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OBJECTIVE—Xenin, a 25–amino acid peptide, was initially
isolated from human gastric mucosa. Plasma levels of xenin rise
after a meal in humans, and administration of xenin inhibits
feeding in rats and chicks. However, little is known about the
mechanism by which xenin regulates food intake. Signaling
pathways including leptin and melanocortins play a pivotal role
in the regulation of energy balance. Therefore, we addressed the
hypothesis that xenin functions as a satiety factor by acting
through the melanocortin system or by interacting with leptin.

RESEARCH DESIGN AND METHODS—The effect of intrace-
rebroventricular and intraperitoneal administration of xenin on
food intake was examined in wild-type, agouti, and ob/ob mice.
The effect of intracerebroventricular injection of SHU9119, a
melanocortin receptor antagonist, on xenin-induced anorexia
was also examined in wild-type mice. To determine whether the
hypothalamus mediates the anorectic effect of xenin, we exam-
ined the effect of intraperitoneal xenin on hypothalamic Fos
expression.

RESULTS—Both intracerebroventricular and intraperitoneal
administration of xenin inhibited fasting-induced hyperphagia in
wild-type mice in a dose-dependent manner. The intraperitoneal
injection of xenin also reduced nocturnal intake in ad libitum–fed
wild-type mice. The intraperitoneal injection of xenin increased
Fos immunoreactivity in hypothalamic nuclei, including the
paraventricular nucleus and the arcuate nucleus. Xenin reduced
food intake in agouti and ob/ob mice. SHU9119 did not block
xenin-induced anorexia.

CONCLUSIONS—Our data suggest that xenin reduces food
intake partly by acting through the hypothalamus but via signal-
ing pathways that are independent of those used by leptin or
melanocortins. Diabetes 58:87–94, 2009

O
besity is associated with an increased risk of
various disorders, including diabetes, dyslipide-
mia, cardiovascular diseases, and some forms
of cancer. Obesity is now epidemic and recog-

nized as a global health problem. Several peptides pro-
duced in the gastrointestinal tract have been shown to be
involved in the regulation of energy homeostasis by acting
through the central nervous system (1).

Xenin is a 25–amino acid peptide that was initially
isolated from human gastric mucosa (2). Xenin is pro-

duced by a subpopulation of chromogranin A–positive
endocrine cells in the duodenal and jejunal mucosa and
has been identified in secretory granules, suggesting that
xenin is transported to the cell surface by a regulated
secretory pathway (3). It has been suggested that xenin is
released from a larger precursor, �-COP (coatomer pro-
tein complex subunit �), through posttranslational modi-
fication (4–7). Xenin is structurally similar to neurotensin,
which functions as a satiety factor by sharing an analogous
COOH-terminal amino acid sequence (2,8,9). Similar to
other anorectic gastrointestinal peptides, levels of circu-
lating xenin increase after a meal, suggesting that xenin
also may regulate food intake by acting as a satiety factor
(2,10–13). Consistent with this hypothesis, it has been
shown that intracerebroventricular administration of xe-
nin reduces food intake in fasted rats (14). More recently,
it was demonstrated that intraperitoneal administration of
xenin was effective in reducing food intake in chicks (15).
The intraperitoneal injection of xenin also stimulates Fos
expression in the hypothalamus in chicks (15). These
findings suggest that peripherally produced xenin reduces
food intake by acting through the central nervous system,
including the hypothalamus.

Little is known about the mechanisms by which xenin
regulates food intake. The central melanocortin system
plays a critical role in the regulation of metabolism by
mediating the effect of peripheral nutritional signals, in-
cluding leptin and gastrointestinal hormones (16). Impair-
ments in melanocortin signaling are associated with
metabolic disorders, including obesity and insulin resis-
tance. Therefore, we addressed the hypothesis that xenin
functions as a satiety factor by acting through the mela-
nocortin system or by interacting with leptin.

RESEARCH DESIGN AND METHODS

Male mice (C57BL/6; Charles River Laboratories, Montreal, QC, Canada) were
used in the current study. Wild-type control as well as ob/ob and agouti mice
(both C57BL/6J background) were obtained from The Jackson Laboratories
(Bar Harbor, ME). Experiments were performed between 3 and 4 months of
age except for the agouti mice study (2–3 months of age). Mice were
individually housed under a 12:12 light:dark cycle (lights on at 0600 h) with
free access to standard rodent chow pellets (Prolab RMH 3000, 4.5% fat by
weight; Ralston Purina) except during fasting. Water was available throughout
the experiment except for the conditioned taste aversion studies. All studies
were approved by the institutional animal care and use committee (University
of Manitoba).
Intracerebroventricular cannulation and injection. For intracerebroven-
tricular injection, a guide cannula was implanted into the lateral ventricle as
described previously (17). Xenin was obtained from American Peptide
(Sunnyvale, CA) and reconstituted as indicated by the manufacturer. Control
animals were injected with artificial cerebrospinal fluid (aCSF). The compo-
sition of aCSF was as follows: 124 mmol/l NaCl, 26 mmol/l NaHCO3, 5 mmol/l
KCl, 1.2 mmol/l KH2PO4, 1.3 mmol/l MgSO4, 2.4 mmol/l CaCl2, and 10 mmol/l
D-glucose. Xenin or aCSF was injected in a total volume of 1 �l over 30 s. An
injection pipe was left inside the cannula for another 30 s and removed from
the cannula.
Feeding studies. Mice (wild-type and ob/ob mice) were fasted overnight
(1800–1000 h) and injected with xenin intracerebroventricularly (0.1, 1, or 5
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�g) or intraperitoneally (0.5, 5, 15, or 50 �g/g body wt) at 1000 h. To compare
the feeding-suppressing effect between xenin and neurotensin, equimolar
amounts (16.5 nmol) of xenin (50 �g/g body wt) or neurotensin (28 �g/g body
wt; Sigma-Aldrich, St. Louis, MO) were injected intraperitoneally after an
overnight fast. Control mice received either intracerebroventricular injection
of aCSF or intraperitoneal injection of saline. Preweighed food was provided
to mice immediately after the injection. Cumulative food intake was measured
at time points indicated in each figure up to 24 h after injection.

To determine whether xenin can reduce normal food intake, the effect of
xenin on food intake was examined in ad libitum–fed wild-type mice. Mice
were injected intraperitoneally with xenin (50 �g/g body wt) or saline just
before lights out, and cumulative food intake was measured 1, 2, 4, 6, 8, 12, 18,
and 24 h after injection.

To determine whether the central melanocortin system mediates the
anorectic effect of xenin, the effect of SHU9119, a melanocortin receptor 3 and
4 (MC3-R/MC4-R) antagonist, on xenin-induced anorexia was examined.
Wild-type mice were fasted overnight and injected intracerebroventricularly
with SHU9119 (0.5 nmol; Bachem, King of Prussia, PA) or aCSF immediately
before the intracerebroventricular injection of xenin (5 �g) or aCSF at 1000 h.
The anorectic effect of intraperitoneal xenin (50 �g/g body wt) was also
examined in wild-type (a/a) and agouti (Ay/a) mice after overnight fasting.
Cumulative food intake was measured hourly up to 4 h after injection.
Furthermore, to determine whether xenin alters mRNA levels of proopiomel-
anocortin (POMC) and agouti-related protein (AGRP) in the hypothalamus,
wild-type mice received daily intracerebroventricular xenin (5 �g) or aCSF
injections for 11 days. Mice were killed 24 h after the last injection by
exposure to carbon dioxide. The brain was quickly removed, and the
hypothalamus was dissected, frozen on dry ice, and stored at �80°C for RNA
analysis.
Conditioned taste aversion. Mice were accustomed to having access to
water from two water bottles for 7 h (0930–1630 h) per day for 2 weeks. Daily
food intake and body weight were stable after the 4th day of training. On the
day of conditioning, mice were given two bottles of a novel 0.15% saccharin
solution for the 30-min period (0930–1000 h) instead of water. Mice were
injected intraperitoneally with xenin (50 �g/g body wt) or saline at the end of
the 30-min period. LiCl (0.3 mol/l, 2% body wt i.p.) was used as a positive
control. Mice were then given two bottles of water for the remaining 6.5 h
(1000–1630 h). On the next day, mice were given a choice of two bottles
containing either 0.15% saccharin solution or water for 30 min (0930–1000 h).
Consumption of saccharin solution and water was measured. Total fluid
intake was the sum of the water and saccharin solution.
c-fos expression study. Mice were fasted overnight and injected intraperi-
toneally with xenin (50 �g/g body wt) or saline at 1000 h. Mice were not fed
after injection and killed 30 min later by exposure to carbon dioxide. The brain
was quickly removed, and the hypothalamus was dissected, frozen on dry ice,
and stored at �80°C for RNA analysis.
RNA analysis. Total RNA was extracted in TRIzol reagent (Invitrogen,
Carlsbad, CA). First-strand cDNA was synthesized from 5 �g of total RNA
using SuperScriptII RNaseH reverse transcriptase and random primer (Invitro-
gen) and diluted 1:20–1:50. Hypothalamic gene expression levels were mea-
sured by real-time PCR as described previously (18). All primers
(Supplemental Table 1, available in an online appendix at http://dx.doi.org/10.
2337/db08-0260) were designed using Primer Express software (ver. 3.0;
Applied Biosystems, Foster City, CA). Data were analyzed by the ��Ct
method using an ABI 7500 Fast System SDS software package (ver. 1.3.1;
Applied Biosystems), and mRNA levels were normalized to cyclophilin mRNA
levels. Data are expressed as means (% of the control group) � SE. All
reactions were performed in triplicate, and the coefficient of variation was
�2% for each triplicate.
Immunohistochemistry. Mice were adapted to the injection procedure by
intraperitoneal saline injection every 24 h for 8 days. On the last day of the
adaptation, mice were fasted for 6 h and injected intraperitoneally with saline
or xenin (50 �g/g body wt) at 1400 h. Mice were deeply anesthetized with an
intraperitoneal injection of avertin (5 mg/g body wt) and perfused with 0.1
mol/l phosphate buffer followed by a fixative (4% paraformaldehyde in 0.1
mol/l phosphate buffer) 2 h after injection. Brains were removed and incu-
bated in fixative for 5 h at room temperature and stored in 10% sucrose at 4°C
at least overnight. Coronal sections (30 �m) were cut on a cryostat and stored
in cryoprotectant (30% sucrose, 1% polyvinylpyrollidine, and 30% ethylene
glycol in 0.1 mol/l phosphate buffer) at �20°C until tissue sections were
processed for immunohistochemistry. Immunohistochemical visualization of
Fos was performed as described previously (19). Immunohistochemistry was
performed every fifth tissue section throughout the anterior-posterior length
of the hypothalamus covering the paraventricular nucleus (PVH), the ventro-
medial nucleus (VMH), the arcuate nucleus (ARC), the lateral hypothalamic
area (LHA), and the dorsomedial nucleus (DMH). We counted the number of
Fos-immunoreactive cells on both sides of the brain. The sum of the number

of Fos-immunoreactive cells on both sides was calculated in each animal and
used for the statistical analysis.
Statistical analysis. Values are the means � SE. Data were initially analyzed
by one-way or two-way ANOVA. When ANOVA indicated a significant effect of
the variable, differences between groups were analyzed using the Dunnett’s
test or the Tukey-Kramer test. Comparisons between two groups were
performed using Student’s t test. In all cases, differences were taken to be
significant if P values were �0.05.

RESULTS

Effect of intracerebroventricular administration of
xenin on food intake in fasted mice. The intracerebro-
ventricular injection of xenin (5 �g) significantly reduced
cumulative food intake up to 8 h after injection (Fig. 1,
upper panel). Notably, 24-h food intake was reduced by
�25% in xenin-injected mice compared with aCSF-injected
control mice (Fig. 1A, upper panel). Hourly food intake
was significantly reduced by xenin up to 2 h after injection.
The intracerebroventricular injection of xenin reduced
food intake in a dose-dependent manner (Fig. 1, lower
panel). The feeding-suppressing effect of the highest dose
(5 �g) remained significant 4 h after injection (Fig. 1, lower
panel). An intermediate dose of xenin (1 �g) also signifi-
cantly reduced food intake up to the 4-h time point with a
smaller magnitude. The lowest dose of xenin (0.1 �g) did
not cause significant changes in food intake (Fig. 1, lower
panel).
Effect of intraperitoneal administration of xenin on
food intake in fasted mice. The intraperitoneal injection
of xenin (15 �g/g body wt) significantly but transiently
reduced cumulative food intake at the 2- and 3-h time
points (Fig. 2A). The 24-h food intake was not different
between xenin-injected mice and control mice. The intra-
peritoneal injection of xenin also reduced food intake in a
dose-dependent manner (Fig. 2B). Lower doses (0.5 and 5
�g/g body wt) did not cause significant changes in cumu-
lative food intake (Fig. 2B). The highest dose of xenin (50
�g/g body wt) reduced cumulative food intake with a
greater magnitude and a longer duration (up to the 4-h
time point) compared with the 15-�g dose (Fig. 2B). There
was no difference in 24-h food intake among the five
groups (P � 0.11, one-way ANOVA).

Xenin and neurotensin share a structural similarity as
well as functional similarity (anorectic effect). To compare
the ability of xenin and neurotensin to reduce food intake,
an equimolar amount (16.5 nmol) of xenin or neurotensin
was injected intraperitoneally, and food intake was mea-
sured in overnight-fasted mice. Both xenin (50 �g/g body
wt) and neurotensin (28 �g/g body wt) significantly inhib-
ited fasting-induced hyperphagia (Fig. 2C). Cumulative
food intake was significantly lower in xenin-injected mice
compared with neurotensin-injected mice at all time
points except the 2-h time point.
Effect of intraperitoneal administration of xenin on
conditioned taste aversion. The intraperitoneal injec-
tion of LiCl significantly reduced the intake of saccharin
solution compared with that in saline-injected control
mice (Fig. 3A). The intraperitoneal injection of xenin did
not cause significant changes in saccharin intake (P �
0.32, Dunnett’s test) (Fig. 3A). There was no significant
difference in total fluid intake between the groups (P �
0.66, one-way ANOVA) (Fig. 3B).
Effect of intraperitoneal administration of xenin on
food intake in ad libitum–fed mice. The intraperitoneal
injection of xenin (50 �g/g body wt) significantly reduced
nocturnal food intake in ad libitum–fed mice (Fig. 4). The
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inhibitory effect of xenin on cumulative food intake re-
mained significant up to 24 h after injection (Fig. 4).
Effect of intraperitoneal administration of xenin on
hypothalamic activation. The intraperitoneal injection
of xenin (50 �g/g body wt) significantly increased hypo-
thalamic c-fos mRNA by �170% compared with saline
injection (Fig. 5A). In contrast, c-fos mRNA in the cortex
was not different between the two groups (Fig. 5A). By
immunohistochemical examination, the intraperitoneal in-
jection of xenin significantly increased the number of
Fos-immunoreactive cells in the PVH, ARC, VMH, and
DMH by �300–400% compared with control saline injec-
tion (Fig. 5B–F). A small number of Fos-immunoreactive
cells were present in the LHA, and the number of Fos-
immunoreactive cells in the LHA was not different be-
tween the xenin-treated group (8 � 1 cells) and the
saline-treated group (11 � 3 cells, P � 0.24, Student’s t
test).
Effect of intraperitoneal administration of xenin on
food intake in leptin-deficient mice. To determine
whether xenin can reduce food intake in hyperphagic
obese animals independent of the action of leptin, we
examined the effect of xenin (15 �g/g body wt, i.p.) on

food intake in leptin-deficient ob/ob mice. Xenin signifi-
cantly inhibited the fasting-induced hyperphagic response
for the first 4 h after injection compared with saline
injection (Fig. 6). The effect of xenin on cumulative food
intake was no longer significant at the 6-h time point.
Effect of melanocortin blockade on xenin-induced
anorexia. To address the hypothesis that the inhibitory
effect of xenin on food intake is mediated through mela-
nocortin signaling, we assessed xenin-induced anorexia in
agouti mice. Some of the metabolic abnormalities in agouti
mice are evident before the animals become overtly obese
(20). To determine whether the effect of xenin on food
intake is independent of obesity, we examined the effect of
xenin on food intake in young (7 weeks old) preobese
agouti mice. There was no significant difference in body
weight between wild-type and agouti mice at this age
(wild-type: 21.3 � 0.3 g [n � 12]; agouti: 21.5 � 0.3 [n �
12], P � 0.61, Student’s t test). Xenin was effective in
reducing food intake in both young wild-type and agouti
mice (data not shown). To determine whether the anorec-
tic effect of xenin is attenuated after developing obesity,
we examined the effect of xenin on food intake in obese
agouti mice. At 10 weeks of age, agouti mice were signif-
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icantly heavier by �25% compared with wild-type mice
(agouti: 27.8 � 0.5 g [n � 20], wild-type: 22.1 � 0.5 [n �
16]; P � 0.0001, Student’s t test). Xenin (50 �g/g body wt
i.p.) significantly reduced 2-h food intake compared with
saline injection in both wild-type and agouti mice (Fig. 7,
upper panel). Similar results were observed for 1-, 3-, and
4-h cumulative food intake (data not shown).

To further determine whether the feeding-suppressing
effect of xenin is mediated through the central melanocortin
system, SHU9119 (0.5 nmol) was injected intracerebroven-

tricularly immediately before intracerebroventricular injec-
tion of xenin (5 �g) in overnight-fasted wild-type mice. The
intracerebroventricular administration of xenin signifi-
cantly reduced 2-h food intake compared with aCSF
administration (Fig. 7, lower panel). Injection of SHU9119
alone did not alter food intake. Xenin-induced anorexia
was not attenuated by SHU9119 (Fig. 7, lower panel).
Similar results were observed for 1-, 3-, and 4-h cumulative
food intake (data not shown). The intracerebroventricular
injection of the same dose (0.5 nmol) of SHU9119 blocked
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the anorectic effect of intracerebroventricular MTII (mela-
notetan II), a MC3-R/MC4-R agonist (Supplemental Fig. 1).

To examine whether xenin alters expression levels of
genes associated with the melanocortin system, hypotha-
lamic POMC and AGRP mRNA levels were measured in
xenin-treated mice. A daily intracerebroventricular in-
jection of xenin (5 �g/injection for 11 days) did not
cause significant changes in hypothalamic POMC and
AGRP mRNA levels compared with control daily intra-
cerebroventricular aCSF treatment (Fig. 8). In a sepa-
rate study, the intracerebroventricular leptin treatment

(1 �g/injection) significantly increased hypothalamic
POMC mRNA levels, with a trend of reduced AGRP
mRNA levels (Fig. 8).
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DISCUSSION

Xenin, a gastrointestinal peptide, was identified almost 15
years ago (2). Its anorectic effect in fasted rats was

reported 	10 years ago, but little research has been
conducted to investigate the role of xenin in the regulation
of energy homeostasis since then (14). Recently, it was
demonstrated that xenin also reduced food intake in
chicks, suggesting that this function is conserved across
species (15). However, thus far there have been no studies
reporting the effect of xenin on food intake in mice. To
generalize the anorectic action of xenin across species, we
examined the effect of xenin on food intake in mice in the
current study. We have now confirmed that both intrace-
rebroventricular and intraperitoneal administration of
xenin reduced food intake in mice. We have also demon-
strated that the intraperitoneal injection of xenin increases
Fos immunoreactivity in specific hypothalamic nuclei,
suggesting that the anorectic effect of xenin is mediated at
least partly through the activation of the hypothalamus.
However, our study demonstrated that xenin-induced an-
orexia in obese mouse models is independent of both
leptin and melanocortin actions.

Plasma levels of xenin rise after a meal in humans, and
intracerebroventricular administration of xenin reduces
food intake (Fig. 1) (2,13,14). Although xenin is detected in
the hypothalamus, the level of xenin in the hypothalamus
is considerably lower than that in the gastrointestinal tract
(5). These data suggest that gut-derived xenin may func-
tion as a satiety factor by acting through the central
nervous system. We therefore investigated the effects of
peripheral administration of xenin on feeding. The intra-
peritoneal administration of xenin dose-dependently re-
duced food intake in mice, consistent with the previous
observation in chicks (15). The kinetics were similar to
those seen with intracerebroventricular administration,
with potent inhibition of feeding for the first 2 h. Thus, the
robust anorectic effect was observed during the 1st and
2nd hour after intraperitoneal injection. This is consistent
with a short half-life of exogenously administered xenin
(21). It is often observed that the short-lasting anorectic
effect is reversed by a rebound hyperphagia. Interestingly,
cumulative food intake after xenin injection remained
significantly lower than that of control mice up to 24 h
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after injection (Figs. 1, upper panel, and 4). These data
strongly suggest that xenin has an ability to maintain lower
energy intake even after the initial robust anorectic effect
has disappeared. However, the intraperitoneal injection of
xenin did not reduce 24-h cumulative food intake after
overnight fasting (Fig. 2A), suggesting the possibility that
xenin delays the initiation of feeding behavior after
fasting.

Many appetite-suppressing substances, including gut-
derived peptides, inhibit feeding partly by causing nausea
and taste aversion (1). The intraperitoneal injection of
xenin at a dose that produces the anorectic effect did not
cause a significant taste aversion, whereas intraperitoneal
LiCl caused severe taste aversion. These data suggest that
xenin-induced anorexia is not attributable to an aversive
response to xenin.

How does peripherally injected xenin reduce food in-
take? The effects of gastrointestinal hormones on metab-
olism are mediated through the central nervous system,
including the hypothalamus (1). The intracerebroventric-
ular injection of xenin was effective in reducing food
intake, and hypothalamic c-fos mRNA was significantly
increased after intraperitoneal injection of xenin in the
current study. In contrast, xenin did not cause significant
changes in c-fos mRNA levels in the cortex. Furthermore,
the intraperitoneal injection of xenin increased the num-
ber of Fos-immunoreactive cells in the PVH, ARC, VMH,
and DMH but not in the LHA. These data support our
hypothesis that xenin inhibits feeding at least partly
through the activation of specific cells in these hypotha-
lamic regions. It should be noted that the brainstem and
the vagus nerve also play a role in mediating the satiety
effect of a variety of gastrointestinal peptides (1). Thus, it
is possible that the anorectic effect of xenin is also
partially mediated through the brainstem and vagus nerve.

Leptin, secreted by adipocytes, regulates a variety of
physiological functions, including feeding, by acting
through several different signaling pathways in the hypo-
thalamus. Leptin also regulates metabolism by interacting
with other nutritional signals, including gut hormones
(22–24). In the current study, the intraperitoneal injection
of xenin significantly reduced food intake in leptin-
deficient ob/ob mice. We did not have wild-type mice in the
same experiment, and therefore we cannot directly com-
pare the magnitude of xenin-induced anorexia between
wild-type and ob/ob mice in the current study. However, by
comparing the anorectic effect of xenin between wild-type
(Fig. 2A) and ob/ob mice (Fig. 6) in two independent
studies, the 15-�g dose of xenin significantly reduced food
intake in both wild-type and ob/ob mice with similar
kinetics. These data suggest that xenin reduces food
intake at least partly through a mechanism that is inde-
pendent of leptin. Because human obesity is generally
characterized by reduced sensitivity or resistance to leptin
instead of leptin deficiency, it is possible that treatment
with xenin may be effective in reversing metabolic impair-
ments in obese subjects with impaired leptin sensitivity.
This possibility was further supported by our findings that
leptin-resistant agouti mice reduced food intake in re-
sponse to xenin administration.

Hypothalamic melanocortin signaling plays a critical
role in the regulation of metabolism by integrating signals
from the gastrointestinal tract (16). Anorectic effects of
some of the gut-derived hormones are mediated through
MC4-R. For example, the feeding-suppressing effect of
cholecystokinin is abolished in MC4-R–deficient mice and

attenuated by a MC3-R/MC4-R antagonist, SHU9119 (25).
Ghrelin stimulates food intake by interacting with mela-
nocortins, and the orexigenic effect of ghrelin is abolished
in mice lacking both AGRP and neuropeptide Y (24,26). In
contrast, the anorectic effects of glucagon-like peptide-1
and peptide YY3–36 are independent of the melanocortin
signaling pathway (27–29). Because xenin activated the
hypothalamus, as measured by c-fos mRNA expression
and Fos immunoreactivity, we wished to determine
whether xenin-induced anorexia involves central melano-
cortin signaling. The anorectic effect of xenin was intact in
both preobese and obese agouti mice. Furthermore, the
intracerebroventricular injection of SHU9119 at a dose
that is effective in blocking the anorectic effect of the
MC3-R/MC4-R agonist failed to block the anorectic effect
of xenin. If the anorectic effect of xenin is mediated
through the central melanocortin system, expression of
genes associated with the melanocortin system may be
regulated by xenin. However, the intracerebroventricular
injection of xenin did not cause significant changes in
hypothalamic POMC and AGRP mRNA levels. Taken to-
gether, our data suggest that xenin reduces food intake
through a mechanism independent of the melanocortin
signaling pathway.

In summary, the current study demonstrated that both
central and peripheral administration of xenin reduces
food intake in mice and suggested that the anorectic effect
of xenin is mediated at least partly through hypothalamic
activation. In addition to the generalization of the anorec-
tic effect of xenin across species, the current study opens
up the possibility of the use of mouse models to investi-
gate the mechanism of xenin-induced anorexia. Using two
well-characterized mouse models of obesity, the ob/ob and
agouti mice, we have shown that xenin can alter feeding
independent of leptin or melanocortin action. These data
suggest the possibility that xenin provides a novel mech-
anism of satiety control. It remains to be shown whether
chronic enhancement of xenin action is a viable long-term
obesity therapy.
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