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The human cathelicidin peptide LL-37 has antimicrobial and anti-biofilm functions, but LL-37 may also
damage the host by triggering inflammation and exerting a cytotoxic effect, thereby reducing host cell
viability. Human plasma mitigates LL-37-induced host cell cytotoxicity but the underlying mechanisms
are not completely understood. Apolipoprotein A-I (ApoA-I) is a plasma protein endowed with athero-
protective effects. Here, we investigate the interaction between ApoA-I and LL-37 by biochemical
techniques, and furthermore assess if ApoA-I protects against LL-37-evoked cytotoxicity in human
umbilical vein endothelial cells (HUVEC). Our results demonstrated that ApoA-I effectively binds LL-37.
The binding of ApoA-I to LL-37 resulted in a structural rearrangement of the protein, but this interac-
tion did not cause lower ApoA-I stability. Recombinant ApoA-I protected against LL-37-induced cyto-
toxicity in HUVEC and endogenous ApoA-I knockdown in HepG2 cells made the cells more sensitive to
LL-37-evoked cytotoxicity. We conclude that ApoA-I physically interacts with LL-37 and antagonizes LL-
37-induced down-regulation of endothelial cell viability suggesting that this mechanism counteracts
endothelial cell dysfunction.

© 2017 Published by Elsevier Inc.
1. Introduction

LL-37 is synthesized as a pro-protein, named hCAP18, by blood
cells such as granulocytes, lymphocytes and monocytes. hCAP18 is
secreted from the cells and processed to LL-37 by proteinase 3. In its
active form, LL-37 has high electrostatic and hydrophobic affinity to
cell membranes. Upon binding, LL-37 may cause pore formation,
regardless if the membrane belongs to an invading pathogen or the
host cells themselves [1]. Indeed, LL-37 has been shown to reduce
cell viability in many different human cell types [2,3].

Circulating plasma levels of hCAP18 are high in healthy in-
dividuals, 7.4 ± 0.13 mM [4]. However, expression of hCAP18 is
increased in atherosclerotic lesions. Here, hCAP18 is synthesized by
accumulating macrophages, neutrophils and endothelial cells,
resulting in a six-fold increase of its expression compared to normal
arteries [5]. Indeed, LL-37 has been implicated in the pathogenesis
of atherosclerosis [6]. The vascular endothelium faces the blood and
represents a critical organ for maintaining cardiovascular homeo-
stasis. Endothelial cells regulate transport between blood and
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tissues and produce vasoactive factors such as NO and endothelin
which control vascular tone and blood pressure. Loss of endothelial
function is believed to be a key event in the development of
atherosclerosis [7]. Data on deleterious effects of LL-37 on endo-
thelial cell viability have, to the best of our knowledge, not been
presented before.

Fortunately, the above mentioned harmful effects exerted by LL-
37 on host cell viability are limited by endogenous proteins, such as
mucin I in saliva and gC1qR/p33 in keratinocytes, which bind and
inactivate the peptide [2,8,9]. Human plasma is also known to
reduce LL-37's activity [3] but the scavenger involved and the un-
derlying mechanisms are still not completely understood [10,11].
Apolipoprotein A-I (ApoA-I) is an abundant plasma protein (50 mM)
and themajor protein constituent of high density lipoprotein (HDL)
[12,13]. ApoA-I is known to possess anti-inflammatory and anti-
oxidant activities [14] and, more recently, it has been found to
have a positive effect on glucose homeostasis [15,16]. HDL-bound
ApoA-I is also the key molecule for the removal of cholesterol
from peripheral tissues and its catabolism. Because of its involve-
ment in this cellular mechanism, known as reverse cholesterol
transport, ApoA-I is considered an atheroprotective molecule [17].
In addition, ApoA-I was reported to bind LL-37 and to inhibit the
peptide's antibacterial effects but it has not been clarified if ApoA-I
tenuates LL-37-induced endothelial cell cytotoxicity, Biochemical and
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also antagonizes LL-37-evoked host cell cytotoxicity [10,12,13].
Here, we demonstrate that ApoA-I physically interacts with LL-

37 and show for the first time that ApoA-I protects from LL-37-
induced cytotoxicity in human endothelial cells.

2. Materials and methods

2.1. Production of recombinant ApoA-I

ApoA-I was produced in an Escherichia coli strain BL21 (DE3)
pLysS (Invitrogen) and purified to homogeneity by the methods
previously described in Ref. [18].

2.2. Spectroscopic analyses

ApoA-I (3 mM) was incubated in PBS for 30 min with increasing
concentrations of LL-37 (Bachem), at protein to peptide molar ra-
tios as indicated in Figs. 1 and 4 and S1. At the end of incubation,
intrinsic fluorescence and Circular Dichroism (CD) spectra of ApoA-
I/LL-37 mixture were recorded.

2.2.1. Intrinsic fluorescence analysis
Emission intrinsic fluorescence measurements were carried out

at 25 �C in a 10-mm cell by using a Jasco J-810 spectropolarimeter
equipped with a FMO-427S fluorescence module. Spectra were
recorded in the range 300e450 nm, following excitation at 280
(tyrosine/tryptophan) or 295 nm (tryptophan), with a scan speed of
150 nm/min and 5 nm slit width. Maximum emission fluorescence
wavelength (lmax) was then plotted as a function of protein to
peptide molar ratio.

2.2.2. Circular Dichroism (CD) spectroscopy and Kd determination
CD spectra were acquired on a Jasco J-810 spectropolarimeter

equipped with a Jasco CDF-426S Peltier, set to 25 �C. Samples were
loaded into a 1 mm quartz cuvette and CD spectra acquired at 25 �C
in the far-UV range 190e260 nm, with a 1 nm wavelength incre-
ment. To estimate the specific contribution of ApoA-I to the CD
signal, the spectra of the peptide alone were subtracted at the
spectra of the mixture (see Figure S1). The CD signal at 222 nm for
each protein to peptide molar ratio was plotted as a function of
peptide concentration and the experimental data were fitted by
using one-site binding equation of non-linear regression, in
GraphPad Prism 7, to calculate the Kd.

2.3. Thermal denaturation analysis

ApoA-I thermal denaturation was performed, either in the
absence or in the presence of LL-37 (protein to peptide ratio 1:2), by
intrinsic fluorescence and CD. Intrinsic fluorescence thermal
unfolding was performed as described in Ref. [19]. Briefly, samples
were incubated at each temperature for 15 min (between 25 and
95 �C with 5 �C increment) before acquiring the spectra. Melting
curves were obtained by reporting the lmax as a function of tem-
perature. Thermal denaturation followed by CD spectroscopy was
performed by recording protein signal at 222 nm between 25 and
95 �C with 2 �C increment. In both cases, the experimental data
were fitted and melting temperature (Tm) estimated by sigmoidal
fitting using GraphPad Prism 7.

2.4. Cells and cell culture

Primary human umbilical vein endothelial cells (HUVEC) were
purchased from Lonza and cultured in complete EGM-2 medium
(Lonza) according to manufacturer's instructions. Human hepato-
cellular carcinoma cells (HepG2) were obtained from ATCC and
Please cite this article in press as: D. Svensson, et al., Apolipoprotein A-I at
Biophysical Research Communications (2017), http://dx.doi.org/10.1016/j
cultured in DMEM/Ham's F12 medium supplemented with antibi-
otics and 10% FBS. The cells were kept in a water-jacketed cell
incubator at 5% CO2 in air at 37 �C and trypsinized (0.25% trypsin,
0.02% EDTA) upon reaching confluence.

2.5. Downregulation of ApoA-I expression

ApoA-I expression was transiently suppressed in HepG2 hepa-
tocytes using siRNA. Briefly, a mixture of ApoA-I siRNA (Hs_A-
poA1_4 and Hs_ApoA1_7, 20 nM each, both from Qiagen) or a non-
targeting control (Negative Control siRNA, 40 nM, Qiagen), were
prepared in Opti-MEMmedium (Thermo Fisher Scientific) together
with Oligofectamine transfection reagent, according to manufac-
turer's instructions (Invitrogen). Cells were then seeded into the
siRNA mixture at a density of 10 000 cells/cm2 in volumes of 40 ml
or 400 ml/well for 96 and 12 well plates, respectively. After 24 h of
transfection, cultures were supplemented with an equal volume of
DMEM containing 2% FBS (1% final concentration) and incubated
for 3 days before the analyses.

2.6. Cell viability assay

Cell viability was assessed in HUVEC and HepG2 cells cultured in
96 well-plates by the MTT assay. Experiments on HUVEC were
performed in EGM-2 mediumwithout FBS, while HepG2 cells were
treated in end-stage transfection medium (see paragraph 2.5). The
cells were pre-treated with ApoA-I or PBS (vehicle) for 15 min
before administration of LL-37 in PBS. After 3 h of treatment with
peptide, cells were incubated with MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide, 0.5 mg/ml, Sigma Aldrich) for
1 h. After removal of medium the formazan, which is formed by
viable cells, were dissolved in DMSO and quantified by its absor-
bance at 540 nm using a Multiscan GO Microplate Spectropho-
tometer (Thermo Scientific).

2.7. Western blotting

Relative ApoA-I protein expression was determined by western
blotting as previously described [20]. Conditioned cell media were
collected and cells were lysed and proteins extracted in an SDS
sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol).
Total protein content was determined by the Bio-Rad DC Protein
Assay. Aliquots corresponding to 30 mg of cytosolic proteins (cell
lysate) or 20 ml of conditioned medium were analysed by SDS-
PAGE using Criterion TGX Any kD precast gels (Bio-Rad)
following reduction by 2-mercaptoethanol (10%, v/v). Standards of
recombinant ApoA-I were run in parallel to samples on some of the
gels. After separation, proteins were transferred to 0.2 mm nitro-
cellulose membranes by a Trans-Blot Turbo transfer system (Bio-
Rad). Membranes were blocked in 1% casein (w/v) in TBS (Bio-Rad)
and incubated overnight with anti-ApoA-I (Abcam, ab64308,
1:1000 dilution) and anti-GAPDH antibodies (Merck Millipore,
clone 6C5, 1:5000 dilution), used as housekeeping protein.
Immunoreactive bands were visualized by chemiluminescence
using HRP-conjugated secondary anti-rabbit or anti-mouse anti-
bodies, followed by incubation with SuperSignal West Femto
chemiluminescence reagent (Thermo Fisher Scientific). Images
were acquired using a LI-COR Odyssey Fc instrument (LI-COR
Biosciences).

3. Results and discussion

3.1. ApoA-I specifically binds LL-37

Protein-protein binding and interaction is often accompanied by
tenuates LL-37-induced endothelial cell cytotoxicity, Biochemical and
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a conformational rearrangement of the species involved. To
demonstrate the binding between LL-37 and ApoA-I and to study
the impact of the binding on the overall protein structure, intrinsic
fluorescence and CD spectra were acquired at increasing protein to
peptide molar ratios.

Protein intrinsic fluorescence is due to the ability of tyrosine and
tryptophan residues to emit fluorescence when excited at specific
wavelengths. ApoA-I contains five tyrosine (at positions 18, 29, 100,
115, 166) and four tryptophan (at positions 8, 50, 72 and 108) res-
idues. Changes in solvent exposure of these residues, which are
reflected in changes in the maximum emission wavelength (lmax),
are diagnostic of protein conformational rearrangement. Fluores-
cence spectrawere acquiredwhen exciting only tryptophan (Fig.1a,
left panel), or both tyrosine and tryptophan residues (Fig. 1a, right
panel), and lmax was plotted as a function of protein to peptide
molar ratio. The addition of LL-37 at increasing concentrations to
ApoA-I led to a significant increase of lmax that reached a plateau at
a protein to peptide molar ratio of about 1:1. This observation
suggests that ApoA-I specifically binds LL-37, probably at a 1:1
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Fig. 1. ApoA-I is able to bind LL-37. 3 mM ApoA-I was incubated with increasing concent
30 min. At the end of incubation, intrinsic fluorescence (a) or CD spectra (b) of LL-37-bound
panel), emission spectra were recorded and the maximum emission fluorescence (lmax) val
protein in 3 M Gnd-HCl) was used as a control. (b) CD spectra were recorded for each pro
function of LL-37 concentration (right panel). The experimental data were fitted and Kd estim
Data are the means ± SEM of five (a) or four (b) independent experiments. Significance is
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stoichiometry, and that this binding alters ApoA-I conformation.
Since all tyrosine and tryptophan residues are located in the four-
helix bundle domain of ApoA-I [21], which mostly includes the
N-terminal part of the protein, it is conceivable that LL-37 binding
involves a N-terminal domain structural rearrangement of ApoA-I.

LL-37 binding to ApoA-I also imposed changes in protein sec-
ondary structure, as demonstrated by changes in the CD spectra of
the protein in the presence of increasing amounts of LL-37 (Fig. 1b,
left panel and Fig. S1). The fitting of the CD signals at 222 nm
allowed for estimation of the Kd (Fig. 1b, right panel), which was
determined to 0.82 ± 0.59 mM.

These results are in good agreement with previous reports
indicating that ApoA-I is able to bind LL-37with a 1:1 stoichiometry
and with a Kd in the micromolar range [12]. Interestingly, it has
been suggested that ApoA-I-bound LL-37 may act as a reservoir of
LL-37 to be released during infection to combat pathogens [11]. The
moderate strength of interaction between the ApoA-I and LL-37
molecules is in line with this hypothesis.
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Fig. 2. ApoA-I rescues endothelial cells from LL-37 induced cytotoxicity. HUVEC
were treated with LL-37 (6 mM) for 3 h, in the presence of absence of equimolar
amount of ApoA-I. At the end of incubation, MTT assay was performed and cell viability
calculated. Data are the means ± SEM of three independent experiments. Significance
is calculated according to t-test (**p < 0.01, ****p < 0.0001).

Fig. 3. Knockdown of endogenous ApoA-I sensitizes cells to LL-37-induced cytotoxicity.
lysates and conditioned medium were analysed by western blotting using antibodies against
ApoA-I signal was normalized to GAPDH. (b) Secreted ApoA-I levels were analysed from
transfected (NC, negative control) cells were incubated with LL-37 (12 mM) for 3 h and, at the
are the means ± SEM of three independent experiments. Significance is calculated accordin
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3.2. ApoA-I protects against LL-37-induced cytotoxicity

We next wished to investigate whether ApoA-I protects endo-
thelial cells against LL-37-induced cytotoxicity. HUVEC were
treated with LL-37 in the presence or absence of wild-type ApoA-I
at a 1:1 molar ratio. Treatment with 6 mM LL-37 reduced cell
viability by about 60% (Fig. 2). Interestingly, as shown in Fig. 2,
ApoA-I (3 mM) was able to attenuate the LL-37-induced cytotoxic
effect by about 50%. Based on the 1:1 binding stoichiometry, a
higher ApoA-I scavenging effect could possibly have been expected.
However, the lack of full reversal of the LL-37-induced cytotoxicity
by ApoA-I may be due to structural properties of the peptide. This
notion is supported by the fact that LL-37 is, at physiological con-
ditions, in an equilibrium between unstructured peptide and an a-
helical conformation which tends to oligomerize [22]. Indeed, the
binding of LL-37 by ApoA-I was previously reported to require a-
helical conformation [13] suggesting a selective scavenging by
ApoA-I where unstructured LL-37 peptide is left unaffected. This
fraction of the LL-37 pool constitutes around 75% of the molecules
in PBS, but presumably less under physiological conditions [22,23],
suggesting that the protective ApoA-I scavenging effect may be
HepG2 cells were transfected with ApoA-I siRNA for 96 h. At the end of incubation, cell
ApoA-I (a, b). (a) Cell-associated ApoA-I was analysed from 30 mg of total cell proteins.
20 ml of conditioned medium. (c) Cells treated with siRNA for ApoA-I and scramble
end of incubation, the MTT assay was performed to determine cell viability. Data shown
g to t-test (**p < 0.01, ***p < 0.001).

tenuates LL-37-induced endothelial cell cytotoxicity, Biochemical and
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even more substantial in vivo. Interestingly, conformational
changes of LL-37 affects is properties; the unstructured peptide is
favorable when it comes to interactions with bacterial membranes
[1,23] while certain effects on host cells are derived exclusively
from a-helical peptide [22], further adding to the regulatory role of
ApoA-I-to-LL-37 binding. This apparent regulated interaction with
ApoA-I via conformational switching of the LL-37 may also be a
reason for varied reports [10,12] on the LL-37 activity in the pres-
ence of ApoA-I.

In addition to wild-type ApoA-I, several variants have been re-
ported to affect lipid metabolism. Two such variants of ApoA-I are
associated either with an increased risk of cardiovascular disease
(A164S variant) [24] or with a protection against cardiovascular
disease (ApoA-I Milano) [25]. We therefore analysed their ability to
attenuate the negative effects of the LL-37 peptide on human
endothelial cell viability. However, as is shown in Fig. S2, both
A164S and Milano variants exhibited the same degree of protection
against LL-37-induced cytotoxicity in HUVEC as the wild type
protein. Thus, the differences in atheroprotection of the two ApoA-I
variants appear to be unrelated to their protection against LL-37-
evoked cytotoxicity in endothelial cells.
3.3. Knockdown of ApoA-I by siRNA increases LL-37-induced
cytotoxicity

To demonstrate that endogenously produced ApoA-I protects
against LL-37-evoked cytotoxicity, we employed an siRNA approach
to downregulate the protein expression in an ApoA-I producing cell
type, HepG2 cells. As shown in Fig. 2 a and b, treatment with ApoA-I
siRNA attenuated the protein levels by 80e90% in both the cell
lysate and in the culture medium. In line with the ability of HepG2
cells to produce ApoA-I, this cell line appeared to be far less
Fig. 4. LL-37 binding does not affect ApoA-I stability. ApoA-I protein (3 mM) was incubate
ApoA-I was followed by intrinsic fluorescence (a) and CD spectroscopy (b). (a) Following ex
recorded and curves were obtained by reporting the maximum emission fluorescence (lmax)
function of temperature. The experimental data were fitted and melting temperature (Tm) e
are the means ± SEM.
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sensitive to LL-37-induced cytotoxicity as compared to HUVEC
(Figs. 2 and 3c). However, the siRNA-induced reduction in ApoA-I
expression was associated with a significant increase in the sensi-
tivity against the peptide (Fig. 3c).
3.4. LL-37 binding to ApoA-I does not affect protein stability

In order to inspect the impact of LL-37 binding on ApoA-I sta-
bility, thermal melting of ApoA-I/LL-37 complex was assayed by
both intrinsic fluorescence and CD spectroscopy (Fig. 4). The lmax
and the CD signal obtained at lower temperatures differed between
the complex and the protein alone, confirming a conformational
rearrangement of ApoA-I in the presence of LL-37. It is worth to
notice that close to the physiological temperature (37 �C), the
ApoA-I/LL-37 complex was still stable. The difference between the
complex and ApoA-I only was abolished only at temperatures
higher than 50 �C, probably due to the release of the LL-37 peptide
from ApoA-I. Accordingly, the ApoA-I/LL-37 complex showed a Tm
that was not significantly different from the one calculated for the
protein itself, suggesting that LL-37 binding to ApoA-I does not
affect protein stability.

In conclusion, we demonstrate that ApoA-I effectively binds LL-
37 (Kd ¼ 0.82 ± 0.59 mM) and that this interaction may represent
the basis for the ApoA-I-evoked attenuation of LL-37-induced host
cell cytotoxicity. ApoA-I, indeed, was able to rescue endothelial
cells from LL-37 treatment while siRNA treatment of ApoA-I
expressing HepG2 cells sensitized cells to LL-37-induced cytotox-
icity. This mechanism is likely a part of ApoA-I's repertoire of
atheroprotective functions. The binding of LL-37 to the ApoA-I
protein resulted in a structural rearrangement of ApoA-I, but it
did not result in a lower protein thermal stability, suggesting that
LL-37 may not impair other functions of ApoA-I.
d with LL-37 (1:2 molar ratio) in PBS for 30 min and thermal unfolding of LL-37-bound
citation at either 295 nm (left panel) or 280 nm (right panel), emission spectra were
as a function of temperature. (b)The CD signal at 222 nmwas recorded and plotted as a
stimated (a-b, lower panels) by sigmoidal fitting using GraphPad Prism 7. Data shown

tenuates LL-37-induced endothelial cell cytotoxicity, Biochemical and
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