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Importance of the field: Inflammation is a hallmark of lung diseases. The

available treatment options are unsatisfactory because they are not effica-

cious or induce major side effects. Alternative approaches need to be devel-

oped. Thymulin is a peptide exclusively produced in the thymus with several

anti-inflammatory properties.

Areas covered in this review: The physiological features of thymulin and data

that support its potential as an anti-inflammatory treatment for lung diseases

are reviewed.

What the reader will gain: Thymulin has consistent beneficial effects in

experimental models of lung diseases. It has a broad inhibitory effect on

pro-inflammatory cytokines, suppresses p38 (a MAPK family member) and

inhibits the activation of the NF-kB signal pathway. It is an attractive peptide

for lung gene therapy because has no toxicity even at high doses and when

expressed by adenoviral vectors reduces immune response against

viral proteins.

Take home message: Thymulin has a selective immunomodulatory effect,

enhancing anti-inflammatory and inhibiting pro-inflammatory cytokines. It

suppresses p38 (implicated in glucocorticoid-resistance) and inhibits NF-kB
activation, which has an important pathogenic role in several lung diseases.

The broad spectrum of anti-inflammatory effects of this peptide in several

animal models of lung disease makes thymulin a good candidate for future

clinical trials.
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1. Introduction

Inflammation is a hallmark of a vast majority of lung diseases. Chronic obstructive
pulmonary disease (COPD), asthma, interstitial lung diseases (ILDs) and pulmo-
nary arterial hypertension (PAH) have an important underlying inflammatory
process in their pathogenesis. Despite the marked differences in the pattern of
inflammation between these different lung diseases, there are some similar features in
the underlying pathophysiological mechanism. The evidence shows that infiltration
of lung tissue with inflammatory cells (T cells, macrophages, neutrophils, eosino-
phils or mast cells) orchestrate the chronic inflammatory process, establishing a
complex network of cytokines. These molecules can be classified as lymphokines
(cytokines that are secreted by T cells), pro-inflammatory (which amplify and
perpetuate the inflammatory process), growth factors (which promote cell survival
and result in structural changes in the lung), chemokines (cytokines that are
chemotactic for inflammatory cells) and anti-inflammatory cytokines (which neg-
atively modulate inflammation) [1]. The current available therapeutic options
directed to inflammation are unsatisfactory since available drugs like corticosteroids
are in many circumstances ineffective or induce major side effects when chronically
administered. These limitations constitute a serious problem in the management of
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these patients. Thus, new and alternative anti-inflammatory
approaches are desirable.
Thymulin is a peptide exclusively produced in the thymus,

discovered in the seventies, which has shown appealing anti-
inflammatory properties [2]. This peptide influences the cyto-
kine secretion profile in several animal models, notably those
with lung inflammation. In this review, we summarize the
evidence regarding the beneficial immunomodulatory role of
thymulin in lung diseases.

2. Thymulin overview

2.1 Structure and production of thymulin
Facteur Thymique Serique (FTS, which is an acronym for
serum thymic factor in French) was first described by Bach
et al. in 1977 [3] and it is an inactive nonapeptide exclusively
secreted by the thymic epithelial cells. Its amino acid sequence
was determined to be Glu-Ala-Lys-Ser-Gln-Gly-Gly-Ser-
Asn [4]. Thymulin is a metallopeptide formed by FTS coupled
in an equimolar ratio to cationic zinc, which confers biological
activity to the molecule [5,6]. The circulating levels of thymulin
follow a circadian rhythm and peaks at night, coinciding with
the activity of the hypothalamus-pituitary axis [7]. It achieves
maximal values early in postnatal life and declines with age [2].
Physiological level of thymulin in the blood of young healthy
individuals was defined as 10-5mol/l [6]. Its level is decreased in
healthy aged populations [8]. Thymulin blood level has already
been studied in specific populations such as malnourished
children [9] and individuals with diabetes [10], growth hormone
deficiency [11], HIV infection [12], dementia [8] and other
conditions [13-15]. However, there is a lack of knowledge about
its blood level in inflammatory diseases, particularly, in lung
inflammatory diseases. The control of thymulin secretion is
dependent of a complex network of events. It was demon-
strated early that it displayed a negative-feedback effect
induced by its own secretion [16,17]. Furthermore, its produc-
tion and secretion is influenced by the neuroendocrine system.
Growth hormone can increase the synthesis and secretion of
thymulin, directly or indirectly through IGF-1 [18]. The
thyroid axis also influences its secretion; a positive effect of
thyroxine and triiodothyronine on thymulin secretion has
been documented [19]. Prolactin, glucocorticoids and gonadal
steroids also seem to modulate this hormone secretion by

thymic epithelial cells [20-22]. Hypothalamic and pituitary
extracts stimulate thymulin secretion, a stimulus that is
more effective with biological extracts from young
mice [23,24]. This interdependence suggests that thymulin is
a player in this homeostatic bidirectional communication
between the immune and endocrine systems.

There is little knowledge about thymulin receptors. Two
receptor types were found in tumor-derived human T cell lines
that showed different affinities for thymulin [25,26]. More
recently, Brown et al. used anterior pituitary cells to demon-
strate the prolactin and thyroid-stimulating hormone releasing
effect of thymulin [27]. The response was specific and dose-
dependent to thymulin, which suggested the existence of
receptor sites on pituitary cells.

2.2 Function of thymulin
Thymulin has been implicated in several aspects of intra- and
extra-thymic T-cell differentiation [2]. It is able to enhance
thymocyte proliferation and to induce the expression of
several T cell differentiation markers [28,29]. In addition to
the several influences exerted by multiple hormones in thy-
mulin secretion, there is accumulating evidence that indicates
a hypophysiotropic activity of thymulin (Figure 1). It could
have either a direct influence as a secretagogue of some
pituitary hormones and act as a facilitator substance for the
other physiologic secretagogues [30]. This cross-talk between
the neuroendocrine and immune systems was demonstrated
by the positive effect of thymulin in the release of growth
hormone, prolactin, thyrotropin and gonadotropin [30], an
effect that is reduced with aging [27,31]. Further evidence that
supports this important physiological effect is the functional
impairment of the hypothalamo–adrenal axis in congenitally
athymic mice [32]. Thymulin also interacts with the nervous
system to modulate pain [33]. Curiously, there seems to be a
dual effect. It was first demonstrated that low doses of
locally (plantar) or systemically (intraperitoneal) injected
thymulin had a hyperalgesic effect, probably mediated by
prostanglandin-E2 interaction with afferent nerve term-
inals [34,35]. Later, supraphysiological levels of systemic thy-
mulin reduced the hyperalgesia induced by endotoxin
injection, an effect mediated by the inhibition of some
pro-inflammatory mediators [33]. These analgesic and anti-
inflammatory actions were also documented in a model of
intracerebroventricular (i.c.v.) endotoxin injection [36].

3. Thymulin and inflammation

3.1 Thymulin in inflammatory diseases
In addition to its action as a thymic hormone regulating
several aspects of thymus physiology and to its hypophysio-
tropic and analgesic properties, thymulin has a potent immu-
nomodulatory action. The mechanisms responsible for this
role are largely unknown. It influences the activity of numer-
ous immunological cells like T cells [37-40], B cells [41] and NK
cells [40,42]. It also influences the cytokine secretion profile,

Article highlights.

. Overview of the physiology of thymulin.

. The thymulin molecular signaling pathway includes cAMP,
p38 MAPK and NF-kB.

. The anti-inflammatory effect of thymulin in animal models
of lung disease.

. Thymulin’s potential advantages in lung gene therapy.

. The scope of thymulin for human lung disease.

This box summarises key points contained in the article.
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enhancing an anti-inflammatory cytoprotective response and
depressing inflammatory cascades [43].

With respect to signaling pathways, an experimental study
with anterior pituitary cells showed that the hormone-releasing
effect of thymulin was dependent, in part, on calcium,
cAMP and inositol phosphates [31]. In some inflammatory
disease models thymulin actions were attributed to the mod-
ulation of MAPK family members such as extracellular signal-
regulator kinase (ERK) and p38 [44-46]. The p38 MAPK
pathway is involved in expression of inflammatory cytokines
and chemokines [47] and seems to be inhibited by thymulin
[46.] Furthermore, NF-kB is a transcription factor that plays
an important role in inflammatory diseases [48,49] and therefore
has been a major target for drug development. The pathogenic
role of NF-kB in lung diseases with inflammatory component
has been thoroughly investigated [50]. The potential of NF-kB
as a therapeutic target in lung diseases lead to development of
NF-kB inhibitors studied in animal models, with some of
them already being tested in clinical trials [50]. Recently,
Novoselova et al. demonstrated that thymulin is able to repress
the NF-kB signaling pathway in an endotoxin-induced sepsis
model [51]. Furthermore, using thymulin in an in vitro model
of fetal alveolar type II epithelial cells, Haddad [52] has shown a
cAMP-dependent downregulation of endotoxin-induced
production of pro-inflammatory cytokines and inhibition of
NF-kB nuclear translocation and activation. These and other
studies [53,54] indicate that the immunomodulatory potential
of thymulin involves the adenylyl cyclase–cAMP system
that influences NF-kB activation, which could be mediated
by MAPK members, notably, p38 MAPK. Consequently,
the inhibition of NF-kB reduces the expression of
pro-inflammatory cytokines (Figure 2).

There is a growing body of evidence, either experimental or
clinical, supporting these beneficial effects of thymulin in
inflammatory disorders (Table 1). In a mouse model of
acute systemic inflammation induced by an injection of

Gram-negative bacteria lypopolysaccharide, Lunin et al. [55]

used a synthetic analogue of thymulin. This peptide prevented
the accumulation of pro-inflammatory cytokines in plasma, as
well as the production of those by spleen lymphocytes and
peritoneal macrophages. These results were consistent with
those from other systemic inflammation animalmodel induced
by endotoxin [56]. This anti-inflammatory effect was also docu-
mented in organ-specific inflammation animal models such as
alloxan- and streptozotocin-induced pancreatitis and diabe-
tes [57], myocarditis caused by encephalomyocarditis virus [58],
nephrotoxicity inducedwith cephaloridine [44] and cisplatin [45],
thyroiditis caused by reovirus [59] and acute experimental
allergic encephalomyelitis [60] and CNS inflammation induced
by i.c.v. endotoxin injection [36]. The immunomodulatory role
of thymulin was also documented in human immunological
cells. Thymulin was able to enhance CD3, CD4 and CD8
expression in lymphocytes from immunodeficient children [38]

and increased IgA and IgE in patients with ataxia telangiecta-
sia [61]. Thymulin enhancedT cell proliferation of bonemarrow
transplantation patients cells [62] and induced mature T cell
markers in circulating immature T lymphocytes of malnour-
ished children [39]. Using peripheral blood mononuclear
cells, in vitro exposure to thymulin increased IL-1 and decreased
IL-6 and TNF-a production from cells of healthy volunteers
and decreased IL-1, IL-2 and TNF-a in those from patients
with systemic lupus erythemathosus [63].

4. Lung diseases: role of inflammation

The pathophysiology of the most common lung diseases is
multifactorial and it is characterized by an interplay of genetic
predisposition and environmental factors that culminates in
an extended and chronic inflammation.

The pulmonary inflammatory response in patients with
COPD demonstrates an activation of both innate and
acquired immune processes [64]. It involves the migration of
leukocytes, the production of inflammatory mediators and the
release of proinflammatory cytokines and proteases that con-
tributes to lung injury. Many of these mediators such as IL-6,
IL-8, TNF-a and IL-10, appear to be useful biomarkers to
evaluate the intensity of the disease process [65-67].

Asthma is defined as a chronic inflammatory disorder with
airway inflammation in response to inhaled stimuli that ori-
ginates not only an adaptative allergen-dependent but also, as
recent work suggests, an innate non-antigen-dependent
response [68].

ILDs are a heterogeneous group of complex disorders with
similar clinical, radiographic and physiological manifestations.
Although frequently unknown, occupational and environ-
mental exposures can cause ILDs. The pathobiology is variable
and still uncharacterized yet it appears to be a chronic
inflammatory process that eventually leads to fibrosis induced
by fibroblast activation [69].

PAH is characterized by a sustained elevation of pulmonary
arterial pressure and is associated with several inflammatory

Thymulin

⊕
Prolactin
Thyrotropin
Gonadotropin
Growth hormone

⊕

Growth hormone
IGF-1
Thyroxin
Triiodothyronine
Glucocorticoids
Gonadal steroids

⊕

Figure 1. Role of thymulin in neuroendocrine system.
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conditions (e.g., HIV infection and connective tissue dis-
eases) [70]. Several types of inflammatory cells, including
activated T cells, B cells and macrophages, have been docu-
mented to infiltrate the pulmonary arteries in patients with
PAH. Also, several pro-inflammatory cytokines and chemo-
kines such as IL-6, stromal derived factor 1 (SDF-1) and
monocyte chemoattractant protein 1 (MCP-1) Have been
demonstrated to be increased in serum of PAH patients [71-73].

5. Thymulin and lung diseases

Some research groups have shown promising beneficial effects
of thymulin in lung disease (Figure 3 and Table 2). An in vitro

model of fetal alveolar type II epithelial cells exposed to
endotoxin was used to investigate the anti-inflammatory
properties of thymulin in this tissue. It inhibited the release
of IL-1 and TNF-a and enhanced the production of IL-10,
an anti-inflammatory cytokine [43]. This effect was synergis-
tically amplified by zinc. These results documented the anti-
inflammatory potential of thymulin in lung epithelium and
also established thymulin bioactivity in the fetal lung close to
term. Recently, in the same model, it was established that these
anti-inflammatory potentials were mediated by cAMP and
were NF-kB-dependent [52].

The intrapulmonary instillation of bleomycin releases a
variety of cytokines that induces the transmigration and

Table 1. Effect of thymulin in experimental inflammatory animal models.

Model Stimulus Thymulin effect

Systemic inflammation [55] Escherichia coli LPS (i.p.) # IL-1, IL-2, IL-6, IL-10, TNF-a, IFN-g
Systemic inflammation [56] Salmonella typhosa endotoxin (i.p.) # IL-1, IL-6, TNF-a, PGE2
Diabetes and pancreatitis [57] Alloxan

Streptozotocin
Prevented pancreatic b-cells inflammation and destruction

Myocarditis [58] Encephalomyocarditis virus Prevented myocardial inflammation

Nephrotoxicity [44,45] Cephaloridine
Cisplatin

Attenuated renal dysfunction
# p38 MAPK activation

Thyroiditis [59] Reovirus Supression of autoantibodies

Acute allergic encephalomyelitis [60] Vaccinia virus # Inflammatory cells infiltration

CNS inflammation [36] Salmonella typhosa endotoxin (i.c.v.) # IL-1, IL-6

i.c.v.: Intracerebroventricular; i.p.: Intraperitoneal.

↓ Pro-
inflammatory

cytokines 

Thymulin
Zn

AC

↓ MAPK members
(p38, ERK)

↓ NF-κB

↑ cAMP

?

Figure 2. Molecular signaling pathway of thymulin.
AC: Adenylyl cyclase; ERK: Extracellular-signal-regulated kinase.

Immunomodulatory role of thymulin in lung diseases
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accumulation of inflammatory cells in the interstitial area. It
originates activation of fibroblasts, eventually resulting in
diffuse alveolar damage followed by fibrosis [74]. It is used
as an animal model of pulmonary fibrosis. Yara et al. [75]

studied the effect of thymulin in bleomycin-treated animals.
They documented a suppressed cellular inflammation
response in the lungs, with reduced accumulation of leuko-
cytes and reduced synthesis of pro-inflammatory cytokines
(TNF-a and IL-1) and some chemokines, such as macrophage
inflammatory protein-1 alpha (MIP-1a), regulated on

activation normal T-cell expressed and secreted (RANTES),
macrophage inflammatory protein-2 (MIP-2) and keratino-
cyte-derived chemokine (KC). Thymulin also ameliorated the
fibrotic changes, as evidenced by the reduced accumulation of
hydroxyproline. These results suggest a potential therapeutical
application of thymulin in pulmonary fibrosis.

Intra-amniotic inflammation increases the risk of preterm
labor and aberrant lung development with subsequent
respiratory disorders. Although not well established, those
anomalies are, at least in part, caused by the accumulation

Table 2. Thymulin effect in lung disease animal models.

Model Stimulus Thymulin effect

Fetal alveolar type II cells inflammation
(in vitro) [43]

Gram-negative bacteria LPS # IL-1, TNF-a
" IL-10

Pulmonary fibrosis [75] Bleomycin # Inflammatory cells accumulation
# Fibrosis
# Proinflammatory cytokines (TNF-a, IL-1)
# Chemokines (MIP-1a, RANTES, MIP-2, KC)

Perinatal infection (aberrant lung
development) [78]

Gram negative bacteria LPS # TNF-a
" IL-6
" Lung mesenchyme tissue proliferation

Pulmonary arterial hypertension [46] Monocrotaline # IL-6
Prevented morphological and hemodynamic PAH features
# p38 MAPK activation

Lung metastases [79] FSA-1 fibrosarcoma # growth rate of pulmonary metastases

KC: Keratinocyte-derived chemokine; MIP-1a: Macrophage inflammatory protein-1 alpha; MIP-2: Macrophage inflammatory protein-2; PAH: Pulmonary arterial

hypertension; RANTES: Regulated on activation normal T-cell expressed and secreted.

Thymulin

Fribroblasts
↓ collagen deposition

Epithelial cells
↓ IL-6

↓ TNF-α
↑ IL-10

Lung regeneration
(mesenchymal tissue
proliferation; ↑ IL-6) 

↓ Inflammatory cells

↓ p38 phosphorylation

↓ Chemokines
(MIP-1α, RANTES, MIP-2, KC)

↓ Pro-inflammatory cytokines
(IL-1, IL-6, TNF-α)

Figure 3. Effects of thymulin in lung inflammation.
KC: Keratinocyte-derived chemokine; MIP-1a: Macrophage inflammatory protein-1 alpha; MIP-2: Macrophage inflammatory protein-2; RANTES: Regulated on activation

normal T-cell expressed and secreted.
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of inflammatory cells and overexpression of pro-inflammatory
cytokines, namely IL-1, TNF-a and IL-6 [76,77]. Land and
Darakhshan [78] studied the effect of thymulin in fetal lung
exposed to a Gram-negative bacteria lipopolisaccharide. They
were able to document the suppression of TNF-a release
and increased IL-6 expression through a CCAAT-enhancer-
binding-protein-b-dependent pathway, which is a known path
for regenerative repair in other tissues. These two outcomes
favor the proliferation of mesenchyme tissue, which is a
necessary condition for lung tissue regenerative repair. This
work suggests the therapeutic potential of thymulin to pro-
mote lung morphogenic response, thus altering the course of
lung damage during perinatal infection.
Both experimental and human data supports inflammation

as an important mechanism in PAH pathophysiology. PAH
patients have an accumulation of inflammatory cells in
pulmonary vessels and elevated levels of pro-inflammatory
cytokines, notably IL-6 [70]. Our group studied the immuno-
modulatory properties of thymulin in an experimental model
of PAH [46]. Thymulin administration to rats with monocrota-
line-induced pulmonary hypertension prevented the morpho-
logical and hemodynamic features of PAH. This effect could
be, at least partially, mediated through the inhibition of IL-6
expression in both right ventricle and lung and by suppression
of phosphorylation of lung p38, a MAPK family member
implicated in PAH.
Additionally, biologically active thymulin exerted beneficial

effects against tumor growth rate of pulmonary metastases [79].
Although these studies did not implicate intrinsic lung dis-
eases, they suggest that the anti-inflammatory effect in
the lung has the potential to regulate cellular growth and
differentiation of the lung.

5.1 Therapeutic application of thymulin
The efforts to test therapeutic applications of thymulin have
been directed to clinical situations associated with markedly
low levels of this peptide like aging [80], AIDS [81] and other
immunodeficiencies [82,83]. The goal of thymulin treatment in
these conditions is to restore the neuroendocrine balance
disrupted by its deficiency. There are some studies that
document the beneficial effects of thymulin gene therapy in
congenitally athymic animals, improving some associated
endocrine anomalies such as reproductive system dysfunc-
tion [30,84] and glucose and lipid homeostasis [85]. Neuro-
science is another field where thymulin is being studied, in
particular, pursuing its anti-inflammatory and analgesic prop-
erties in chronic brain inflammatory diseases [33,86]. Gene
therapy was considered an interesting option to supplement
thymulin in deficient animals since it was difficult to do it
pharmacologically. Recently, a DNA sequence coding for
bioactive thymulin analogue was constructed and cloned in
an adenoviral vector that induced sustained supraphysiological
thymulin serum levels in thymectomized animals [87]. Inter-
estingly, when injected directly to the brain there was a longer
duration of adenoviral-mediated expression of thymulin than

of other proteins [88]. This suggests that the anti-inflammatory
activity of thymulin analogues could prevent the immune
response to viral proteins or viral-encoded proteins, a major
limitation of gene therapy.

The evidence for the beneficial effect of thymulin in animal
models of lung disease favors this hormone as a potential
therapeutic option to lung conditions for which there are no
current efficacious treatments. Therapeutic interest in thymu-
lin has been present since its discovery in seventies. However,
until recently its unavailability hindered its use. In the late
1980s, Calenda et al. achieved the production of large quan-
tities of purified thymulin with full biological activity through
a synthetic DNA sequence inserted into a bacterial expression
vector [89]. More recently, in 2006, Reggiani et al. [87] con-
structed and cloned a sequence of a thymulin analogue in an
adenoviral vector, disclosing an interesting opportunity for
lung disease treatment. The lung is an attractive organ for gene
transfer because of the accessibility of its airways and vessels.
Although gene therapies have been aimed at lung diseases with
single gene defects like cystic fibrosis or a1-antitrypsin defi-
ciency, other lung diseases such as COPD, asthma, ILDs and
PAH are characterized by a chronic inflammation with imbal-
ance between anti- and pro-inflammatory mediators and
could also benefit from gene therapy [90]. Even congenital
lung disease could potentially be treated by gene therapy with
in utero intrapulmonary injection as already described [91].
Apparently, thymulin could have advantages over other
immunomodulator substances considering the data that sug-
gests the reduced extent of the immune response to viral
proteins. Furthermore, thymulin has no known toxic effects
even at high doses [30].

6. Conclusion

Thymulin immunomodulatory properties are well studied in
various systemic and organ-specific inflammation models,
where this peptide has demonstrated consistent and remark-
able anti-inflammatory effects. An important pathophysiolog-
ical mechanism of lung diseases is inflammation. Although
scarce, experimental data on animal models of lung diseases
identify thymulin as a potential therapeutic option that needs
to be explored.

7. Expert opinion

The currently available anti-inflammatory therapeutic strategy
for lung diseases is based on glucocorticoids. The management
of these patients is determined by the response to this phar-
macological agent and its numerous side effects. The preva-
lence of glucocorticoid resistance in lung glucocorticoid-
sensitive diseases is unknown because the absence of unified
definition and criteria and the variations in the course of the
disease. Several molecular mechanisms of glucocorticoid resis-
tance have been identified [92,93]. One of them is the reduced
glucocorticoid receptor functionmediated via phosphorylation

Immunomodulatory role of thymulin in lung diseases
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of the receptor by p38 MAPK [94,95]. On the other hand, there
are other lung diseases that are normally insensitive to gluco-
corticoids such as COPD, pulmonary fibrosis and PAH.
Besides glucocorticoid resistance, chronic systemic adminis-
tration of glucocorticoids has numerous and serious side effects
representing an important barrier to effective treatment, lead-
ing to the use of steroid-sparing drugs, although all these drugs
also have major side effects. This scenario makes the task of
treating these patients hard and drives the need for research on
other anti-inflammatory agents.

Thymulin is one possibility since it has beneficial effects in
several animal models of lung disease in which inflammation is
an important hallmark. Blocking specific pro-inflammatory
cytokines or their receptors has so far been disappointing in
clinical studies, suggesting that a broader spectrum of
anti-inflammatory effects is needed. Thymulin has an anti-
inflammatory effect, inhibiting the synthesis of several pro-
inflammatory cytokines, chemokines and influencing the
activity of inflammatory cells.

The p38 MAPK pathway is involved in expression of
inflammatory cytokines and chemokines. Interestingly, thy-
mulin also inhibits MAPK member p38, a protein involved in
glucocorticoid resistance. Several p38 MAPK inhibitors are
being tested in clinical trials; however there have been several
problems regarding side effects and toxicity [1]. Thymulin
could be a useful alternative, for the reason that it is an
endogenous substance with a favorable pharmacodynamic
profile – there are no known side effects even at high doses.

Recently, an adenoviral vector with a sequence of thymulin
analogue was developed. With respect to lung diseases, gene
therapy is not a theoretical concept, but a realistic goal, since
lung airways and vessels have good accessibility. Thymulin
stands at a good position for lung gene therapy because of its
lack of toxicity so far and the reduced extent of immune
response against viral proteins, which is one of the main
hurdles for gene therapy implementation.

Further research is needed to clarify the mechanisms that
mediate the anti-inflammatory effect of thymulin and to
develop oral formulations of thymulin. It is also necessary
to test thymulin in lung disease models through viral and
non-viral vector systems.
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