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We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatog-
raphy-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were
separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit
of detection (5.7-21 nmol/L), within-day (2.9-19%) and between-day (4.8-19%) analytical variation of
peak areas, linearity (R2: 0.918-0.999), and standard deviation for retention time (<0.52 min) of the
method were assessed by means of addition of seven 3-8 amino acid peptides (0-500 nmol/L). Relating
the amount of injected urine to the area under the curve (AUC) of the chromatographic trace at 214 nm
better reduced the coefficient of variation (CV) of the AUC of the total ion chromatogram (CV ) 10.1%)
than relating it to creatinine (CV ) 38.4%). LC-MS data were processed, and the common peak matrix
was analyzed by principal component analysis (PCA) after supervised classification by the nearest
shrunken centroid algorithm. The feasibility of the method to discriminate urine samples of differing
compositions was evaluated by (i) addition of seven peptides at nanomolar concentrations to blank
urine samples of different origin and (ii) a study of urine from kidney patients with and without
proteinuria. (i) The added peptides were ranked as highly discriminatory peaks despite significant
biological variation. (ii) Ninety-two peaks were selected best discriminating proteinuric from non-
proteinuric samples, of which 6 were more intense in the majority of the proteinuric samples. Two of
these 6 peaks were identified as albumin-derived peptides, which is in accordance with the early rise
of albumin during glomerular proteinuria. Interestingly, other albumin-derived peptides were nondis-
criminatory indicating preferential proteolysis at some cleavage sites.
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1. Introduction

Biofluids such as serum, plasma, whole blood, and urine are
routinely used for diagnostic purposes and in comparative
studies. Urine seems a more suitable biofluid than blood and
its derivatives (plasma or serum), because it can be obtained
in large quantities by noninvasive sampling. Analytical advan-
tages of urine analysis are the less complex sample pretreat-
ment due to the much lower protein content, the relatively
small size, and higher thermodynamic stability of urinary

peptides/proteins,1 and the lower complexity and inter-
molecular interactions compared to proteins in serum.2,3 The
majority of pathological changes in human organs may well
be reflected in urine. In this way, urine analysis can aid in
disease diagnosis, treatment monitoring, and prognosis.4 Urine,
on the other hand, is prone to larger biological variations than
the blood compartment, as it samples the metabolic end
products from the organism destined for excretion. Factors
affecting the concentrations of these products in humans, for
example, age and gender,5 can be controlled by careful match-
ing, whereas this is much harder to do for the influence of
factors of cultural and dietary nature.6 One of the major
challenges in biomarker research using urine is thus the large
natural variation in the concentration of peptides, proteins, and
metabolites, which requires careful normalization of the mea-
surements.7
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A frequently used analytical technique to profile urinary
compounds for biomarker research is liquid chromatography-
mass spectrometry (LC-MS). The advantages of LC-MS are
high sensitivity and the feasibility of detecting thermolabile,
water soluble compounds without the need for chemical
derivatization. Analysis of urine by LC-MS has been applied
in metabolomics,8,9 proteomics,4,10-15 and peptidomics,16-24 as
well as in drug metabolism research. LC-MS is sensitive to
matrix effects due to the interference of matrix components
with the ionization of analytes (ion suppression).25 The use of
internal standards and standardization of the injected amount
are therefore necessary for quantitative analyses. Comparative
profiling using stable isotope-labeled standards26 or dye-labeled
proteins as internal standards27 can overcome these limitations
but have proven to be laborious and expensive, making a well-
controlled, label-free quantitative method as described here of
particular interest for clinical studies, where large series of
samples have to be processed. A quantitative method for
profiling complex biological samples without the need for
labeling or spiking with internal standards seems feasible as
long as there is linearity of signal versus concentration and a
high degree of reproducibility of sample processing and the
LC-MS platform.28

When profiles of urinary compounds are compared, it may
be insufficient to normalize the data based on a single
compound like creatinine, as this may not be representative
of the wide range of molecules with different physicochemical
properties (e.g., molecular weight, pKa, and hydrophobicity).
Since the urinary creatinine concentration, which is widely
employed to correct for concentration differences and to
express the urinary clearance of blood components, is mainly
determined by age, gender, muscle mass, kidney function,
exercise, and diet, it is questionable whether this should be
the only standard when it comes to accurate data about renal
clearance.5 To base normalization on a broader molecular basis,
we have therefore compared normalization of the injected
volume of urine based on a fixed amount of creatinine with a
multicompound normalization strategy based on the area
under the curve of the chromatogram at 214 nm (AUC214).

Data processing prior to multivariate statistical analysis is
critical for comparing LC-MS data sets that may reach 107 to
108 data points per analysis or even more, in case high-
resolution mass spectrometry is used. Data processing has the
goal to correct for unwanted variations in data sets by, for
example, correcting shifts in retention time and by discriminat-
ing meaningful data points from background, noise, and
spikes,29-31 thus, generating a peak matrix suited for further
processing by peak matching, missing peak allocation, and,
finally, statistical analysis. Even after data processing, there is
a need for a further reduction in dimensionality, since the
complexity of biological samples like urine generates a great
number of significant peaks that generally exceeds the number
of analyzed samples with the inherent risk of overfitting the
data. One way of further reducing the number of dimensions
in the data is by using a regularized linear discriminant classifier
method like the nearest shrunken centroid (NSC) algorithm.32

Visual inspection of patterns in the high-dimensional data
space is possible through the use of further dimension-reducing
techniques such as principal component analysis (PCA).33 For
an extensive review and references on data (pre-) processing
and multivariate statistical methods, we refer to the review of
Listgarten and Emili.34

In the present work, we describe the development of a
simple, rapid, and robust reversed-phase LC electrospray (ESI)
Ion Trap MS platform to reproducibly profile urinary com-
pounds. The platform was evaluated using peptides, which are
frequently present at nanomolar concentrations in urine.
Dedicated data processing and multivariate statistical ap-
proaches were developed and applied to the data to obtain
proof-of-principle on several aspects of the method such as
the following: (i) the ability to discriminate groups of urine
samples based on the absence or presence of standard peptides
at approximately 2-10 times the lower limit of detection (LOD;
nM range), and (ii) the differentiation between the contribution
of analytical and biological variation to the final result. Finally,
the platform was tested in a preliminary study comparing urine
samples from hospitalized patients with and without pro-
teinuria. Using multivariate statistical analysis of LC-MS
profiles of urinary compounds is likely to aid in diagnostics,
monitoring of disease activity, and therapy. It may also be of
great value in forming new hypotheses about disease mecha-
nisms and the effect of therapeutic interventions.

2. Experimental Procedures

Further detailed information is available in Supporting
Information.

2.1. Chemicals. Acetonitrile (ACN) (HPLC-S gradient grade),
ultrapure water (18.2 MΩ cm), trifluoroacetic acid (TFA) 99%
spectrophotometric grade, and formic acid (FA) 98-100% pro
analysis were used for reagent preparation. A peptide stock
solution [peptide, concentration in mmol/L; VYV, 0.29; YGGFL
(leucine enkephalin), 0.20; DRVYIHPF (angiotensin II), 0.10;
YPFPGPI (â-casomorphin 7), 0.16; YPFPG (â-casomorphin 5),
0.21; GYPPT (gluten exorphin A5), 0.19; and YGGWL (gluten
exorphin B5), 0.20] was used for addition experiments and
internal standardization.

2.2. Sample Preparation. Urine samples were stored at -20
°C, thawed, mixed, acidified with 1% TFA, and centrifuged to
remove precipitate (5 min at 1500g and 4 °C). The supernatant
was diluted 1:1 with 0.2% FA in 10% ACN and stored at 4 °C
until analysis. The injection order on the LC-MS was random-
ized. A pooled urine sample was prepared by mixing equal
volumes of urine from seven apparently healthy adults (crea-
tinine: 10.6 mmol/L).

Urinary creatinine concentration and total protein content
were assayed on an autoanalyzer (MEGA, Merck, Darmstadt,
Germany). The study protocol was in agreement with local
ethical standards and the Helsinki declaration of 1964, as
revised in 2004.

2.3. Reversed-Phase HPLC-MS. All LC-MS analyses were
performed on an 1100 series capillary HPLC system equipped
with a cooled autosampler (4 °C), a UV detector (λ ) 214 nm)
and an SL ion trap mass spectrometer (Agilent Technologies).
Urine samples were desalted on an Atlantis dC18 precolumn
(2.1 × 20 mm, 3 µm particles and 10 nm pore diameter) using
0.1% FA in 5% ACN at a flow rate of 50 µL/min for 16 min.
Urinary compounds were back-flushed from the precolumn
onto a thermostated (25 °C) Atlantis dC18 analytical column
(1.0 × 150 mm, 3 µm particles, 30 nm pores) and separated in
90 min at a flow rate of 50 µL/min during which the percentage
of solvent B (0.1% FA in ACN) in solvent A (0.1% FA in ultrapure
H2O) was increased from 5.0 to 43.6% (0.43%/min). During
these 90 min, UV absorption and positive mode MS spectra
were acquired. Settings for ESI and mass analysis were as
follows: 16.0 psi N2; drying gas, 6.0 L/min N2; T, 325 °C; cap.
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voltage, 3.8 kV; skimmer, 57.5 V; cap. exit, 190.7 V; oct. 1, 4.12
V; oct. 2, 2.49 V; oct. RF, 190.7 V; lens 1, -4.9 V; lens 2, -37.7
V; trap drive, 52.5; scan speed, 5500 m/z s-1; 50 ms accumula-
tion time or 30 000 ions; scan range, 100-1500 m/z; Gaussian
acquisition filter (width 0.1 m/z) of each scan; rolling average
of 5 spectra. Spectra were saved in the centroid mode.
Following the gradient, both columns were washed with 85%
B for 5 min and equilibrated with 5% B for 10 min prior to the
next injection.

Internal standards were injected onto the precolumn prior
to injection of the urine samples. Between each injection, the
injection system was cleaned with 70% ACN and filled again
with 0.1% FA in 5% ACN. The amount of internal standard (IS)
peptides injected varied per experiment (see Results for more
details).

2.4. Tandem Mass Spectrometry and Database Searching.
NanoLC ESI quadrupole time-of-flight (Q-TOF) MS/MS (API
QSTAR Pulsar i LC/MS/MS System [Applied Biosystems, MDS
Sciex, Framingham, MA]) was used in the Auto-MS2 mode
(precursor ions >100 counts, 1+ to 4+ ions; spray voltage
2350V; varying collision energies). Using mascot.dll script-
processing in Analyst QS 1.1, build 9865 (Applied Biosystems,
MDS Sciex) MS spectra were deconvoluted with respect to
charge state and isotopes. The resulting spectra were saved in
mascot (Matrix Science, London, U.K.) generic file format and
submitted to an in-house version of the MASCOT35 search
engine (v1.9.05) for UniProt (release 7.7) queries and to a Web-
based version of the Phenyx36 search engine (v2.1) for
UniProt_Sprot (r. 48.8 of 10-Jan-2006) queries. Enzyme settings
were based on chymotrypsin-, trypsin-, and caspase-like pro-
teolytic activity of the 26S proteasome in renal cells37 allowing
“half cleavages (Phenyx)” of peptide bonds. Search outcomes
were evaluated at a significance level of a probability-based
Mowse score for MASCOT of g61 (P < 0.001) and at an AC-
score of g5 for Phenyx. The latter is the sum of the best scores
per valid peptide sequence.

The identities of discriminatory peaks, as selected by mul-
tivariate statistics, from Ion-Trap and quadrupole-TOF MS data,
were confirmed by comparing mass spectra and relative
retention times using bracketing between added standard
peptides. MS/MS data from these discriminatory peaks were
processed using MASCOT scripts to obtain a peak list of
fragment ions suitable for MS/MS ion search. Prior to subse-
quent database queries, these peak lists were tagged and added
to the original MS/MS peak list used for protein identification
to evaluate whether they originated from one of the previously
identified proteins. A peak was considered to be identified if
the Phenyx z-score g 4, P e 0.0001, and retention time of the
peptide were within 0.05 min and 0.01 amu of the respective
discriminatory peak. If the peak/peptide did not reach these
criteria, manual conversion of the monoisotopic multiply
charged fragment ions to monoisotopic singly charged frag-
ment ions was performed prior to another round of searches
using MASCOT and Phenyx.

Further detailed information is available in Supporting
Information.

2.5. Data Processing and Analysis.
2.5.1. Data Analysis for Method Evaluation. LC-MS chro-

matographic data were analyzed with Data Analysis software
for LC/MSD Trap, version (3.2 build 121) (Bruker Daltoniks,
Bremen, Germany). Peak areas and intensities of the spiked
peptides described in Table 1 were obtained from the respective
smoothed and baseline-subtracted extracted ion chromato-

grams (EIC). One cycle of smoothing with a Gaussian algorithm
at a width of 1.8 points preceded baseline subtraction with a
flatness of 1. The AUC214 was calculated between 30 and 80
min retention time, which corresponds to 14-64 min for mass
spectrometric data acquisition (MS data acquisition was started
16 min later than the gradient program) during gradient elution.

Univariate statistical analyses were performed with the
Statistical Product and Service Solutions package version 11.5
(SPSS, Inc., Chicago, IL).

2.5.2. Data (Pre-)Processing. For processing and multivari-
ate statistical analysis, the original Bruker Daltoniks LC-MS
data files were converted into ASCII-format with the Bruker
Data Analysis software. For further data analysis, Matlab
(version 7.0.0.19920, Mathworks, Natick, MA) and the PLS
toolbox (version 3.5.2, Eigenvector Research, Inc., Wenatchee,
WA) were used.

Initially, the nominal m/z ratios were rounded to the nearest
integer to 1 amu bins (instead of the original 0.1 amu in the
acquired data) according to Radulovic et al.,38 which is adapted
to the accuracy of the ion trap ((0.3 amu). Binning reduced
the amount of data by roughly a factor of 10, and it also partially
corrected for the slight shift in m/z values as a result of trap
overfilling occurring during peak elution. For signal filtering
and background reduction, data was first smoothed using a
moving average filter (3-scan header width, 2 cycles). A
modified M-N rule was applied for peak detection in which a
predefined baseline T (30% of trimmed mean) was multiplied
by M (set at 2) to set the threshold (1000 counts), which should
be exceeded by the peak intensity for at least N (set at 5)
consecutive observations in the time dimension.38 If T was
lower than 1000 counts, M × 1000 was used as a threshold for
that bin. For each bin, we included the m/z bin value, intensity
of the data point with the highest intensity, and the mean
retention time of the three data points with the highest intensity
to generate the peak list.

We used a similar approach as Radulovic et al.38 to obtain
optimal settings for M and N. M (1.5-4) and N (4-8) were
applied to two blank LC-MS runs and two LC-MS runs of the
pooled urine sample. The settings at which the ratio between
the number of peaks (between 30 and 80 min and broader than
0.3 min at baseline × N) in the sample and in the blank was
the highest and at which a minimal number of peaks was
extracted from the noise in the blank chromatogram were used.

Time alignment of the chromatograms was not needed,
because the median (range) standard deviation of the retention
time of the standard peptide peaks was only 0.37 (0.23-0.52)

Table 1. Peak Area and Intensity Variation of Peptides Added
to Urine after Normalization of the Injected Amount to
Creatinine or UV-Area

Creatinine [CVb (%)] AUC214
a [CVb (%)]

no.

peptide

sequence area intensity area intensity

1 VYV 30.1 22.2 23.3 20.7
2 GYYPT 19.3 16.2 13.2 11.9
3 YPFPG 19.2 15.1 11.3 11.6
4 DRVYIHPF 13.7 13.3 25.6 23.3
5 YGGFL 21.5 16.3 5.9 6.1
6 YGGWL 11.5 11.1 7.1 9.7
7 YPFPGPI 20.4 20.1 15.4 17.6

AUCTIC
c 38.4 10.1

a Area under the curve of the UV-chromatogram (λ ) 214 nm) between
30 and 80 min retention time. b Coefficient of variation. c Area under the
curve of the total ion chromatogram between 30 and 80 min retention time.
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min. One-dimensional peak matching and missing peak al-
location in different samples was realized by using a sliding
windows technique in which similar m/z bins are evaluated
for peaks proximate in time (step size, 0.1 min; search window,
1.0 min; maximal accepted difference of centroided retention
time within a group of matched peaks, 0.75 min). Missing peak
allocation was performed by extracting the background in given
m/z bins at the mean retention time of the other identified
peaks. The generated final peak matrix, created from the peak
matrices of the individual samples, consisted of a peak(row)-
sample(column)-intensity(value) matrix. This final peak matrix
was used for multivariate statistical analysis.

All data preprocessing work was done on a personal com-
puter equipped with a +3600 MHz AMD processor and with 4
GB of RAM.

2.5.3. Classification and Multivariate Statistical Methods.
To select the most discriminating peaks, we applied the NSC
classification algorithm.32,39 NSC regularizes data whereby class-
specific centroids are “shrunk” toward the overall (nonclass-
specific) centroid, which has the effect of eliminating the
influence of the most weakly correlated peaks, thereby reducing
the capacity to overfit.34 This algorithm is used to select peaks
that are relevant for the discrimination of the predefined classes
in conjunction with permutation tests to validate the classifica-
tion algorithm40 using leave-one-out cross-validation (LOOCV)
to avoid overfitting due to one outlier. The optimal shrinkage
value was the value at which LOOCV showed the lowest
classification error. In LOOCV, one observation per class is
iteratively omitted from the data set that is used to construct
the classification model, which is then used to classify the
omitted observation as case or control. Variables selected at
the highest shrinkage value and lowest LOOCV error were
employed for construction of the final classification model. The
selected peaks were then analyzed and visualized by plotting
the first two principal components obtained after PCA.33 As a
measure for class separation, the Mahalanobis distance (MD)
was calculated.41 We consider an MD above the cutoff of 6.0,
corresponding to a difference of 6 sigma between the mean
centroids of the classes,40 as indicative for significant class
separation.

3. Results

3.1. Method Development and Evaluation.

3.1.1. Optimization of RP-HPLC. Resolution between the
spiked peptides (see Experimental Procedures) was optimized
by varying gradient steepness and flow rate in a central
composite design. The goal was to achieve optimal resolution
within a maximal runtime of 90 min and a flow rate of 50 µL/
min, which is adapted to the ESI-source and the column
diameter of 1 mm. Optimal resolution was obtained at a
gradient steepness of 0.43% solvent B/min. Runs of urine
samples of 6 healthy adults without the added peptides assured
that there were no detectable peaks in the respective EIC at
the retention times of the added peptides. A typical chromato-
gram of 9.6 µL of urine spiked with 0.25-0.73 pmol of standard
peptides under these conditions is shown in Figure 1A. For two
peptides (DRVYIHPF and YPFPGPI), the mono- and dipro-
tonated ions were extracted and combined into one trace,
whereas for the other peptides, only the monoprotonated ions
were observed and thus extracted (Figure 1B). Figure 1C shows
the corresponding chromatographic trace at 214 nm of the in-
line UV-detector.

Figure 1. Analysis of a pooled urine sample spiked with nano-
molar concentrations of internal standard peptides. (A) Smoothed
and baseline-subtracted base peak chromatogram of a pooled
urine sample (9.6 µL injected, equivalent to 50 nmol creatinine)
co-injected with 5 µL of 1:2000 diluted peptide stock solution,
after optimization of the resolution by varying gradient steepness
in a central composite design. (B) Smoothed and baseline-
subtracted extracted ion chromatograms (EIC) of the seven
peptides used for optimization and internal standardization (same
sample as shown in panel A). Peptide peaks correspond to
n-times the lower limit of detection (LOD): peptide (n × LOD) 1,
VYV (3.9); 2, GYYPT (2.3); 3, YPFPG (4.6); 4, DRVYIHPF (2.2); 5,
YGGFL (9.5); 6, YGGWL (3.5); and 7, YPFPGPI (7.3); the absolute
values for the LOD can be found in Table 2. The calculated LOD
for VYV appears to be lower than the LOD that was derived from
the signal-to-noise ratio of the peak shown in Figure 1B. Peptide
m/z values and retention times derived from the analysis of
diluted stock solutions were used to extract and appoint peaks
to the standard peptides spiked into urine. (C) Smoothed and
baseline-subtracted UV chromatogram (λ ) 214 nm) of the same
urine sample as shown in panel A.
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3.1.2. Normalization of Injected Amount of Urine to
Creatinine or the AUC214. Since ESI is sensitive to matrix effects
leading to ion-suppression,25 it is important to standardize the
injected amount of urine in comparative analyses. Assuming
that matrix effects are proportional to the injected amount, two
methods of normalization were investigated: (i) to a given
amount of creatinine (50 nmol) and (ii) to a fixed AUC214 value
(1.02 × 105 absorbance units [AU]; see below for the calcula-
tion). Creatinine was chosen, because of its frequent use in
clinical chemistry, and the UV-area at 214 nm between 30 and
80 min (AUC214) was chosen, because it normalizes the injected
amount based on a large number of compounds, which is likely
to be more representative of the overall sample composition.
Moreover, normalizing to the AUC214 rather than to the AUC
of the total ion chromatogram (AUCTIC) avoids confounding
effects resulting from ion suppression, since extinction coef-
ficients are characteristic of each compound as long as the
linear range of the UV-detector is not exceeded. By starting
integration at 30 min, we avoided the contribution of very small
and very hydrophilic compounds, for example, small hydro-
philic organic acids, to the AUC214.

To investigate which normalization method of the injected
amount (injection volume) was preferable, 10 different 24-h
urine samples of children (male/female 5:5; age range 6.8-13.6
years) with creatinine levels ranging from 2.0 to 10.6 mmol/L
were analyzed. The initial sample volume injected onto the
column was equivalent to 50 nmol creatinine, and the AUC214

between 30 and 80 min was a measure of the overall amount
of compounds injected. From this area, a new injection volume
was calculated keeping the ‘injected AUC214’ constant at 1.02
× 105 AU, which corresponds to an average amount of 50 nmol
creatinine for the 10 urine samples. Five microliters of the 1:500
diluted peptide stock solution (1.0-2.9 pmol per peptide) was
co-injected to evaluate which method of standardization
resulted in the most repeatable peak areas for each peptide.

Overall, peptide MS signals showed less variation when the
injected volume was normalized to a fixed AUC214 value as
compared to a constant amount of creatinine (Table 1).
Similarly, the AUCTIC between 30 and 80 min (dead time
between UV detector and ion source was approximately 5 s),
which reflects all of the MS-detected urinary compounds,
improved with respect to the coefficient of variation (CV) from
38% when normalized to creatinine to 10% when using the
AUC214 value (Table 1). Generally, these results indicate that
adjusting the injected amount of urine based on the AUC214 is
preferable to minimize variations in peak area and intensity
due to matrix effects, although this seems component-depend-
ent. A drawback of using the UV-area is that one compound
eluting at 35.0 min retention time determined a large portion
(median [range]; 44% [14-62%]) of the total AUC214.

3.1.3. Method Evaluation. The linearity and lower limit of
detection (LOD) of the optimized LC-MS method were deter-
mined by duplicate analyses of pooled urine samples spiked
with peptides at concentrations of 0 (n ) 5), 10, 25, 50, 100,
150, 250, and 500 nmol/L (calculated for YGGFL). Calibration
curves were based on the respective smoothed and baseline
subtracted EIC. Least-squares linear regression analysis was
employed. The LOD is calculated from the intercept of the
y-axis with the upper limit of the 95% confidence interval of
the calibration curve.42

The method exhibited good linearity (all curves P < 0.001)
with R2 values ranging from 0.918 to 0.999 for peak area and
intensity over the concentration range (data not shown). The

LOD ranged from 5.7 to 21 nmol/L, depending on the peptide
(Table 2). This corresponds to an injected amount of 54-204
fmol per peptide (Table 2). Figure 1B shows the EIC of the
respective peptides at the calculated 2-10 times their LOD (i.e.,
0.25-0.73 pmol injected or 50-145 nmol/L). The calculated
LOD for VYV appears to be lower than the LOD that was derived
from the signal-to-noise ratio of the peak shown in Figure 1B.

The within-day and between-day analytical variation of the
method were determined by repetitive analyses (n ) 5) of the
pooled urine sample (equivalent to 50 nmol creatinine) injected
together with 5 µL of a low (1:2000 diluted peptide stock
solution, 0.25-0.73 pmol) and a high (1:500 diluted peptide
stock solution, 1.0-2.9 pmol) amount of added peptides on
the same day and on five consecutive days, respectively.
Outliers were removed (R ) 0.05) using the Dixon test43 and
Cochran’s maximum variance test.44 Overall, the within-day and
between-day variation ranged between 2.9 and 19% for the
various peptides (Table 3).

3.2. Data Processing and Multivariate Statistical Analysis
of LC-MS Profiles of Urinary Compounds.

3.2.1. Data Processing and Analysis. Binning from an
instrumental resolution of 0.1 to 1 amu reduced the size of the
data set to reach an acceptable data processing and analysis
time on a normal desktop computer (see Experimental Proce-

Table 2. Lower Limits of Detection (LOD) of Seven Peptides
Used as Internal Standards

no.

peptide

(sequence)

m/z values

of EICsa

([M + H]1+,

[M + 2H]2+)

LOD

(concentration)

(nmol/L)

LOD

(amount)

(fmol injected)

1 VYV 380.2 19b 186b

2 GYYPT 600.3 21 204
3 YPFPG 580.3 12 113
4 DRVYIHPF 1046.5, 523.8 12 114
5 YGGFL 556.3 5.7 54
6 YGGWL 595.3 15 143
7 YPFPGPI 790.4, 395.7 5.7 55

a Extracted ion chromatogram. b The reported LOD, calculated from the
intercept of the y-axis with the upper limit of the 95% confidence interval
of the calibration curve, appears to be lower than the LOD derived from the
signal-to-noise ratio of peak VYV depicted in Figure 1B.

Table 3. Within-Day (n ) 5) and Between-Day (5 days, n ) 5)
Variation of Internal Standard Peptides Added to a Pooled
Urine Sample

within-day between-day

peptide

(sequence)

amount

injected

(pmol)

area

CVb

(%)

intensity

CV

(%)

RTa

SDc

(min)

area

CV

(%)

intensity

CV

(%)

RT

SD

(min)

VYV 0.73 12 11 0.36 18 14 0.482.9 6.0 12 7.2 9.5
GYYPT 0.48 16 11 0.43 19 17 0.351.9 7.2 9.3 12 14
YPFPG 0.53 12 7.3 0.25 13 10 0.372.1 3.2 4.4 6.5 8.7
DRVYIHPF 0.25 19 12 0.23 5.3 6.0 0.431.0 7.4 13 8.1 9.1
YGGFL 0.50 6.2 5.8 0.26 6.2 8.3 0.442.0 2.9 3.1 7.3 7.8
YGGWL 0.50 3.0 4.5 0.27 4.8 5.3 0.472.0 3.5 3.6 6.6 6.8
YPFPGPI 0.40 6.5 8.3 0.29 8.5 6.6 0.521.6 2.9 4.4 5.2 7.0

a RT, retention time. b CV, coefficient of variation. c SD, standard deviation.
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dures for specifications). The M-N rule proved to be a simple,
fast, and robust peak picking algorithm, which generated a peak
list within 1 h per sample. The input, that is, the number of
samples, determined the time required for peak matching,
missing peak allocation, and construction of the final peak
matrix (see Experimental Procedures for details).

3.2.2. Multivariate Statistical Comparison of Pooled Urine
Samples To Assess the Effect of Analytical Variation. LC-MS
data from repetitive analyses (n ) 6) of 11.1 µL injections of
blank pooled urine (AUC214 ) 1.02 × 105 AU) and of the same
urine spiked at 2-10 times the LOD (n ) 6) were processed as
described before to obtain a final matrix containing 10 029

peaks. This peak matrix was used to construct a PC score plot
of the two first principal components (PC 1 and PC 2) best
explaining the total variance of the data (Figure 2A). When all
10 029 peaks were used, the plot showed a strong overlap
between the blank (purple () and spiked (gray f) group, which
was confirmed by an MD of 0.43 (nonsignificant).

Figure 2. Description of the analytical variation in urine profiles
from a pooled urine sample analyzed six times. (A) The principal
component (PC) analysis plot using the complete peak matrix of
10 029 peaks shows overlap between repetitions of the blank
(purple () and spiked (gray f; 2-10 times lower limit of detection
of standard peptides) pooled urine sample. Together, PC 1 and
PC 2 explain only 30.39% of the variation between the samples.
(B) The biplot depicts the same blank (purple () and spiked (gray
f) samples as in panel A together with 17 of the 10 029 most
discriminating peaks (red 1) selected by the nearest shrunken
centroid classification method at a leave-one-out cross-validation
error of 0. Arrows indicate peaks that do not belong to the added
peptides. In contrast to panel A, PC 1 and PC 2 now explain a
much larger portion (85.65%) of the variation between the
samples. Ellipses circle groups of samples belonging to the same
class, i.e., blank and spiked.

Figure 3. Description of the analytical and biological variation
in urine profiles from six healthy individuals. (A) The principal
component (PC) analysis plot using the complete peak matrix of
14 234 peaks shows overlap between the blank (blue b) and
spiked (green 9; 2-10 times lower limit of detection of standard
peptides) urine samples of six apparently healthy adults, and six
repetitive analysis of a blank (n ) 6; purple () and a spiked (n )
6; gray f) pooled urine sample. Co-localization (red ellipses) of
the blank and spiked samples from the same individual (for 5
out of 6 individuals) and the pool suggests biological variation
to be the main determinant of the observed variation between
samples. Unsupervised PC analysis obviously provides insuf-
ficient discriminatory power to detect the variation caused by
spiking. Together, PC 1 and PC 2 explain 45.74% of the variation
between the samples. (B) The biplot depicts the same blank (blue
b) and spiked (green 9) samples as in panel A together with 16
of the 14 234 most discriminating peaks (red 1) selected by the
nearest shrunken centroid classification method at a leave-one-
out cross-validation error of 0. PC 1 in the biplot explains 78.51%
of the variation between blank (blue b) and spiked (green 9)
samples. Two peaks (X and Y) could not be related to the added
peptides.
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Application of the NSC classification method yielded 17
highly discriminatory peaks (red 1) out of the original peak
matrix at a shrinkage value of 3.0 with a LOOCV (see Experi-
mental Procedures) error of 0 (Figure 2B). Fourteen (82%) of
these 17 peaks could be traced back to the added standard
peptides based on m/z values and retention times. These 14
peaks were elevated in the spiked group as expected (data not
shown). Of the remaining three peaks (arrows), two were
located in the region of the blank urine sample and one was
located in the spiked samples area. Univariate comparison
revealed no significant difference between peak areas (P > 0.5)
indicating that these peaks were selected by chance. The higher
number of selected peaks relative to the number of spiked
peptides is due to the fact that the original data were not
deconvoluted with respect to charge state or isotopic distribu-
tion. However, this did not affect the classification of samples.
The PCA biplot, based on the 17 selected peaks, showed clear
discrimination between the blank and the spiked samples,
which was confirmed by an MD of 9.91 (significant). Urine
samples spiked at nanomolar concentrations with peptides can
thus be discriminated using the developed LC-MS method

followed by supervised peak selection with cross-validation and
visualization of the first two principal components.

3.2.3. Multivariate Statistical Comparison of Urine Samples
from Different Individuals To Assess the Effect of Biological
Variation. LC-MS data obtained from the analysis of blank
and spiked (2-10 times LOD) urine samples (6.6-19.8 µL
injected; AUC214 ) 1.02 × 105 AU) of six healthy individuals
(male/female 3:3; median age [range] 27 years [25-30]) yielded
a matrix containing 14 234 peaks. To relate analytical variation
to biological variation, we generated a common matrix of

Figure 4. Univariate comparison of peak areas and intensities
of peptides/peaks discriminating blank from spiked urine samples
from different individuals. Graphs represent univariate paired
comparisons (P-values) of peak area (A) and intensity (B) of
smoothed and baseline-subtracted extracted ion chromatograms
from raw LC-MS data of the peptides/peaks selected by the
nearest shrunken centroid classification method. Bars represent
the mean values (error bars: (1 SD). The median (error bars:
minimum-maximum) is presented for the area of 356.5 m/z and
the intensity of peptide VYV. Comparison was performed with
the Wilcoxon signed ranks test (nonparametric) and the paired
Student’s t-test (parametric) dependent on the normality of the
distribution (Shapiro-Wilk’s test).

Figure 5. Comparison of urine samples from proteinuric and
nonproteinuric patients with renal disorders. The biplot (A) shows
the urine samples from 6 patients with proteinuria (green 9; g1
g/L total protein concentration in a random portion of urine) and
from 6 patients without proteinuria (blue b; e0.1 g/L) but with a
medical history of renal morbidity. Ninety-two peaks (red 1) out
of 11 867 were selected for their discriminatory properties by the
nearest shrunken centroid classification method at a leave-one-
out cross-validation error of 0. The arrow indicates an upregu-
lated peak in the nonproteinuria group. When this model was
used, classification of 24 samples from apparently healthy
individuals (purple () resulted in a dense cluster (purple ellipse)
that was separated from the nonproteinuric patients (B) implying
large differences in the composition of urine between healthy
individuals and hospitalized patients with or without proteinuria.
The enlarged area in panel B shows that some patients without
overt proteinuria show a trend in PC 1 placing them at various
levels toward overt proteinuria.
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14 234 peaks including the samples described under Section
3.2.2, which reflect analytical variation only.

Figure 3A shows a PC score plot generated with the entire
peak matrix. Blank (blue b) and spiked (green 9) samples of
the same individual colocalized in 5 out of 6 cases. This
indicates that the analytical variation is much smaller than the
biological variation between different healthy individuals.
Colocalization of the data points from the repetitive analyses
of blank (purple () and spiked (gray f) pooled urine samples
(analytical variation only) emphasizes the importance of
biological variation relative to analytical variation further.
Moreover, pooling the urine of these six healthy individuals
averaged the explained variation represented by PC 1 and PC
2 (both around 0) out.

It was, thus, of importance to assess whether spiking of the
seven standard peptides at 2-10 times the LOD could still be
discriminated despite the observed biological variation. The

NSC algorithm yielded 16 discriminatory peaks (red 1) from
the original peak matrix at a shrinkage value of 1.85 with an
LOOCV error of 0. Fourteen (88%) of these 16 peaks could again
be related to 6 of the 7 added peptides based on m/z values
and retention times (Figure 3B). Peak areas and intensities,
derived from the EIC of the first two isotopic peaks of the NSC-
selected peptide peaks, were compared by univariate statistics
(Figure 4). P-values were less than 0.001 for area (Figure 4A)
and intensity (Figure 4B) for 5 out of the 7 spiked peptides,
whereas no significant difference was found for the two other
peaks that the NSC algorithm had selected as being discrimina-
tory. One of these peaks (peak X in Figure 3B; 694.6 m/z)
coeluted with one of the spiked peptides (YPFPGPI; [M+ H]+

) 790.4 m/z). The nonsignificant decrease in peak area and
intensity of this signal after spiking suggests an ion-suppression
effect. We could not clarify the reason why the peak at 80.85
min (peak Y in Figure 3B; m/z ) 356.5) was selected as being

Figure 6. Univariate comparison of peak area and intensity of 6 peaks discriminating proteinuria from nonproteinuria. Represented
are box and whisker plots and the corresponding P-values for univariate comparisons of peak area (A) and intensity (B) of smoothed
and baseline-subtracted extracted ion chromatograms (EIC) from raw LC-MS data of 6 discriminating peaks selected by the nearest
shrunken centroid (NSC) classification method. Comparison was performed with the Mann-Whitney U test (nonparametric) and the
Student’s t-test (parametric) dependent on the normality of the distribution (Shapiro-Wilk’s test). Panel C shows the EIC of two
discriminatory peaks selected by the NSC algorithm for the proteinuric (blue) and nonproteinuric (red) samples.
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discriminatory by the NSC algorithm. The NSC algorithm
missed the added peptide GYYPT as being discriminatory
probably because it eluted early in the gradient and was added
to the urine at a concentration equivalent to 2.2 times the LOD.
Despite this fact, it was clearly possible to discriminate the two
groups of samples based on a PCA score plot, explaining 89.6%
of the variation between blank and spiked samples, using the
16 selected peaks (MD of 9.10) in the presence of the observed
biological variation.

Classification of the repetitions of the blank and spiked
pooled urine samples, using the 16 peaks selected by the NSC
algorithm, resulted also in assignment of the samples to the
appropriate classes (MD of 8.04; not shown).

3.2.4. Application of the Developed Methodology to Urine
from Patients with and without Proteinuria. To evaluate the
applicability of the described methodology, we studied urine
of hospitalized patients with established proteinuria (P; male/
female 5:1; median age, 60 years [60-75]; median (range) total
protein concentration in a random portion of urine, 7.6 g/L
[6.5-10]) due to primary or secondary renal morbidity, and we

studied urine of hospitalized patients with a medical history
of renal morbidity but without proteinuria at the time of
sampling (NP; male/female 5:1; median age, 63 years [56-72];
total protein concentration in portion urine, 0.1 g/L [0.0-0.2]).
Proteinuria was defined as having a total urinary protein
concentration above 1 g/L in a random portion. The total peak
matrix contained 11 867 peaks and did not allow discrimination
between the proteinuric and nonproteinuric samples (MD )
1.84) without supervised classification.

The NSC classifier yielded 92 discriminatory peaks at a
shrinkage value of 1.88 with a LOOCV error of 0. The urine
samples with and without proteinuria were discriminated (MD
) 6.95) in the PC 1 dimension of the biplot (Figure 5A). Ninety-
one out of 92 discriminatory peaks (red 1) increased in intensity
in proteinuria (green 9), whereas one peak seemed to be
increased (arrow) in the samples without proteinuria (blue b).
Classification of the urine samples from six healthy individuals
described in Sections 3.2.2 and 3.2.3 (spiked or blank; total of
24 samples; purple () using the model generated with the
variables selected from the 12 chromatograms described in this
section resulted in the formation of a dense cluster close to
the nonproteinuric samples (Figure 5B), discriminating them
even more strongly from the proteinuric samples (MD ) 15.40)
notwithstanding the fact that some of them contained spiked
peptides. Most remarkable was the difference (MD ) 3.39)
between the urine samples of apparently healthy individuals
without known renal morbidity used for spiking experiments
and the patients with (a history of) renal morbidity but without
proteinuria. A trend of progressing renal disease may be
implied, as patients shift to the right along the PC 1-axis.

3.2.5. Selection of Discriminatory Peaks and Identification
by Tandem Mass Spectrometry. The 92 discriminatory peaks
obtained by NSC from the total peak matrix were curated by
manual de-isotoping and charge deconvolution. From the
resulting 54 curated peaks, we selected 6 peaks for further
univariate statistical comparison, based on their elevated levels
in the majority of the proteinuric samples. Figure 6 shows the
box and whisker plots and corresponding P-values for univari-
ate comparison of the peak areas (Figure 6A) and intensities
(Figure 6B) of these 6 peaks for the two patient groups. The
overlaid EIC of 2 of the 6 peaks (Figure 6C) showed that both
of these peaks were increased in 3 out of 6 proteinuric urine
samples, but not in the nonproteinuric samples. This indicates

Table 4. Proteins in a Proteinuric Urine Sample Identified by
LC-MS/MS and Subsequent UniProt Database Search by the
MASCOT Algorithm

protein

accession

no. scorea

cov.

(%)b

no,

peptidesc

R-1-antitrypsin precursord P01009 1090 43 16/35
serum albumin precursord P02768 445 11 4/19
haptoglobin precursord P00738 173 14 1/9
serotransferrin precursord P02787 153 7 2/7
R-1-acid glycoprotein 1 precursord P02763 117 12 1/7
apolipoprotein A-I precursord P12270 103 9 1/3
hemoglobin â-subunitd P68871 102 21 2/3
R-1-antichymotrypsin precursord P01011 99 10 1/5
transthyretin precursor (prealbumin)d P02766 96 28 2/5
collagen R-1 (XIV) chain precursor P02766 73 1 1/5

a Listed are proteins associated with the 10 highest probability-based
Mowse scores (remaining identified proteins with a Mowse score g61 (P <
0.001) are listed in Supporting Information). An in-house version of the
Mascot search engine (v1.9.05) was used to search the UniProt (release 7.7)
database. Enzyme ‘none’ was specified for the search. b Percent ratio of all
amino acids from valid peptide matches to the total number of amino acids
in the protein. c Number of unique peptide matches (ion score > 34 [P <
0.05] was considered significant) followed by the total number of peptide
matches found for the given protein. d Proteins were also identified by
Phenyx (Table 5). Further detailed information is available in Supporting
Information.

Table 5. Proteins in a Proteinuric Urine Sample Identified by LC-MS/MS and Subsequent UniProt/Swiss-Prot Databases Search by
the Phenyx Algorithm

protein accession no. scorea cov. (%)b no. peptidesc

R-1-antitrypsin precursord P01009_WOSIG0 187.8 35 39/57
serum albumin precursord P02768_WOSIG0 47.43 4 9/21
haptoglobin-related protein precursord P00739_WOSIG0 40.49 12 8/10
R-1-acid glycoprotein 1 precursord P02763_WOSIG0 28.28 14 6/10
hemoglobin â-subunitd P68871 25.33 16 4/6
serotransferrin precursord P02787_WOSIG0 24 3 4/9
R-1-acid glycoprotein 2 precursor P19652_WOSIG0 14.95 9 3/3
apolipoprotein A-I precursord P02647_WOSIG0 13.93 8 2/5
R-1b-glycoprotein precursor P04217_WOSIG0 9.33 2 1/3
zinc-R-2-glycoprotein precursor P25311_WOSIG0 8.87 3 3/3
transthyretin precursor (prealbumin)d P02766_WOSIG0 8.82 8 1/4
R-1-antichymotrypsin precursord P01011_WOSIG0 8.37 3 2/7
angiotensinogen precursore P01019_PEPT0 8.29 80 1/1

a Listed are the proteins with AC-scores g 8 (remaining identified proteins with an AC-score g 5 are listed in Supporting Information). A Web-based version
of the Phenyx search engine (v2.1) was used to search the UniProt_Sprot (r. 48.8 of 10-Jan-2006) at AC-scores g 5. Enzyme ‘Chymotrypsin (FYL)’ was specified
for the search. b Percent ratio of all amino acids from valid peptide matches to the total number of amino acids in the protein. c Number of valid peptide
matches followed by the total number of peptide matches found for the given protein. Further detailed information is available in Supporting Information.
d Proteins were also identified by MASCOT (Table 4). e Angiotensin II was spiked into the urine sample at a concentration of 0.5 µM (2.5 pmol).
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a considerable variability in the proteinuric patient group,
which is also evident from the PCA score plot (see Figure 5),
relative to patients with kidney disease but no proteinuria.
Interestingly, there was no correlation (P > 0.05, R2 e 0.0276)
between total protein content in urine and peak area or
intensity of these 6 peaks in patients with proteinuria, sug-
gesting that the selected peaks discriminate patients not simply
based on the total protein concentration in urine. Remarkably,
most of the selected peaks did not reach statistical significance
(P < 0.05) on their own when comparing proteinuric and

nonproteinuric patient samples due to the large variation in
the proteinuric patient group. This adds further support to the
value of a multivariate statistical comparison for discrimination
between complex samples.

The proteinuric urine sample containing the highest level
of these six peaks was analyzed in duplicate by nanoLC ESI-
Q-TOF MS/MS to identify the parent protein(s) from which the
discriminating peaks were derived. LC-MS data were processed
as described under Experimental Procedures. Tables 4 and 5
list the most significant hits of identified proteins for MASCOT-

Figure 7. Serum albumin peptides identified by LC-MS/MS. (A) The amino acid sequence of serum albumin precursor (Uniprot_Sprot
AC no. P02768-CHAIN0) is shown. Peptide matches are listed and highlighted in colored boxes (green for valid peptides, red for invalid
peptides, and orange for valid half-cleaved peptides). Two of the serum albumin precursor peptides (boxed amino acids in italic and
bold) were selected by nearest shrunken centroid (NSC) classification to be discriminatory between proteinuria and nonproteinuria,
whereas two (boxed amino acids in bold) of the other albumin peptides were not selected by NSC. Panel B depicts the extracted ion
chromatograms of these two nondiscriminatory albumin peptides for the proteinuric (blue) and nonproteinuric (red) samples indicating
that these peptides are also elevated in some proteinuric patients (see Figure 6C for discriminatory peptides).
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and Phenyx-algorithm based Uniprot/Swiss-Prot database
searches, respectively. Most of the identified proteins are
derived from blood.

Two of the peaks selected by the NSC algorithm to be
elevated in proteinuric urine samples (Ion-Trap 573.0 m/z, 3+
and 712.3 m/z, 1+; Figure 6C) were identified as possible
breakdown products of human serum albumin by both algo-
rithms (Figure 7A: serum albumin precursor protein, P02768-
CHAIN0 in uniprot_sprot, L.VRYTKKVPQVSTPTL.V, and
L.IAFAQY.L position 31-36; Table 6), a protein that is known
to be increased in concentration in glomerular proteinuria.5

Manual conversion of the monoisotopic multiply charged
fragment ions to monoisotopic singly charged fragment ions
confirmed the identity of one peptide with a higher score (Table
6). To evaluate peak selection by the NSC algorithm, we
compared the respective EIC of two other albumin-derived
peptides that were not selected by the NSC algorithm (Table 6
and Figure 7B). The levels of the two discriminatory peptides
were elevated in at least 3 out of 6 proteinuric patients (for
both peptides; P > 0.05), while the other two nondiscriminatory
peptides showed increased intensities in only 2 out of 6 patients
(for both peptides; P > 0.05). The fact that the NSC algorithm
did not select these two peptides indicates that it was not able
to detect them as discriminatory due to the large biological
variability in the proteinuric patient group. The observation
that there are proteolytic fragments of albumin with a higher
discriminatory value than others points toward the existence
of ‘disease-specific’ proteolytic degradation of albumin and
urinary excretion of its fragments. This idea is supported by
recent data of Osicka and Comper45 and Villanueva et al.46

4. Discussion and Conclusion

The aim of this work was to develop a platform for the
comparative profiling of urine by microbore, reversed-phase
HPLC coupled on-line with ESI-Ion Trap MS. Dedicated data
preprocessing followed by statistical classification (with cross-
validation) and PCA were used to assess the relative contribu-
tions of analytical and biological variation to the obtained
results as well as to apply the methodology to a sample set of
kidney patients with and without proteinuria.

4.1. Method Development and Evaluation. Urine has been
the biofluid of choice in many clinical and pharmacological
studies focusing on diseases of the genitourinary tract.47-50

Profiling urinary (trypsin-digested) proteins and peptides usu-
ally starts with prefractionation or (affinity-) enrichment fol-
lowed by separation based on physicochemical properties (e.g.,
by HPLC and/or 1D/2D electrophoresis [1DE/2DE]) and detec-
tion/identification by mass spectrometry.18,51-53 While 1DE/2DE
are often used in urinary proteomics, their application is limited
by poor coverage of proteins with extreme properties (e.g., low

molecular weight; high isoelectric point) or low concentration,
a relatively low sample throughput, and the difficulty to
automate handling of large numbers of clinical samples.51

Profiling by LC-MS provides an alternative with advantages
in areas where 1DE/2DE is weak, notably, the low-molecular
weight region of the proteome also termed the peptidome. The
urinary peptidome can be considered complementary to the
urinary proteome, since most peptides are derived from higher
molecular weight proteins through proteolytic cleavage.18 Since
there is evidence that the “degradome” of high molecular
weight proteins may give insights into disease mechanisms and
provide new diagnostic biomarkers,46,54 we have developed a
simple, rapid, and robust on-line reversed-phase LC ESI Ion
Trap MS-based profiling method with minimal sample pre-
treatment directed at low-molecular weight compounds in
urine.

Validation parameters such as the LOD, linearity, within- and
between-day analytical variation, and standard deviation for
retention time and peak area were used to characterize the
method. Sensitivity for peptides (3-8 amino acids) is compa-
rable to what can be routinely attained with a microbore-LC
ESI-Ion Trap MS configuration, that is, detection of low
nanomolar (<25 nmol/L) concentrations and femtomole quan-
tities (<250 fmole) of peptides.55 However, it must be remarked
that small peptides, such as one of the standard peptides VYV,
that elute at the beginning of the gradient are prone to higher
analytical variation in terms of peak area and retention time,
especially at low concentrations. This is likely due to some
chromatographic migration under the isocratic sample loading
conditions affecting retention time and possibly small losses
during loading of the trap column. Very small peptides,
however, tend to be less disease-specific, as they may be
derived from a wide range of precursor proteins. Since our
method does not rely on stable isotope-labeled internal stan-
dards, it was critical to evaluate its linearity, which was larger
than R2 ) 0.9 for each of the 7 added peptides tested over a
concentration range from 10 to 500 nM, supporting the
presumed linear relationship between peptide concentration
and MS response.28 A linear correlation between peptide
concentration and detected signal allows compositional analy-
ses not only from a qualitative but also from a quantitative
point of view enabling us to address changes in concentrations
of the detected compounds.56 Randomization of the order of
analysis was used to level out systematic errors due to
unavoidable between-day and within-day analytical variation,
which might otherwise confound the ensuing statistical analy-
sis. Together, these performance characteristics can be used
for power calculations when setting up biomarker discovery
projects.18 Guidelines for power calculations in LC-MS-driven
biomarker research are lacking. However, experimental data

Table 6. Peaks Identified by LC-MS/MS as Serum Albumin-Derived Peptides

sequence

cleavage

specificity modifications

precursor mass

(Da) charge

mass error

(Da) score position

Selected by NSCa

L.VRYTKKVPQVSTPTL.Vb 1 MCc none 1715.99 3+ 0.02 40d 415-429
L.IAFAQY.Le 1 MC none 711.359 1+ 0.036 4.99f 31-36

Not Selected by NSC
L.GEENFKALVL.Ie 2 MC none 1118.597 2+ 0.014 5.1f 21-30
L.PSLAADF.Ve half none 719.349 1+ 0.03 4.73f 303-309

a Peptides selected by nearest shrunken centroid (NSC) classifier. b Peptide identified using MASCOT. c MC, missed cleavage. d Individual ion score > 33
indicates identity or extensive homology (p < 0.05). e Peptides identified using Phenyx. f Peptides with z-scores g 4 and p < 0.0001 were considered significant.
Further detailed information is available in Supporting Information.
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from microarray studies provide some guidelines with respect
to power calculations, that is, sample size, variability of the
population, desired detectable differences, acceptable error
rate, experimental design, technical variability, and data pre-
processing.57,58

In contrast to most published studies, we opted for pre-
analytical normalization of the amount of injected sample as
compared to postanalytical data normalization, since post-
analysis normalization cannot account for nonlinear effects
such as ion suppression. There are still many issues to address
in postanalysis data normalization, such as global versus local
normalization, replicate filtering, and averaging.34,38,59 The
urinary creatinine concentration is generally used as normal-
ization factor in comparative studies.17,18 Normalization based
on creatinine was compared with a multicompound normal-
ization strategy based on the AUC214 of the chromatographic
region of interest (excluding amino acids, small hydrophilic
peptides, and other early eluting UV-absorbing compounds).
The latter approach seems better adapted to normalizing the
amount of urine over a wide range of compounds, as was
supported by the lower CV of the AUCTIC and the peak areas
of the added peptides. The drawback of this approach is that
duplicate analyses are required and that the relatively large
contribution of one peak/compound to the total UV-area
suggests, in essence, normalization to only a few highly
abundant UV-absorbing compounds. Development and evalu-
ation of other preanalytical multicompound normalization
strategies for the comparative profiling of urine remains,
therefore, an issue.

4.2. Data (Pre-)Processing and Multivariate Statistical
Comparison of LC-MS Profiles of Urinary Compounds in
Different Experimental Settings. The performance of the
developed analytical platform was evaluated (i) by assessing
the effect of analytical and biological variation on the com-
parison of urine samples spiked with exogenous peptides and
(ii) by a preliminary study comparing urine samples of hospi-
talized patients with and without proteinuria due to various
causes.

Unsupervised multivariate statistical analysis by PCA using
the complete peak matrix of about 14 000 peaks was unable to
discriminate blank from spiked pooled urine samples. The
observed variation between the samples is, in this case,
composed of analytical variation and variation introduced by
the added peptides (low nanomolar concentrations). Our
results suggest that spiking affects the linear combination of
all elements composing the data vectors in an unsupervised
setting only minimally. It is therefore necessary to apply a
supervised classification algorithm (the NSC with permutation-
based cross-validation in our case) to select discriminating
elements prior to PCA, which resulted in clear separation
between spiked and blank samples in the PC 1 dimension. We
employed the NSC classifier, because of its simplicity and the
fact that Tibshirani et al.39 found it to perform as well or even
better than several other classifiers. The validity of the described
approach was shown by the fact that the NSC algorithm was
capable of extracting the added peptides as discriminatory
peaks out of the 14 000 feature-containing peak matrix. How-
ever, 3 peaks selected by the classifier could not be related to
the added peptides through possible ion-suppression or in-
source fragmentation products of the added peptides. Analyti-
cal artifacts and suboptimal data processing issues, for example,
binning,56 might have played a role. These issues are presently
being addressed.

Comparing blank and spiked urine samples of different
healthy individuals by unsupervised PCA proved that variation
in urinary peptide profiles between-subjects (i.e., biological
variation) was much larger than within-subjects (i.e., analytical
variation), irrespective of spiking. However, the correct clas-
sification of blank versus spiked urine samples from different
individuals using the NSC-selected peaks (14 out of 16 were
related to the spiked peptides) emphasizes the applicability of
the platform also in the presence of considerable biological
variation. Nevertheless, some issues, for example, the selection
of false-positive discriminatory peaks, remain to be addressed.

Our preliminary study comparing urine samples from hos-
pitalized patients with a normal and high protein content
resembled a study of Jurgens et al. 18 Using LC combined with
off-line MALDI-TOF MS detection and differential peptide
display to compare pathological with healthy urines, they
observed a substantial number of peptides in post-renal
disease, which are absent in normal urine. Ninety-two peaks
were selected from the LC-MS data to obtain a zero classifica-
tion error. The larger portion (75%) of these peaks eluted late
in the gradient, which suggests that they are rather hydro-
phobic. Clustering of the nonproteinuric samples from healthy
individuals apart from the nonproteinuric samples from hos-
pitalized patients, indicates that there is a trend of increased
renal dysfunction in these patients as visualized by a right-
shift in PC 1. Our current platform appears to be suitable for
the study of early stage renal disease, but larger sets of samples
need to be analyzed to substantiate these findings. The
identified precursor proteins in the proteinuric urine samples
are in good agreement with other studies profiling the urinary
proteome3,10,16,51 and peptidome.18 The identification of two
discriminatory peaks as serum albumin-derived peptides is in
accordance with the expected rise of albumin during glom-
erular proteinuria. Albumin is the first protein to rise in
proteinuria and is degraded intracellularly in the lysosomes
after which the fragments are exocytosed to the apical and
basolateral sides of the renal tubular cells.60 Recently, it has
also been suggested that significant amounts of albumin
fragments are excreted in urine, possibly resulting from tubular
degradation of filtered albumin, followed by luminal secretion
of its fragments.61,62 Disease-specific proteolytic degradation
products of tissue or biofluid proteins are possible biomarker
candidates.46 However, most discriminatory peaks, including
the albumin-derived peptide peak, were not significantly
elevated in proteinuria when analyzed by univariate statistics
due to a very large biological variation among the proteinuric
patient group. The use of higher-order interactions between
features in multivariate statistical analysis, thus, provides more
discriminative power than univariate statistics. Manual univari-
ate comparison of selected peaks remains, however, imperative
for biomarker selection and further identification.

In summary, we have developed an analytical platform for
the comparative analysis of urine samples by LC-MS followed
by dedicated data preprocessing and multivariate statistical
analysis of the obtained profiles. The analytical and biological
variation did not adversely affect the performance of the
method with respect to the classification of blank and spiked
samples of different origin. The preliminary study of pathologi-
cal and healthy urine samples emphasizes the potential of the
platform not only for patient classification but also for detecting
trends. However, some issues remain to be addressed and
improved to enhance the performance of the platform. Cur-
rently, we are implementing more advanced data processing

Comparative Urine Analysis by LC-MS and Multivariate Statistics research articles

Journal of Proteome Research • Vol. 6, No. 1, 2007 205



and multivariate statistical analysis approaches such as data
meshing instead of binning, optimized M-N rule filtering for
peak detection, and improved peak matching methods together
with de-isotoping and charge-deconvolution. Advanced reten-
tion time alignment and possibly m/z alignment algorithms
are also being considered, as well as other classifying algorithms
and methods. Combined with larger and better defined urine
sample sets, this will allow us to do advanced proof-of-principle
studies toward the goal of defining reliable biomarkers suitable
for clinical validation.
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