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Mare SebesBKv@ Than 

The f low o f  informat ion f rom calcium-mobilizing receptors t o  nucleai factor o f  
activated T cells (NFAT)-dependent genes is crit ically dependent on interaction 
between the phosphatase calcineurin and the transcription factor NFAT. A 
high-aff inity calcineurin-binding peptide was selected f rom combinatorial pep- 
t ide libraries based on  the calcineurin docking mo t i f  o f  NFAT. This peptide 
potent ly inhibited NFAT activation and NFAT-dependent expression o f  endog- 
enous cytokine genes in T cells, w i thout  affecting the  expression o f  other 
cytokines tha t  require calcineurin but  not  NFAT. Substitution o f  the  optimized 
peptide sequence in to  the natural calcineurin doclting site incieased the cal- 
cineurin responsiveness o f  NFAT. Compounds that  interfere selectively w i t h  the  
calcineurin-NFAT interaction w i thout  affecting calcineurin phosphatase activ- 
i t y  may  be useful as therapeutic agents tha t  are less toxic than current drugs. 

Transcriptlo11 factors of the S F X T  famil) 
regulate immune responses as well as adap- 
t i le  res1)onses in hi.art and ski.leral muscle 
(1-3). Four of the i i ~  e S F A T  protsins 
(NFXT1 11. NFAT2 c .  SFAT3.  and NFAT4 
s)  are cqtoplasmic and are actiiatcd hq stim- 
ulation of cell surfaci. receptors coupled to 
Ca'+ mobilization ( I ) .  The C a '  -act~iatecl 
phos111iatase calcineurin depl~osplioryl~~tes 
these XFAT proteins. promoting their ni~cle- 
ar translocation and actilation ( I .  4 1. Cal- 
cini.urin doclts at a sit? in the conserlecl 
NFAT regulatory domain that has the con- 
sensus sequence PxTsIT (5 .  6 )  (Fig. 1A).  
1nti.rfering n it11 doclting of ca1cini.urin at the 

'Department of Pathology, Harvard Medical School; 
2The Center for  Blood Research, 200 Longwood Ave- 
nue, Boston, MA 021  15, USA. 'Division o f  Signal 
Transduction, Departments of Medicine and Surgery, 
Beth Israel Deaconess Medical Center: "Division of 
Signal Transduction, Department o f  Medicine, Beth 
Israel Deaconess Medical Center, and D e ~ a r t m e n t  o f  

P\rlxIT sequence impairs NFAT activation 
and SFAT-depi.nde~it ri.pol-tel. gzne eupres- 
sion ( 5 ) .  

To de~.elop high-affinity NFAT inhibitors 
based on thi. PslxlT sequence. n e  consttz~cted 
combinatorial peptide 1ihralii.s (7. 8) (Fig. I )  
The tirst librap. ~ r i t h  tlii. sequence MA- 
xxxPz[xlTxxl-lTCK (where x represents a mis- 
t1u.e of natural amino acid resic1ui.s) iras ran- 
ciomizecl in seven ri.sidues not f~llly conser~.ed 
nithin the SFAT famil) ( F I ~ .  1B). Peptides 
ne r s  selected for their ability to hind a gluta- 
thione S-transferasi. (GST) fi~sion protein con- 
taining tlie calcine~~rin catal3,tic do~~laiul ( 8 ) .  The 
peptide pool eluted fiom the calcini.urin col- 
1111111 sho\~-ed moderate selection for glycini.. 
serine, and 1)sinz at position 3: no preferred 
rcsiciueh at position 4: histicli~ie or aliphatic 
residues at position 5 :  and lliodcrate sc,ecrio~i 
for polar resiciues (threonine. Iysi~ie, glutamine. 
and gluramic acid) at position 7 (Fig. 1B). 
Position 9 slioived \vi.ak selectio~l for alioliatic 
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enue, Boston, M A  021 15, USA. suggests that the NF.AT binding site in cal- 
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Fig. 1. Evolution of an optimized peptide that inhibits the NFAT-cakineurin 
inleraction. (A) ~alcineurin docking sequences present in NFAT family pro- 
teins. (6) First round of selection. A combinatorial ~ e ~ t i d e  libraw anchored bv 
the se&ence PxlxlT from NFAT was selected by 'bi;lding t o  Ch-cakineurA 
(residues 2 through 347) (8). Positions fixed in the first (B) and second (C) 
degenerate peptide libraries are shown in the single-letter amino acid code, 
and randomized positions are indicated by X. Within the general library 
sequence, each X position contains roughly equimolar amounts of all amino 
acids except cysteine. Boxed residues are those conserved in all NFAT proteins. 
After extensive washing, the bound peptides were eluted and sequenced, and 
amino acids within each sequencing cycle were normalized to  their abundance 
in the original library mixture. Particular amino acids selected in the degen- 
erate positions are shown with preference values indicated in parentheses. 
Residues showing strong selection are shown bold and underlined. (C) Second 
round of selection. An alternative set of residues was chosen based on the 
initial screen (B) to  orient a secondary library, and the second library was 
selected on CST-cakineurin (residues 2 through 347) to  derive high-affinity 
peptides. Residues that were locked in based on the screening in (B) are boxed. 
Z indicates a member of a set of nonnatural amino acids (8). This screen 
revealed extremely strong selection for particular amino acids within the 
sequence, resulting in the optimal peptide VIVIT. (D) Sequence of the VlVlT 
peptide used in subsequent experiments. mer, oligomer. 

r. 

mNFATl(106 - 121) ASGPSPRIEITPSHEL 
hNFAT2(113-128) PALESPRIEITSCLGL 
hNFAT3(109 - 124) RVLECPSIRITSISPT 
hNFAT4(104- 119) KPFECPSIQITSISPN 
Consensus ----- PxIxIT----- 

Fig. 2 The VlVlT pep- 
tide is a potent inhibitor 
of the NFAT-cakineurin 
interaction, and its sub- 
stitution into the calci- 
neurin docking site 
enhances the calcineu- 
rin responsiveness of 
NFAT1. (A) lnhibition 
of the NFAT-calcineu- 
rin interaction (9). 
Calcineurin (Cn) was 
activated with cal- 
modulin (CaM) and 
CaCl, (Ca2+), and its 
binding to CST (lane 1) 
and CST-NFAT1 (resi- 
dues 1 through 415) 
(lanes 2 through 11) 
was evaluated by pro- 
tein immunoblotting. 
Cn A, calcineurin A 
chain. (B and C) Inhibi- 
tion of the calcineurin- 
mediated dephosphor- 
ylation of NFAT pro- 
teins (9). Lysates of 
HeLa cells expressing 
HA-NFAT1 (B) or Ly- 

A c n + ~ a ~ + C e ~ '  

G_ST GST-NFATl(1-415) 
SPRIEIT(IIM) VIVIT(!IM) SPAlAlA 

1 L  3 4 3 0  I U Y I U  I 1  IL  

B Cn+CaM+Ca2+ 
VIT 
4 SPAlAlA 
4 100 100 

C c ~ + c ~ M * c ~ "  
SPRlElT VlVlT 

QQ' A SPAlAlA - 5 25 100 5 25 100 1W 

NFAl 

NFAl 

NFAl 
, r a L .  .r 

1 2  3 4 5  6 7 6 9  

sates from HEK 2 9 3 ~  
cells expressing HA-NFAT1, HA-NFAT2, or HA-NFAT4 (C) were incubated 
with the phosphatase inhibitor sodium pyrophosphate (NaPPi, Lane 1) 
or with activated calcineurin (Cn+CaM+Ca2+) in the absence or 
presence of peptides at the indicated micromolar concentrations. The 
phosphorylation status of NFAT proteins was evaluated by protein 
immunoblotting with anti-HA. The positions of phospho- and dephos- 
pho-NFAT are indicated by arrows in  (B). (D) lnhibition of NFAT- 
dependent gene expression. (Left panel) Jurkat cells were cotransfected with 
a 3xNFAT-Luc reporter plasmid and with expression plasmids encoding 
murine NFATl, CFP, CFP-SPRIEIT, or CFP-VIVIT as indicated (73). (Right 
panel) Jurkat cells were cotransfected with a 3xNFAT-Luc reporter 
plasmid and with expression plasmids encoding CFP, CFP-VIVIT, and 
murine NFATl, human NFAT2, and human NFAT4 as indicated (77). 

D 
1 5 10 15 

VIVIT (16 mer) MAGPHPVIVITGPHEE 

Expressed - &% ++ - ;+ -a++ -+;$ - ;6 -a++ 
peptide: a 4' 

L - +CIA 
r 

Wlld type NFATl NFATI [VIVW 
tono(pM): o 0.3 1 3 o 0.3 3 -- 

Twenty-four hours after transfection, Luciferase activity induced by 
endogenous NFAT (Endog.) or by overexpressed NFAT proteins was 
measured in unstimulated cells and in cells stimulated for 6 hours with 
PMA and ionomycin. (E) Substitution of the VlVlT sequence into NFATl 
(72). C1.7W2 murine T cells were transfected with wild-type HA-NFAT1- 
CFP or with the mutant HA-NFATl[VIVIT]-CFP, in which HPVlVlTCP replac- 
es SPRIEITPS. Cells were stimulated with ionomycin (lono) at the concen- 
trations indicated in the absence or presence of 1 FM GA, and the 
phosphorylation status of NFATl was assessed by protein immunoblotting 
with anti-HA. (F) Localization of NFATl and NFATl[VIVIT] in cells (72). HeLa 
cells transiently expressing wild-type HA-NFAT1-CFP or HA-NFAT1 [VIVIT]- 
CFP were left untreated or were treated with 10 p,M G A  (for 16 hours). 
NFAT1 proteins were visualized in fixed cells by CFP fluorescence. 
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used an affinity-driven peptide evolution tech- 
nique (7). A second degenerate peptide library, 
MAGxHP[T/x][z~x]xIxGPHEE (where z repre- 
sents a set of nornatural residues) was synthe- 
sized, locking in some of the residues selected 
in the first screening while randomizing other 
positions that had been previously fixed (8) 
(Fig. 1C). Positions 3 and 5 were fixed as 
glycine and histidine; positions 12 and 13 were 
fixed as glycine and proline to favor the puta- 
tive turn. Position 7 was biased to contain 50% 
threonine and 50% all other residues. Position 8 

contained natural amino acid residues and five 
additional nornatural amino acid residues with 
large aromatic or cyclic groups (8), to deter- 
mine whether binding affinity could be im- 
proved by substituting a large hydrophobic side 
chain for the isoleucine side chain naturally 
conserved at this position in NFAT proteins. 
Position 10 was fixed as isoleucine, positions 9 
and 11 were randomized, and the two COOH- 
terminal lysines were replaced by glutarnates to 
prevent any bias produced by their positive 
charge. 

A 3xNFAT-Luc 
Cakineurin phosphatase activity 

0 2 0 4 0 6 0  
I 

~ ~ h ~ -  
SPRIER 100 

GFP-VIVIT: 0 0.08 025 0.50 0.75 0 0.08 0.25 0.50 0.75 
GFP: 0.75 0.67 050 0.25 0 0.75 0.67 0.50 0.25 0 

C D IL-2 p-tw TNFa promoter 
g 3xNFAT-Luc OUnstlm 

.PMA+iono 
69CD3+CD28 

g 1 
10 

P + i : - + + + +  - + + + +  3 0  . . . .  

CsA(nM): 0 0 0 5  5 1 w 0 0 0.5 5 100 - GFP GFP-VNIT - GFP GFP-VIVIT 

Fig. 3. The VlVlT peptide selectively inhibits NFAT activation but not calcineurin activity. (A) The 
VlVlT peptide did not inhibit calcineurin phosphatase activity, assayed as radiolabel released 
(counts per minute X from 32P-phospho-RII peptide (9). The numbers next to  each peptide 
label indicate peptide concentrations (micromolar). CsAICypA complexes were used at 10 pM. (B) 
Selective inhibition of NFAT reporter activity (1 7). Jurkat cells were cotransfected with 3xNFAT-Luc 
(left panel) or 2xNF-KB-Luc (right panel) reporter plasmid, and with CFP and CFP-VIVIT expression 
plasmids as indicated (measured in micrograms of plasmid per lo6 cells). Twenty-four hours after 
transfection, cells were left untreated (open bars) or were stimulated for 6 hours with PMA and 
ionomycin (solid bars). (C) Calcineurin dependence of NFAT and NF-KB reporter activity in T cells 
(11). Jurkat cells were transfected with 3xNFAT-Luc (left panel) or 2xNF-KB-Luc (right panel) 
reporter plasmid. Twenty-four hours after transfection, cells were left unstimulated or were 
stimulated for 6 hours with PMA and ionomycin (P+I) in the absence or presence of CsA. (D) 
Inhibition of NFAT-dependent activation of the IL-2 and TNF-a promoters (7 7). Jurkat cells were 
cotransfected with CFP or CFP-VIVIT expression plasmids and with luciferase reporter plasmids 
driven either by the human IL-2 promoter (left panel) or by the human TNF-a promoter (right 
panel). Twenty-four hours after transfection, cells were left unstimulated (open bars) or were 
stimulated for 6 hours with PMA and ionomycin (solid bars) or with anti-CD3 and anti-CD28 
(hatched bars). 

Screening with the second library yielded 
strongly preferred residues at most of the 
randomized positions (Fig. 1C). The polar 
residues that occur naturally at the variable 
residues of the PxIxIT sequence in NFAT1-4 
(RIS at position 7; EIRIQ at position 9) were 
not highly selected; rather, bulky or 
f3-branched hydrophobic residues (valine, 
isoleucine, and leucine) were preferred. Pro- 
line was preferred at position 4, echoing its 
occurrence at this position of NFATl (but not 
NFAT2-4) (Fig. 1A). Isoleucine was strin- 
gently preferred at position 8, with lesser 
selection for other hydrophobic amino acids 
and no selection for the nonnatural amino 
acids, which is consistent with the invariance 
of isoleucine at this position of the PxIxIT 
sequence in all four NFAT proteins (Fig. 1A). 
Finally, there was strong selection for the 
conserved threonine at position 11 of the 
PxIxIT sequence, with a weaker preference 
for serine. 

We synthesized the predicted optimal 
peptide MAGPHPVIVITGPHEE (6) (Fig. 
1 D) and examined its effect on the interaction 
of calcineurin with NFAT (9) (Fig. 2). This 
peptide (referred to hereafter as VIVIT) was 
about 25 times more effective than the orig- 
inal SPRIEIT peptide (5) at inhibiting the 
binding of activated calcineurin to GST- 
NFATl (Fig. 2A). The VIVIT peptide was 
also superior at inhibiting calcineurin-medi- 
ated dephosphorylation of NFATl, NFAT2, 
and NFAT4 in cell extracts (Fig. 2, B and C). 
When expressed as a fusion protein with 
green fluorescent protein (GFP), the VIVIT 
peptide efficiently inhibited calcineurin-de- 
pendent nuclear translocation of NFATl (10) 
as well as activation of an NFAT-AP-1 re- 
porter by endogenous or overexpressed 
NFATl, NFAT2, and NFAT4 (11) (Fig. 2D). 
Thus, iterative peptide selection based on 
calcineurin binding yielded a highly inhibito- 
ry peptide, capable of disrupting all aspects of 
NFAT activation by calcineurin much more 
effectively than peptides spanning the natural 
calcineurin docking sequences of NFAT. 

We asked whether substituting the high- 

Fig. 4. The VlVlT pep A mCD4 mCD4 6 mCD4 mCD4 c mCD4 mCD4 
tide distinguishes NFAT- untran- GFP GFP-VIVTT ~ C W  GFP GFP-VIVIT I ~ C D ~  ~ a c k  translacted GFP GFP-VIVIT --- 
dependent and NFAT- CSA - P+I - P+I -- P+I - Cs A 

independent categories Z - )I - P+I - P+l CsA P+I - P 4  - P+I 
m 

r - 11-3 
of cyclosporin-sensitive -IL-2 -TNFP 

wnes. The exmession of -IL-13 3 I ~ ~ S F  -LTO 

$okine ~ R N P V  by - . Jurkat T cells expressing -L 

mCW and CFP or CFP- 1 4 1 8 1 -C 
VlVlT as indicated is 1 2 3 4 5 b i 8 9 10 

shown (73). Cells were 
left unstimulated (dash- 
es) or were stimulated 
for 3 hours with PMA 
and ionomycin (P+I) in the presence or absence of CsA, and levels of cytokine 
mRNAs were analyzed by RNase protection assay. RNA loading is indicated by 
the intensity of housekeeping transcripts I32 and CAPDH. (A and B) NFAT- 
dependent expression of IL-2, 11-13, 11-3, TNF-ct, CM-CSF, and MIP-la mRNAs. 

Autoradiogram exposure times were 24 hours (A) and 12 hours (B) for the upper 
panel and 4 hours (A) and 2 hours (B) for the lower panel (C) NFAT-independent 
but CsA-sensitive expression of TNF-f3 and LT-f3 mRNAs. Exposure times were 36 
hours for the upper panel and 12 hours for the lower panel 

www.sciencemag.org SCIENCE VOL 285 24 SEPTEMBER 1999 2131 



R E P O R T S  

affinity VIVIT sequence into a wild-type 
NFAT protein would increase its responsive- 
ness to calcineurin. Compared to wild-type 
NFAT 1, a mutant NFAT1 [VIVIT] protein 
with the sequence SPRIEITPS replaced by 
HPVIVITGP (12) was significantly dephos- 
phorylated even in resting cells and required 
lower concentrations of ionomycin to be h l ly  
dephosphorylated (Fig. 2E). Dephosphoiyl- 
ation of NFAT1 [VIVIT] was calcineurin-de- 
pendent because it was blocked by cyclospor- 
in A (CsA). Further, whereas wild-type 
NFATl was cytoplasmic in resting cells (Fig. 
2F, left), NFATl[VIVIT] consistently showed 
partial nuclear accun~ulation, which was pre- 
vented by CsA (Fig. 2F, right). 

Inhibition of NFAT activation by the VIVIT 
peptide did not reflect inhibition at the cal- 
cineulin active site, because the peptide, at a 
concentration (100 p,M) that effectively inhib- 
ited NFAT1-calcineurin binding and NFATl 
dephosphorylation (Fig. 2, A through C), did 
not inhibit calcineurin phosphatase activity to- 
ward the H I  phosphopeptide (Fig. 3A). In the 
same experiment, CsA-cyclophilin A complex- 
es (10 pM) inhibited calcineurin phosphatase 
activity by -95% (Fig. 3A). Consistent with 
this observation, expression of the GFP-VIVIT 
fusion protein inhibited activation of an NFAT 
reporter but not of an NF-KB reporter (Fig. 3B), 
although both reporters were equivalently sen- 
sitive to inhibition of calcineulin with CsA (Fig. 
3C). Thus, the VIVIT peptide selectively i~lhib- 
its NFAT activation without disrupting other 
calcineulin-dependent pathways. GFP-VIVIT, 
but not GFP, inhibited reporter gene expression 
driven by the interleukin-2 (IL-2) and tunlor 
necrosis factor a (TNF-a) promoters in T cells 
stimulated with phorbol ester (PMA) plus iono- 
inycin or with antibody to CD3 (anti-CD3) plus 
anti-CD28 (Fig. 3D). 

We tested the ability of the VIVIT peptide 
to inhibit expression of endogenous NFAT- 
dependent genes (Fig. 4). Jurkat cells highly 
enriched for expression of GFP-VIVIT or GFP 
(13) were stimulated and analyzed for cytokine 
expression by ribonuclease (RNase) protection 
assay. GFP-VIVIT inhibited the inducible ex- 
pression of IL-2, IL-13, IL-3, TNF-a, ganulo- 
cyte-macrophage colony-stimulating factor 
(GM-CSF) and macrophage inflammatory pro- 
tein l a  (MIP-la) (Fig. 4, A and B), thus estab- 
lishing these genes as NFAT-dependent genes 
and confirming earlier reporter assays indicat- 
ing the presence of functional NFAT sites in 
their promoter-enhancer regions (I). In con- 
trast, GFP-VIVIT did not affect CsA-sensitive 
expression of TNF-P and lymphotoxin-P (LT- 

calcineurin have been implicated in cardiac 
and skeletal muscle hypertrophy (2, 3), in 
slow fiber differentiation in skeletal muscle 
(3), in cardiac valve development ( l4 ) ,  and in 
differentiation of a preadipocyte cell line to 
adipocytes in culture (15). These conclusions 
have relied on analysis of mouse models, 
identification of plausible NFAT sites in gene 
regulatory regions, expression of modified 
NFATs and calcineurins, and the use of CsA 
and FK506. The VIVIT peptide constitutes a 
highly selective inhibitor of NFAT, which 
can now be used for direct identification of 
NFAT target genes in these various cell 
types. 

Substitution of the VIVIT sequence, a 
high-affinity calcineurin docking site, into 
wild-type NFATl causes it to be dephospho- 
rylated and activated even in resting cells, 
which have low basal calcineurin activity. 
Evidently evolution has selected for an 
NFAT-calcineurin interaction of low to mod- 
erate affinity that precludes NFAT activation 
in resting cells. Our results call attention to 
the general point that many protein-protein 
interactions, especially those involving en- 
zyme-substrate interactions or transient dock- 
ing interactions (16), may be constrained to a 
range of low or moderate affinities in order to 
facilitate infomation transfer from one intra- 
cellular location to another, to ensure revers- 
ibility, and to prevent inappropriate activa- 
tion at subthreshold levels of stimulus. The 
protein-protein interfaces involved in these 
reversible interactions would lend themselves 
to the design of small peptide or nonpeptide 
inhibitors. 

The immunosuppressants CsA and FK506, 
used clinically to prevent transplant rejection, 
inhibit the phosphatase activity of calcineurin 
toward all its protein substrates, including 
NFAT (I). Although these drugs have revolu- 
tionized transplant therapy, their use is associ- 
ated with progressive loss of renal function, 
hypertension, neurotoxicity, and increased risk 
of malignancy (1 7). It is not yet clear to what 
extent these toxicities are due to inhibition of 
NFAT, to interference with dephosphorylation 
of other calcineurin substrates, or to a potential- 
ly non-calcineuiin-dependent up-regulation of 
TGF-P. Selective NFAT inhibitors will allow 
us to address these questions directly. NFAT 
inhibitors with less toxicity than CsA and 
FK506 could be useful in heating chronic ail- 
ments such as myocardial hypertrophy, allergy, 
arthritis, and autoimmune disease. 
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Identification of an RNA-Protein 
Bridge Spanning the Ribosomal 

Subunit Interface 
Gloria M. Culver,* Jamie H. Cate,t G. Zh. Yusupova, 

Marat M. Yusupov, Harry F. Nollerz 

The 7.8 angstrom crystal structure of the 705 ribosome reveals a discrete 
double-helical bridge (B4) that projects from the 505 subunit, making contact 
with the 305 subunit. Preliminary modeling studies localized its contact site, 
near the bottom of the platform, to  the binding site for ribosomal protein 515. 
Directed hydroxyl radical probing from iron(ll) tethered to  515 specifically 
cleaved nucleotides in the 71 5 loop of domain II of 235 ribosomal RNA, one of 
the known sites in 235 ribosomal RNA that are footprinted by the 305 subunit. 
Reconstitution studies show that protection of the 715 loop, but none of the 
other 305-dependent protections, is correlated with the presence of 515 in the 
305 subunit. The 715 loop is specifically protected by binding free 515 to  505 
subunits. Moreover, the previously determined structure of a homologous 
stem-loop from U2 small nuclear RNA fits closely to the electron density of the 
bridge. 

Ribosomes are large ribonucleoprotein com- units is of great importance. Numerous ex- 
plexes that are responsible for the fundamen- periments have identified RNA and protein 
tal process of protein synthesis. They are 
composed of two asymmetric subunits, each 
of which contributes to specific functions 
during translation. The interface between 
these subunits allows for the coordination of 
these discrete functions and also provides the 
binding surfaces for many substrates and li- 
gands. Thus, the identification of specific 
molecular interactions between the two sub- 
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elements that potentially contribute to  this 
subunit-subunit interface (1-3). However, in 
the absence of high-resolution structural in- 
formation, identification of the molecular 
components comprising specific subunit-sub- 
unit interactions has been difficult. 

The 7.8 A x-ray crystal structure of the 
Thermus thermophilus 7 0 s  ribosome ( 4 )  
shows that the two ribosomal subunits are 
connected by a complex network of molec- 
ular interactions. One of these (bridge B4) 
can be identified as a double-stranded RNA 
stem-loop that is continuous with the 5 0 s  
subunit and makes contact with the bottom 
of the platform of the 3 0 s  subunit (Fig. 1). 
Immunoelectron microscopy and prelimi- 
nary modeling studies of the 3 0 s  subunit 
based on extensive biochemical, biophysi- 
cal, and phylogenetic evidence localize the 
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binding site for protein S15 to this region of 
the 3 0 s  subunit (5) .  Additionally, evidence 
for the placement of S15 at the subunit 
interface has come from intersubunit cross- 
linking studies (2) and a temperature-sen- 
sitive S 15 mutant that is defective in sub- 
unit association (6). 

To test the possible proximity of S15 to 
2 3 s  ribosomal RNA (rRNA), we performed 
directed hydroxyl radical probing (7). Iron(I1) 
was tethered by a linker, 1-(p-bromoacet- 
amidobenzy1)-EDTA (BABE) (8) ,  to unique 
cysteine (C) residues on the surface of S15 
at amino acid positions 12, 36,  46, and 7 0  
by directed mutagenesis (9), using the pub- 
lished solution and crystal structures of S15 
as a guide (10). The Fe(I1)-derivatized pro- 
teins were incorporated into 3 0 s  subunits 
by in vitro reconstitution (11) and associ- 
ated with 5 0 s  subunits to form 7 0 s  ribo- 
somes, which were then purified by sucrose 
gradient centrifugation. The 3 0 s  subunits 
containing S15 derivatized at position 7 0  
failed to associate with 5 0 s  subunits, al- 
though they appeared to be normally as- 

Fig. 1. Electron density from the 7.8 A crystal 
structure of the T. thermophilus 705 ribosome 
(4) showing interaction of a discrete RNA fea- 
ture of the 505 subunit (white) with the bot- 
tom of the platform of the 305 subunit (blue). 
Electron density is contoured at 1.1~. 
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