                                        | Mascot<br>score | Sequence<br>coverage<br>[%] |
|----------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|
| Aspartatpeptidase A01                  | partatpeptidase A01 EIW62808 SKYTAASSSTSVKK, YTAASSSTSVKK, LASSGSELYLGGTDSK                           |                                                                                                                                                                                                                                                                                                                       |                 | 7                           |
| Aspartatpeptidase A01                  | EIW63301                                                                                              | STTFVQGSR, SGTDTVTVGGVAAK                                                                                                                                                                                                                                                                                             | 109             | 5                           |
| Peptidyl-Lys<br>Metallopeptidase M35   | XP_008032702                                                                                          | ETYVGCSTSQK, SALTTAAPNALTYATNAK,<br>SYLTANTAATTR, AGTLIHESSHFTK                                                                                                                                                                                                                                                       | 621             | 15                          |
| Metallopeptidase M36                   | EIW51569                                                                                              | ASYLVLPITK, YGFTEAAFNFQTNNFGK,<br>MFLWDLTSPQR, SHPYSTSATVNPLR                                                                                                                                                                                                                                                         | 170             | 8                           |
| Serinpeptidase S28                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                       |                 | 19                          |
| Serinpeptidase S28                     | EIW61562                                                                                              | YYGLSNPFPDLSVK, FHTIQQAIDDLEYFAK,<br>NTKEIDSIK, LVQPAYDER, EATLAADGTNFR                                                                                                                                                                                                                                               | 266             | 11                          |
| Serinpeptidase S41 XP_008043737        |                                                                                                       | TFVPPADALACMK, QNVLDVVSR, SPAPFQ-<br>DSTTNIR, VLAIEGVDPYAYAVK, IAETQSG-<br>NYLDLGVR, VNSAFSSYR, SFILPDKK, SLGS-<br>FQNPGFQSTNR, SSSDNYMSPPSSR, VINGQT-<br>FVESQR, FLDVCPFSVDLPEDPPFDPSK, IALF-<br>GGKPGLATQFK, GMAGNQVLEWFDIDSEIK,<br>TANLKDDPLAPPDLLVSGDFR, IAYSFLDET-<br>LPIEYR, SELPHFR, FAYTADTYNNPQNLWT-<br>FAAK | 1784            | 39                          |
| Tripeptidyl-Peptidase<br>A S53         |                                                                                                       |                                                                                                                                                                                                                                                                                                                       | 110             | 3                           |
| Serinpeptidase S53                     | rinpeptidase S53 EIW61051 LANQLCNAYAQLGAR, AGWDPVTGLGTPN-<br>FAK, GTSILFASGDGGVAGSQTSSCTK,<br>LLTAVGL |                                                                                                                                                                                                                                                                                                                       | 865             | 10                          |
| Serinpeptidase S53 EIW59803            |                                                                                                       | NSLGVAGYLEEFANR, ADLQTFFSR, TDAV-<br>GGTFTTVR, VGSVGGTSASSPTFAGVIALLN-<br>DFR                                                                                                                                                                                                                                         | 822             | 10                          |

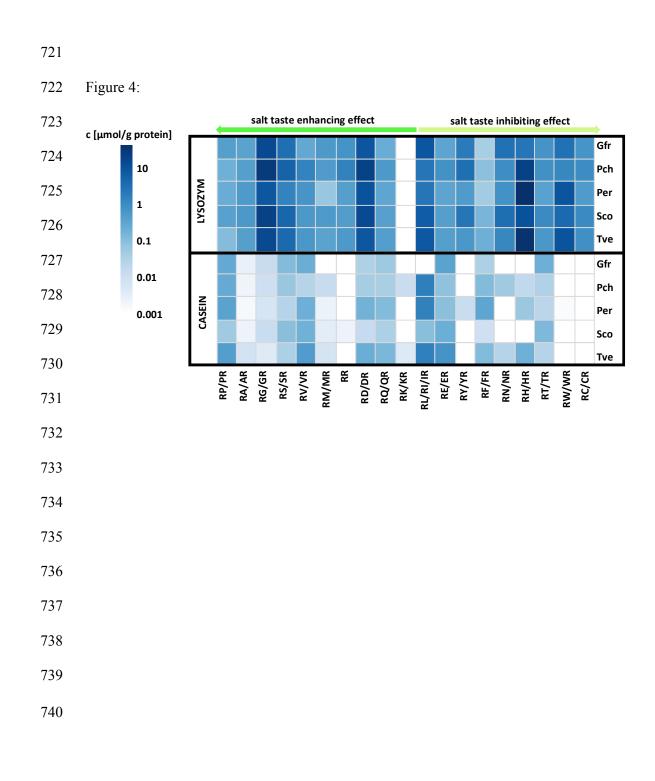
## 690 Supplementary table S1: Identified peptidases of the basidiomycete *Trametes versicolor*.


## 692 Figures

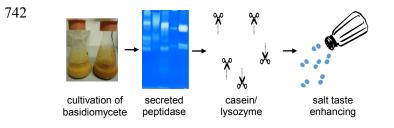






710


711 Figure 3a:












## 741 For Table of contents

