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Abstract

After the ingestion of fat- and glucose-rich meals, gut hormones are secreted into the circulation in order to stimulate insulin secretion.

This so-called ‘‘incretin effect’’ is primarily conferred by Glucagon-like peptide 1 (GLP-1) and Gastric Inhibitory Polypeptide (GIP). In

contrast to GLP-1, GIP has lost most of its insulinotropic effect in type 2 diabetic patients. In addition to its main physiological role in the

regulation of endocrine pancreatic secretion, GIP exerts various peripheral effects on adipose tissue and lipid metabolism, thereby leading to

increased lipid deposition in the postprandial state. In some animal models, an influence on gastrointestinal functions has been described.

However, such effects do not seem to play an important role in humans. During the last years, the major line of research has focussed on

GLP-1, due to its promising potential for the treatment of type 2 diabetes mellitus. However, the physiological importance of GIP in the

regulation of insulin secretion has been shown to even exceed that of GLP-1. Furthermore, work from various groups has provided evidence

that GIP contributes to the pathogenesis of type 2 diabetes to a considerable degree. Recent data with modified GIP analogues further

suggested a possibility of therapeutic use in the treatment of type 2 diabetes. Thus, it seems worthwhile to refocus on this important and—

sometimes—neglected incretin hormone. The present work aims to review the physiological functions of GIP, to characterize its role in the

pathogenesis of type 2 diabetes, and to discuss possible clinical applications and future perspectives in the light of new findings. D 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

Almost 100 years ago, Moore et al. [1] first reported on

the antidiabetogenic effect of an extract of duodenal mucous

membranes. The authors proposed a stimulation of pancre-

atic secretion to be mediated by this extract. However, it

took another 60 years until the establishment of an immuno-

assay for insulin allowed Dupré and Beck [2] to show an

insulinotropic effect of intestinal mucous extracts in normal

human subjects. In contrast, no stimulation of insulin release

could be observed in juvenile-onset diabetic subjects [2].

Before this insulinotropic effect of a duodenal mucous

extract had been observed, an inhibitory influence on gastric

acid secretion was demonstrated. Therefore, in 1930, Kosaka

and Lim [3] proposed the term ‘‘enterogastrone’’, based on

their observations, that gastric acid secretion and gastric

emptying could be inhibited by intravenously infused

extracts of intestinal mucosa.

Further purification of such extracts that were devoid of

cholezystokinin-pancreozymine (CCK-PZ) activity con-

firmed the presence of other intestinal hormones with

inhibitory effect on gastric acid secretion [4,5]. Based on

these effects, the name ‘‘Gastric Inhibitory Peptide’’ was

proposed by Brown et al. in 1971. Brown and Dryburgh [6]

were the first to report the complete amino acid sequence of

the newly discovered peptide in 1971. The inhibitory effects

on H+ secretion were further observed in innervated canine

Bickel-type pouches [7], but could later not be confirmed in

humans [8].

The assumption that intestinal peptides must be involved

in the regulation of postprandial insulin secretion has been

based on the classical experiments by Elrick et al. [9] and

McIntyre et al. [10]. They found that the insulin responses to

oral glucose exceeded those measured after intravenous

administration of equivalent amounts of glucose. Their
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findings led to the conclusion that gut-derived factors, so-

called incretins, influence postprandial insulin release [2,9].

Accordingly, the stimulation of insulin secretion by GIP was

shown in dogs [11], isolated perfused rat pancreas [12,13],

and, later, also in humans [14–18]. Therefore, the alter-

native term ‘‘Glucose-Dependent Insulinotropic Polypep-

tide’’ may be even more suitable for GIP, as proposed by

Brown and Pederson [19].

Since a hypersecretion of GIP following oral glucose was

observed in type 2 diabetic patients, it was hypothesized that

a diminished responsiveness of insulin secretion towards

GIP might take part in the development of type 2 diabetes

[20,21]. Along this hypothesis, a reduced insulinotropic

effect of GIP was described after the intravenous admin-

istration of the peptide in type 2 diabetic patients [22–28].

Interestingly, the other incretin hormone, Glucagon-like

peptide 1 (GLP-1) was shown to stimulate insulin secretion

in different stages of type 2 diabetes effectively [27] (Table

1), although both peptides share similar signal transduction

pathways after binding to different, non-cross-reacting

receptors [29,30]. Therefore, due to its promising potential

in the treatment of type 2 diabetes, the major interest of

research has recently focused on GLP-1, whereas only

minor effort has been undertaken to the further examine

GIP and its actions.

However, a considerable number of recent findings make

it worthwhile to further eludicate the role of GIP in the

pathogenesis of type 2 diabetes and to discuss a possible

role of the peptide in the future treatment of this widespread

chronic disease.

2. Secretion and degradation of Gastric Inhibitory

Polypeptide

Polak et al. [31] first localized Gastric Inhibitory Peptide-

secreting cells in the duodenum and jejunum. They antici-

pated D1 cells to be the origin of the peptide. However,

based on their studies in pigs and dogs, Buffa et al.

identified so-called K-cells to be responsible for the secre-

tion of GIP [32–34]. Whereas these K-cells were found

predominantly in the proximal gut [32], the distal gut was

believed to mainly contain the GLP-1-secreting L-cells

[35,36] (Fig. 1). Recent observations, however, indicate that

GLP-1 and GIP are in principle co-localized throughout the

gastrointestinal tract [37,38].

The ingestion of carbohydrate- and lipid-rich meals has

been shown to be the main stimulant for the secretion of GIP

[11,21,39,40]. However, the mediation of GIP secretion

following meal ingestion has not been totally understood

yet. GIP secretion reaches peak concentrations already 15–

30 min after the intake of oral glucose or lipids, long before

the substrates ingested are present in the gut [11,21,39,40].

Therefore, an involvement of the vagus nerve in the stim-

ulation of GIP secretion, as also discussed for the secretion

of GLP-1 [41], seems likely.

On the other hand, the identification of glucokinase

expression in the K-cells indicates a glucose-sensing mech-

anism, similar to that operating in pancreatic B-cells, to be

involved in the secretion of GIP [42]. In addition, the

secretion of GIP is closely correlated to the secretion of

GLP-1 [43], although the mechanism underlying this co-

secretion is still unclear. One possible explanation is a

paracrine interaction between both incretin hormones, as

indicated by recent data in dogs [44,45].

Rapidly after its secretion into the circulation, intact GIP

[1–42 amide] is cleaved at the NH2-terminus yielding the

fragment GIP [3–42 amide] [46–49] (Fig. 2). The enzyme

dipeptidyl-peptidase IV (DPP IV), that also cleaves GLP-1

and many other peptides of the glucagon/secretin family,

has been shown to be responsible for the degradation of

GIP [1–42] amide [47,50,51]. The truncated GIP [3–42

amide] has lost its biological activity regarding the stim-

ulation of insulin secretion and may even act as an antag-

onist of GIP at its receptor [46,52,53]. Using different

radioimmunoassays with various antibodies raised against

either the C-terminus or the N-terminus of the peptide, the

biological half life of intact GIP was shown to be approx-

imately 7 min, whereas it was more than 17 min for the

amount detected with C-terminal directed antibodies [49].

Therefore, it is evident that the biological half life of GIP is

much shorter than estimated in earlier studies using assays

that do not distinguish between intact GIP and its metab-

olites [54,55].

The importance of DPP IV in the inactivation of peptide

hormones involved in the regulation of insulin secretion was

further shown in animal studies using DPP IV inhibitors.

Administration of DPP IV inhibitors led to a significant

improvement of glucose homeostasis [50,56,57]. Further-

more, the generation of a mouse model with a targeted

disruption of the CD26 gene (synonymous for DPP IV)

showed the importance of DPP IV in the inactivation of

incretin hormones [58]. One must consider that DPP IV

activity is much greater in some animals than in man

Table 1

Comparison of the effects of Gastric Inhibitory Polypeptide (GIP) and

Glucagon-like peptide (GLP-1)

GIP GLP-1 Reference

Insulin secretion

in normal subjects

Stimulation Stimulation [14,133]

Insulin secretion

in type 2 diabetic

patients

Reduced

stimulation

Preserved

stimulation

[27]

Insulin extraction Reduction No effect [112]

Glucagon secretion No effect Suppression [27,163]

B-cell proliferation Stimulation Stimulation [106,107]

Gastric emptying Acceleration (?) Deceleration [93,95]

Gastric acid

secretion

No effect Slight

suppression

[92,164]

Lipogenesis Stimulation Stimulation [77,79]

Satiety Not examined Enhancement [135]

Body weight Not examined Reduction [165]
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[47,50]. In humans, however, clinical evidence for a glu-

cose-lowering potential of DPP IV inhibition is still lacking.

A central role of the kidneys in the clearance of GIP has

been anticipated from elevated concentrations of GIP in

patients with renal failure and uremia [49,59–61]. More-

over, renal brush border membranes contain high amounts

of DPP IV [47]. Renal arterio-venous differences of the GIP

concentrations supported these observations [62]. Despite

earlier studies reporting no hepatic extraction of GIP in rats

and dogs [63,64], recent data by Deacon et al. [57] in pigs

further suggested an involvement not only of the kidneys,

but also of the liver and the peripheral skeletal muscles in

the removal of intact GIP.

3. The role of Gastric Inhibitory Polypeptide in the

physiology of lipid metabolism and adipose tissue

An anabolic function of GIP was expected from the

observation of elevated plasma concentrations of immunor-

Fig. 1. Interactions of Glucagon-like peptide 1 (GLP-1) and Gastric Inhibitory Polypeptide (GIP) with peripheral tissues and organs. After meal ingestion, the

incretin hormones GIP and GLP-1 are secreted from the K-cells and from the L-cells throughout the gut. GIP stimulates insulin secretion from the endocrine

pancreas, increases lipogenesis, and suppresses gastric acid output, whereas the effects on gastric emptying have not been finally clarified yet. GLP-1 stimulates

insulin secretion, suppresses glucagon secretion, increases glycogen synthesis, increases satiety and fullness, and inhibits gastric emptying and acid secretion.

Dotted lines indicate putative actions that are not proven in humans.
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eactive GIP in obese and in type 2 diabetic patients [65–

68], as well as in ob/ob mice [69]. However, these data

could not be confirmed in all studies [22,70–72]. These

conflicting results have been attributed to different study

conditions, including the composition of the test meals

applied to stimulate GIP secretion, preceding daily caloric

intake, and the influence of different insulin clearance rates

leading to various degrees of hyperinsulinemia [73]. In

addition, it is important that these studies were based on

C-terminally directed radioimmunoassays that do not allow

to distinguish between the biologically intact GIP [1–42

amide] and the N-terminally degraded, biologically inactive,

GIP [3–42 amide]. Recent data using a novel assay for the

intact peptide [49] did not reveal significant differences in

the fasting and postprandial GIP concentrations between

type 2 diabetic patients and matched healthy subjects [74].

A biological function for GIP in lipid metabolism is further

indicated by the stimulation of GIP release in the presence

of fat [21,40] (Fig. 1).

In cultured preadipocytes, incubation with GIP dose-

dependently stimulates lipoprotein lipase activity [75]. This

effect is unique to GIP and not mimicked by the other

incretin hormone, GLP-1, that, despite similar actions on

insulin secretion [27], has no effect on lipoprotein–lipase

activity [76]. In addition, GIP has been shown to induce

fatty acid incorporation into adipose tissue in epididymal fat

pads [77] and obese Zucker rats [78], and to stimulate fatty

acid synthesis in omental adipose tissue [79]. The lipolytic

glucagon effect on adipocytes can potently be inhibited by

simultaneous incubation with GIP [80,81]. Consistent with

a biologically important function of GIP on lipid metabo-

lism, GIP receptor mRNA has been detected in adipose

tissue [82]. More convincingly, studies in rat adipocytes

provided evidence that these receptors stimulate intracellu-

lar cAMP production after ligand binding [83]. Such direct

effects on adipocytes are supported by recent data showing

increased lipid accumulation in adipocytes incubated with

GIP [84].

In dogs, infusion of porcine GIP significantly lowered

the rise in plasma triglycerides after infusion of chylomi-

crons, suggesting a role for GIP in the disposition of

ingested fat [85], but these findings could not be confirmed

in other systems [86]. After intraduodenal infusion of a lipid

test meal in rats, plasma triglyceride increments were

attenuated under the simultaneously infusion of GIP. In

addition, immunoneutralisation of endogenous GIP by

injection of GIP antiserum increased the triglyceride rise

following a fat load [87]. However, the drop of triglyceride

concentrations may secondarily be explained by a rise in

insulin concentrations [88]. Therefore, it is difficult to

distinguish between direct GIP effects on fat deposition

and an indirect effect based on the insulinotropic GIP effect.

Recent data obtained in mice with a GIP receptor knock-out

further suggested an important role for GIP in the regulation

of adipose tissue mass, as a high-fat diet did not lead to

obesity in these animals [89]. Therefore, it is possible that

GIP represents an ‘‘insulin-sensitizer’’ in adipose tissue.

In humans, however, there is no clear evidence for an

effect of GIP on lipid metabolism [90]. It seems worthwhile

to study the effects of GIP on triglyceride and free fatty acid

levels in more detail.

4. The biological role of Gastric Inhibitory Polypeptide

in stomach physiology

Before the physiological importance of GIP as an incre-

tin was realized, the peptide was believed to act predom-

inantly on the stomach. This assumption has been based on

early studies with impure, cholezystokinin (CCK)-contain-

ing, peptide-preparations, revealing inhibitory actions on

motor activity and acid secretion in the canine stomach [5].

In denervated pouches of the stomach, a dose-dependent

inhibition of pentagastrin-stimulated gastric acid secretion

was shown using a highly purified preparation of GIP [6,7].

This seemed to duplicate the original observations showing

inhibitory effects on gastric acid secretion due to impurities

in available CCK preparations. Therefore, GIP was thought

to act as an inhibitor of gastric functions. Based on these

observations, the newly discovered intestinal peptide was

named Gastric Inhibitory Polypeptide [6]. Later, with the

infusion of porcine GIP in intact dogs, only infusion rates

leading to concentrations exceeding the physiological range

were shown to inhibit gastric acid secretion [91]. In

Fig. 2. Amino acid sequence of human Gastric Inhibitory Peptide and Glucagon-like peptide 1. Sequence homologies are indicated in bold letters. The arrow

points to the cleaving site of dipeptidyl-peptidase IV [47].
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humans, a significant inhibition of gastric acid output was

also observed after the infusion of pharmacological doses of

porcine GIP [8] (Fig. 1). However, all these studies were

performed using porcine GIP that, as mentioned above,

does not completely cross-react with antibodies raised

against human GIP, thereby leading to an underestimation

of circulating concentrations [46]. Therefore, Nauck et al.

[92] studied the effects of physiological doses of synthetic

human GIP alone, and in co-infusion with human GLP-1 in

humans. In this study, neither GIP nor GLP-1 inhibited

gastric acid secretion under physiological conditions (Table

1). However, in the combination of GIP and GLP-1, a

slight, but significant decrement in chloride output as well

as a reduction of total acid output was observed [92].

Therefore, it seems that under physiological conditions,

the effect of GIP on gastric acid secretion in humans is

negligibly low. While GLP-1 is known to be a potent

inhibitor of gastric emptying [93,94], GIP seems to act in

an opposite way, leading to accelerated emptying of the

stomach [95] (Fig. 1).

In conclusion, although the impact of GIP on the

regulation of gastrointestinal function appears to be the

negligible compared to the effects on endocrine pancreatic

secretion, some effects seem to exist. In humans, however,

these effects have not yet been studies in detail.

5. Effect of Gastric Inhibitory Polypeptide on endocrine

pancreatic secretion

Already before the complete amino acid sequence of GIP

was described [6], Dupré and Beck [2] reported a stimula-

tion of insulin release after intravenous administration of an

extract of intestinal mucosa, although the composition of

this extract was still unknown. An insulinotropic action of

endogenous GIP was further expected from the observation

of similar increases of plasma insulin and GIP levels

following ingestion of glucose, fat, amino acids, or test

meals [19]. Indeed, a stimulation of insulin secretion by GIP

was found in isolated perfused rat pancreas [13,96], in dogs

[11], and also in humans [14,24,97] (Fig. 1). A significant

insulinotropic effect, however, was only observed in pres-

ence of elevated glucose concentrations [11,13,98]. The

glucose dependency of the insulinotropic GIP effects was

confirmed by stepwise hypo-, eu-, and hyperglycemic clamp

studies with the infusion of GIP [16,99,100], whereas

concomitant hyperinsulinemia had no effect on GIP-stimu-

lated insulin secretion [15].

Since increased glucose-induced insulin secretion was

attributed to the rise of postprandial GIP secretion also in

type 2 diabetic patients, antidiabetic properties of GIP were

discussed already in the 1970s [22]. Accordingly, porcine

GIP was infused into type 1 and type 2 diabetic patients.

However, insulin secretion following GIP infusion was

significantly lower in diabetic patients compared to normal

subjects [23,101].

The amino acid sequence of porcine GIP was shown to

differ from human GIP in two amino acid positions [52].

Therefore, it seemed probable that the circulating GIP

concentrations in humans had been underestimated based

on radioimmunoassays using porcine GIP standards. Fur-

thermore, using porcine GIP in humans requires a proof of

equipotent properties of human and porcine GIP. As a result,

infusions with the aim of reaching plasma concentrations

that resemble those after oral meal ingestion had chosen

suboptimal doses. In addition, commercially available prep-

arations of GIP were shown to contain the biologically

inactive fragment GIP [3–42 amide] (32%), cholezystokinin

[CCK-33] (2%), CCK-39 (2%), and possible other unde-

fined peptides. Thus, the effects observed are indistinguish-

able from the effects of the additional peptides in the

solutions infused [46]. Therefore, it was meaningful to study

the insulinotropic properties of synthetic human GIP in

more detail. In normal subjects, GIP was shown to act as

a potent stimulus of insulin secretion under hyperglycemic

conditions [55,100].

It was concluded that the effect of endogenously released

GIP is an important mechanism of postprandial insulin

secretion, whereas the physiological role of GIP in the

fasting state seems to be less important. In normal subjects,

GIP is responsible for approximately 60% of the incretin

effect [98]. Likewise, administration of GIP antagonists or

GIP antisera markedly reduces the postprandial insulin

release in rats [102–104]. This is further supported by

studies in GIP receptor knock-out mice. These animals

display normal fasting glucose levels, but elevated glucose

levels after oral glucose, highlighting the importance of GIP

in the postprandial state [105] (Fig. 3).

In contrast to other insulin secretagogues, GIP not only

releases insulin from B-cells, potentially leading to a B-cell

exhaust, but also stimulates cellular proliferation of insulin

producing cells [106]. Similar proliferative effects on the

endocrine pancreas have also been described for GLP-1

[107,108], making a role for the incretin hormones in the

maintenance of B-cell mass probable (Table 1).

Whereas GLP-1 still stimulates insulin secretion effective-

ly in type 2 diabetic patients, the insulinotropic effect of GIP

is markedly reduced in type 2 diabetic patients [27], thereby

leading to a reduced incretin effect in these patients [109].

Furthermore, glucagon secretion from the isolated per-

fused rat pancreas has been shown to be stimulated by GIP

[13]. This glucagonotropic effect was inhibited in the

presence of glucose [13]. In human studies with the infusion

of synthetic human GIP, no influence on glucagon secretion

was seen [27,28], whereas GLP-1 is known to strongly

suppress glucagon secretion [27,110] (Table 1; Fig. 1). The

only exception seem to be patients with liver cirrhosis [111].

Recently, it has been proposed that GIP may also exert

some effects on insulin extraction [112]. An involvement of

the incretin effect in the clearance of insulin has been

suggested from the discrepancy between plasma C-peptide

and insulin responses to oral glucose compared to an intra-

J.J. Meier et al. / Regulatory Peptides 107 (2002) 1–13 5



venous glucose load [98,113]. More evidence for an effect of

GIP on insulin extraction came from the observation of higher

increments of insulin concentrations compared to the rise of

C-peptide levels under the infusion of GIP [112] (Table 1).

6. Contribution of Gastric Inhibitory Polypeptide to the

pathogenesis of type 2 diabetes

The reduced response of insulin secretion to the admin-

istration of exogenous GIP comprises a characteristic defect

of the type 2 diabetic phenotype.

Therefore, the question arises whether the loss of the GIP

effect represents a specific phenomenon that might be

involved in the pathogenesis of type 2 diabetes or whether

it is the result of an impaired B-cell function in more general

terms. In addition, the molecular defect underlying the loss

of the GIP effect in type 2 diabetes remains unclear. One

potential explanation is that the reduced insulinotropic effect

of GIP develops due to chronic desensitisation of the GIP

receptor [114]. Such a desensitisation has been postulated

due to the loss of insulinotropic activity of intravenous GIP

after continuous infusion into rats [114] and from elevated

GIP levels found in some studies in type 2 diabetic patients

[22,115]. However, a recent study did not confirm higher

plasma concentrations of either total or intact GIP in type 2

diabetic patients in the fasting and in the postprandial state

[74]. A central role of G proteins in the GIP receptor

desensitisation has been concluded from studies with cells

transfected with the GIP receptor and proteins involved in

the regulation of G protein signalling [116]. Mutation

analyses indicated that cysteine residues in the C-terminus

of the GIP receptor play an important role in mediating

the desensitisation and down-regulation of the receptor

[117,118].

Considering the preserved insulinotropic activity of the

other incretin hormone, GLP-1, that shares most of its

signalling pathways with GIP, it is conceivable that the

reduced insulinotropic effect of GIP is due to a specific

defect [27]. Interestingly, recent data suggest that different

abnormalities of the incretin effect are typical for the

diabetic phenotype: on the one hand, the secretion of

GLP-1 has been shown to be impaired in type 2 diabetic

patients [74], whereas the effect is nearly totally sustained,

thereby opening a great potential for the treatment of type 2

diabetes with GLP-1 [119–121] (Table 1). The secretion of

GIP, on the other hand, is normal in type 2 diabetic patients

[74], but its effect is lost [27,28]. In total, these findings

point to a specific defect in the responsiveness of pancreatic

B-cells towards GIP. The basis of this defect, however, is yet

unclear. It has been speculated already in 1997 that an

abnormal GIP receptor might be involved in this defect

[122]. Indeed, a diabetic phenotype develops in mice with a

targeted GIP receptor knock-out [105] (Fig. 3). In humans,

however, no mutation of the GIP receptor could be linked to

type 2 diabetes in different populations [123,124]. On the

other hand, a reduced GIP effect could be caused by reduced

expression of GIP receptors on pancreatic B-cells [122].

This hypothesis is supported by recent data from Lynn et al.

[125] showing reduced expression of GIP receptors on islet

cells of diabetic Zucker fatty rats. In humans, no data exist

regarding the number of GIP receptors on B-cells and their

Fig. 3. Glucose tolerance test in mice with a targeted disruption of the GIP

receptor (GIPR�/�) and wild type mice (GIPR+/+). (A) Intraperitoneal

glucose tolerance test in age-matched GIPR+/+ (n=4) and GIPR�/� (n=6).

(B) Oral glucose tolerance test in the same groups of mice. (C) Corres-

ponding plasma insulin levels after oral glucose loading. Statistical sig-

nificance was assessed by using unpaired t-test. Values are indicated as

meanFS.E. *p<0.05; **p<0.001 for GIPR�/� mice vs. GIPR+/+. From

Ref. [105], with kind permission.
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contribution to the pathogenesis of type 2 diabetes. More-

over, the molecular basis of this defect is yet unclear and

needs further study.

If one assumes a specific impairment of GIP signalling to

be a constitutive element of the type 2 diabetic phenotype, it

is reasonable to postulate this aspect to be present also in a

subgroup of their first-degree relatives as well. According to

epidemiological studies, these persons carry an individual

life-time risk of approximately 40–50% to develop type 2

diabetes themselves [126]. Along this hypothesis, we have

recently described a reduced insulinotropic effect of GIP in

at least a subgroup of 50% of normal or (in one case)

impaired oral glucose tolerant first-degree relatives of type 2

diabetic patients, pointing to a primary, possibly genetically

determined defect [28] (Fig. 4). However, to finally confirm

our hypothesis that a reduced insulinotropic effect of GIP

precedes the development of type 2 diabetes, it will be

necessary to follow-up the participants of this study pro-

spectively during the following years. As the contribution of

GIP to the incretin effect is approximately 60% in healthy

subjects [100], one might expect a quantitative reduction of

the incretin effect, as typical for the type 2 diabetic state

[109], in those persons as well. This hypothesis, however,

could not be confirmed by recent data from our group,

showing normal incretin effects in first-degree relatives of

type 2 diabetic patients despite a reduced insulinotropic

effect of GIP [43]. This may on the one hand lead to the

assumption that the physiological importance of GIP for the

postprandial glucose homeostasis is less than previously

expected or that other, yet unknown, incretin-like mecha-

nisms may compensate for the reduced GIP effects. How-

ever, for the other known incretin, GLP-1, no compensatory

hypersecretion can be observed in type 2 diabetic patients or

in their first-degree relatives [43,74]. In contrast, it is

conceivable that the impairment of the stimulatory effect

of GIP on diabetic B-cells reflects an insulin secretory

defect in more general terms. Accordingly, it is well known

that also the insulinotropic response to intravenous glucose

is already diminished in patients at high risk for type 2

diabetes during their prediabetic state [127–130].

The observation that GIP only stimulates insulin secre-

tion in the presence of elevated glucose concentrations

[14,100], whereas it has nearly no effect under normogly-

cemic conditions [112], make synergistic actions of glucose

and GIP within the B-cells likely. According to this hypoth-

esis, we did not find any differences in the insulinotropic

Fig. 4. Left panels: Plasma concentrations of insulin (upper panel) and C-peptide (lower panel) in 21 first-degree relatives of type 2 diabetic patients (filled

diamonds), 10 type 2 diabetic patients (open circles), and 10 healthy control subjects (filled circles) participating in hyperglycemic clamp experiments with

intravenous infusions of GIP (2 pmol kg�1 min�1). MeanFS.E.M. P values: repeated-measures ANOVA (A: between subject/patient groups; B: with time;

AB: interaction of group and time). *: Significant difference ( p<0.05) to type 2 diabetic patients; y: significant difference ( p<0.05) to normal subjects

(Student’s t-test). Right panels: Individual plasma concentrations (thin lines) of insulin (upper panel) and C-peptide (lower panel) in 21 first-degree relatives

shown in relation to the upper and lower 95% CI for normal subjects (thick dashed lines). Modified according to Ref. [28].
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response to a bolus injection of GIP in the fasting state

between first-degree relatives of type 2 diabetic patients and

control subjects without a family history of type 2 diabetes

(unpublished observations). A synergistic effect of GIP and

glucose on insulin secretion is further supported by data

from Holz et al. [131]. In this study, B-cells were incubated

with either glucose, GLP-1, or with both secretagogues.

Changes of the membrane potential were recorded as a

marker of stimulation using the patch-clamp technique.

When treated with either glucose or GLP-1, a number of

cells were found to be insensitive to each secretagogue.

However, pretreatment with GLP-1 increased the number of

cells responding to glucose and, in turn, pretreatment with

glucose increased the number of GLP-1-responsive cells.

The authors named this phenomenon induction of ‘‘glucose

competence’’ [131]. Accordingly, mice with a targeted

disruption of the GLP-1 receptor comprise abnormalities

of the glucose homeostasis even in the fasting state [132].

Considering the similar intracellular pathways of GIP and

GLP-1 signalling in pancreatic B-cells, a similar induction

of ‘‘glucose competence’’ might be possible for GIP. For the

proliferative effects of GIP on B-cells, synergistic actions of

glucose and GIP have recently been described [106]. In the

light of this hypothesis, a diminished insulin secretory

capacity of B-cells in response to either glucose or GIP

might reflect the metabolic consequences of the same B-cell

defect.

7. Possible clinical applications of Gastric Inhibitory

Polypeptide

Despite its physiological importance for the maintenance

of postprandial glucose homeostasis, during the last years,

only minor emphasis has been put on the search for clinical

applications of GIP, whereas the major line of research has

focussed on the application of GLP-1 in the treatment of type

2 diabetes. Indeed, it seems probable that due to its beneficial

effects on insulin and glucagon secretion [27,95,100,

133,134], on satiety and body weight [135–137], and its

proliferative effects on pancreatic B-cells [107,108], GLP-1

or its analogues will find its way into the therapy of type 2

diabetes soon [119,121,138].

However, since the insulinotropic effect of GIP is lost in

type 2 diabetic patients [27], the application of the peptide in

the treatment of type 2 diabetes does not seem to display

any advantage compared to the use of GLP-1. On the

contrary, whereas GLP-1 has been shown to reduce appetite

and body weight in various animal models [139–144] as

well as in humans [135–137], GIP increases fat deposition

[77–79,85,89], thereby possibly increasing body weight

and worsening insulin sensitivity. On the other hand, inhib-

ition of GIP degradation leading to increased plasma con-

centrations of intact GIP is one important mode of action of

the inhibitors of the enzyme dipeptidyl-peptidase IV [48,

56,57,145]. Based on their effects on insulin secretion and

glucose homeostasis, these agents are being discussed as

potential oral antihyperglycemic agents [57,145–150].

A more promising potential for the treatment of type 2

diabetes may come from developed formulations of GIP

with an NH2-terminal modifications [151–155]. Such modi-

fied peptides have been shown to be resistant to DPP IV

degradation resulting in a prolonged biological half life

[152] and to have enhanced antihyperglycemic activity

[151]. Accordingly, intraperitoneal administration increased

insulin response to glucose and lowered plasma glucose

concentrations in obese diabetic ob/ob mice [153]. An

introduction of modified GIP analogues into the treatment

of type 2 diabetes may be possible, as, similar to GLP-1, due

to the glucose dependency, the insulinotropic effect of GIP

does not lead to hypoglycemia.

The observation that at least 50% of normal glucose

tolerant first-degree relatives of type 2 diabetic patients

already show a reduced insulinotropic response to exoge-

nous GIP under hyperglycemic clamp conditions, similarly

to type 2 diabetic patients, led to the hypothesis that a loss of

GIP effect might precede the development of type 2 diabetes

[28]. This hypothesis, however, will have to be confirmed

by follow-up examinations. It might be worthwhile to

evaluate the insulinotropic response to GIP in patients at

high risk for type 2 diabetes to obtain information about the

individual risk for the disease.

Given the observation that the expression of GIP recep-

tors is reduced in diabetic Zucker fatty rats [125], one might

further suspect a specific, possibly genetically determined,

defect. In case that such defect can be localized, a genetic

screening examination of patients at high risk for type 2

diabetes could become possible.

A role for GIP in the future treatment of type 2 diabetes

has furthermore been proposed based on its strongly glu-

cose-dependent release from K-cells similarly to the rise of

insulin following a glucose load [156–158]. The glucose

dependency of GIP secretion has been referred to the

presence of glucokinase in these cells [42]. This feature

made the K-cells an interesting target for genetic modifica-

tions. As yet, glucose normalisation by genetically engi-

neered insulin secreting cells was limited by the absence of

a regulatory element leading to uncontrolled insulin secre-

tion and, accordingly, to hypoglycemia [159–162]. Thus,

transfection of a GIP tumor cell line with the human

preproinsulin gene led to the transcription of human pre-

proinsulin mRNA. Injection of this GIP/ins fragment into

pronuclei of mouse embryos resulted in the production of

human insulin in the duodenum and stomach of those

transgenic mice and caused complete normalisation of blood

glucose levels in streptozotocin-treated transgenic mice

[42]. These data highlighted the importance of the K-cells

for the possible future treatment of diabetes mellitus.

In conclusion, GIP plays an important role in the phys-

iologic control of postprandial glucose and lipid homeo-

stasis, whereas its effects on gastrointestinal functions in

humans appear negligible. Deterioration of the insulino-
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tropic effect of GIP, possibly synergistically with glucose, is

suspected to represent one major element contributing to the

pathogenesis of type 2 diabetes. N-terminally modified GIP

analogues should be further investigated for their potential

role in the treatment of type 2 diabetes. Moreover, due to

its glucose-dependent secretion, GIP-secreting cells may

become a target for future gene therapy of diabetes. Thus,

30 years after the isolation and structural characterisation of

GIP, it seems worthwhile to refocus on the examination of

its physiological actions and the signalling pathways. The

eludication of the molecular basis of its diminished effect in

type 2 diabetes may substantially increase our knowledge of

the pathogenesis of this disease.

Acknowledgements

This work was supported by grants from the Deutsche

Diabetes Gesellschaft (DDG) and by FoRUM (Ruhr-

University Bochum), Grant F233/00.

References

[1] Moore B, Edie ES, Abram JH. On the treatment of diabetes mellitus

by acid extract of duodenal mucous membrane. Biochem J 1906;1:

28–38.
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porcine gastric inhibitory polypeptide on h-cell function in Type 1

and Type II diabetes mellitus. Metabolism 1988;36:677–82.

[24] Amland PF, Jorde R, Aanderup S, Burhol PG, Giercksky K-E.

Effects of intravenously infused porcine GIP on serum insulin, plas-

ma C-peptide, and pancreatic polypeptide in non-insulin-dependent

diabetes in the fasting state. Scand J Gastroenterol 1985;20:315–20.

[25] Jorde R, Burhol PG. The insulinotropic effect of gastric inhibitory

polypeptide in non-insulin dependent diabetes. Ital J Gastroenterol

1987;19:76–8.

[26] Jones IR, Owens DR, Luzio S, Hayes TM. Glucose dependent in-

sulinotropic polypeptide (GIP) infused intravenously is insulino-

tropic in the fasting state in Type 2 (noninsulin-dependent)

diabetes mellitus. Horm Metab Res 1988;21:23–6.

[27] Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutz-

feldt W. Preserved incretin activity of glucagon-like peptide 1 [7–36

amide] but not of synthetic human gastric inhibitory polypeptide

in patients with type-2 diabetes mellitus. J Clin Invest 1993;91:

301–7.

[28] Meier JJ, Hücking K, Holst JJ, Deacon C, Schmiegel W, Nauck MA.

Reduced insulinotropic effect of Gastric Inhibitory Polypeptide in

first-degree relatives of patients with type 2 diabetes. Diabetes 2001;

50:2497–504.
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[80] Dupré J, Greenidge N, McDonald TJ, Ross SA, Rubinstein D. In-

hibition of action of glucagon in adipocytes by gastric inhibitory

polypeptide. Metabolism 1976;25:1197–9.

[81] Hauner H, Glatting G, Kaminska D, Pfeiffer EF. Effects of gastric

inhibitory polypeptide on glucose and lipid metabolism of isolated

rat adipocytes. Ann Nutr Metab 1988;32:282–8.
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