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 There are reports linkingmaternal nutritional status, smoking and environmental chemical
exposures to adverse pregnancy outcomes. However, biological bases for association
between some of these factors and birth outcomes are yet to be established. The objective of
this preliminary work is to test the capability of a new high-throughput shotgun plasma
proteomic screening in identifying maternal changes relevant to pregnancy outcome. A
subset of third trimester plasma samples (N = 12) associated with normal and low-birth
weight infants were fractionated, tryptic-digested and analyzed for global proteomic
changes using a MALDI-TOF–TOF-MS methodology. Mass spectral data were mined for
candidate biomarkers using bioinformatic and statistical tools. Maternal plasma profiles of
cytokines (e.g. IL8, TNF-α), chemokines (e.g. MCP-1) and cardiovascular endpoints (e.g. ET-1,
MMP-9) were analyzed by a targeted approach using multiplex protein array and
HPLC-Fluorescence methods. Target and global plasma proteomic markers were used to
identify protein interaction networks and maternal biological pathways relevant to low
infant birth weight. Our results exhibited the potential to discriminate specific maternal
physiologies relevant to risk of adverse birth outcomes. This proteomic approach can be
valuable in understanding the impacts of maternal factors such as environmental
contaminant exposures and nutrition on birth outcomes in future work.

Biological significance
We demonstrate here the fitness of mass spectrometry-based shot-gun proteomics for
surveillance of biological changes in mothers, and for adverse pathway analysis in
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combination with target biomarker information. This approach has potential for enabling
early detection of mothers at risk for low infant birth weight and preterm birth, and thus
early intervention for mitigation and prevention of adverse pregnancy outcomes.
This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics
and Phenotypes?

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

There is rising concern due to association between pregnancy
outcomes and onset of childhood and adult diseases [1,2].
Perinatal health outcomes are important markers of future
child and adult health [3]. Maternal determinants of adverse
pregnancy outcomes can include maternal nutrition, age,
smoking, disease, and environmental contaminant exposure
levels [4–9]. For instance, there are reports on maternal
nutrition in different stages of pregnancy affecting placental
and infant size [10] as well as preterm birth and fetal growth
retardation [11]. Similarly, diet in pregnancy has been shown to
affect offspring's blood pressure in their early adulthood [12].
Previous works have shown that both extremely young and
advanced maternal ages can lead to poor pregnancy outcomes
[13,14]. Maternal smoking has been implicated in miscarriage,
perinatal mortality, birth defects, low birth weight and prema-
ture births [15,16]. Also, heart disease has been associated with
maternal and neonatal complications in pregnancy [17]. Expo-
sures to diesel exhausts during pregnancy can lead to pathol-
ogies similar to autism in infants [18]. There are also studies
suggesting pregnancy time-dependant vulnerability to different
components of air pollutants [19,20].

Mechanistic understanding of the maternal biological path-
ways which play a role in adverse pregnancy outcome is
critical in terms ofmanaging the risk during pregnancy. Elevated
circulating endothelin-1 (ET-1) levels and high blood pressure
in pregnant women are associated with intrauterine growth
restriction (IUGR) resulting in low infant birth weights [21].
Similarly, oxidative stress has been reported to cause maternal
and fetal morbidities [22–26], and is implicated as a major factor
in preeclampsia [27]. Molecular mechanisms by which maternal
factors influence fetal development are still poorly characterized.

Traditionally, most of the methodologies that are used to
understand maternal biological mechanisms involved in poor
pregnancy outcome are based on target endpoint analyses, a
reductionist approach [28]. Proteomic analyses exhibit a greater
potential in viewing changes at a global level. One such
approach is shotgun proteomic analysis [29,30]. This refers to
rapid and direct analysis ofmultiple proteins simultaneously in
a protein mixture permitting qualitative and quantitative
assessment of their changes in biological systems. There are
various methodologies employed to conduct shotgun proteo-
mic analyses including analyses based on two-dimensional gel
electrophoresis separation followed by mass spectrometry by
both MALDI-TOF–TOF-MS and ESI-MS/MS platforms, multidi-
mensional LC based separations followed by tandem mass
spectrometry. However, there are reports on limitations asso-
ciated with global analysis of proteins when applied to real
biological systems [31].

Our objective was to test the ability of a simple high-
throughput shotgun plasma proteomic screening approach to
discriminate between maternal physiologies relevant to differ-
ent types of pregnancy outcomes. For this purpose, we used a
very small subset of third trimester plasma samples from a
mother–infant cohort (Maternal-infant Research on Environ-
mental Chemicals-(MIREC) Study). Plasma proteomic changes
were assessed by a global MS-based proteomic analysismethod
and them/z data was used for protein profiling. Meanwhile, an
array of target proteinmarkers were analyzed in a second set of
matched 3rd trimester maternal plasma samples. Information
on these target marker levels and candidate protein marker
results obtained by the global proteomic method were used for
exploring maternal mechanisms relevant to low infant birth
weight outcome.
2. Methods

2.1. Materials

Dulbecco's phosphate-buffered saline (PBS, calcium and
magnesium free), ethylenediaminetetraacetic acid (EDTA),
diethylenetriaminepentaacetic acid (DETPA), phenyl-
methylsulfonyl fluoride (PMSF), trifluoroacetic acid (TFA),
3,4-dichloroisocoumarin, molecular weight cut-off filters (30, 50
and 100 kDa) and endothelin isoform standards for the
HPLC-Fluorescence analyses namely, endothelin-1 (ET-1),
endothelin-2 (ET-2) and endothelin-3 (ET-3) were purchased
from Sigma (St. Louis, MO, USA). The big endothelin-1 (BET-1)
isoform was from Bachem Americas (Torrance, CA, USA).
Reagent-grade acetone, acetonitrile, and methanol were from
ThermoFisher (Ottawa, ON, Canada). Butylatedhydroxytoluene
(BHT) was from United States Biochemical Corporation
(Cleveland, OH, USA). Deionzed water (DI water) was obtain-
ed from a super-Q plus high purity water system (Millipore,
Bedford, MA, USA). UHP-grade compressed nitrogen was
supplied by Matheson Gas products (Whitby, ON, Canada).
Amber glass vials and screw caps with septa were purchased
from Chromatographic Specialties Inc. (Brockville, ON,
Canada). Antiprotease (Halt protease inhibitor) cocktail was
obtained from ThermoFisher (Ottawa, ON, Canada). Peptide/
protein calibration standards and the matrix α-cyano-4-hydroxy
cinnamic acid were purchased from Bruker Daltonics (Bremen,
Germany). Sequence grade trypsin was obtained from Promega
Corporations (Madison, WI, USA). Bioplex kits were purchased
from either Millipore (Billerica, MA, USA) or BioRad (Mississauga,
ON, Canada).

2.2. Maternal plasma samples associated with low and
healthy birth weight infants

Third trimester maternal plasma samples were obtained from
the MIREC study cohort described by Arbuckle et al. [32]. A
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very small subset of samples (N = 12/group) of cases and
controls (mothers associated with infants of low (<2700 g) and
normal (2700–4300 g) birth weights) were used in this study
since this is an exploratory high throughput shotgun proteo-
mic analysis undertaken to determine its use in future
screening of maternal samples for adverse outcome path-
ways. For the purpose of this analysis and to increase our
study power, low birth weight was defined as less than the
10th percentile of all birth weights in the cohort (i.e. <2700 g).
Infant birth weights and gestational ages were abstracted
from the medical charts at delivery. Systolic and diastolic
blood pressure values were measured during the third
trimester clinic visit when the blood samples were collected.

2.3. Ethics

The details of the ethics review of the MIREC study are
described by Arbuckle et al. [32]. Briefly, the research protocol,
questionnaires, consent forms and recruitment posters and
pamphlets were reviewed and approved by human studies
research ethics committees, including the Research Ethics
Board at Health Canada and the ethics committee at the
coordinating center at St-Justine's Hospital in Montreal, as
well as more than ten academic and hospital ethics commit-
tees across Canada.

2.4. Plasma sample preparation

Aliquots of plasma samples derived from the 3rd trimester
maternal whole blood samples (N = 12/group, low vs. normal
infant birth weight groups) stabilized with preservatives
(EDTA, PMSF) [33], were treated with DETPA, BHT and
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antiprotease cocktail, were vortexed, and frozen for storage.
Matching sets of aliquots of plasma were analyzed for
target biomarkers namely, circulating vasoregulatory peptides
(endothelins), inflammatory cytokines, chemokines, other
cardiovascular markers including acute phase proteins, and
for global biomarkers using a MS-based shotgun proteomic
analysis method (Scheme 1).
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>100 kDa fractions using the appropriate pre-wetted MWCO
filters. The plasma fractions other than the <30 kDa were
digested with trypsin following the procedure reported earlier
[34,35]. <30 kDa fractions were saved for endogenous peptides
analyses. All tryptic digested and non-digested fractions of the
plasma samples were evaporated under a flow of nitrogen, and
were stored at −80 °C prior to being analyzed.

2.6. MALDI-TOF–TOF-MS analysis of plasma samples

Frozen, dry tryptic-digested and non-digested plasma
fractions were thawed at room temperature and were
reconstituted (50 μL) using 0.1% TFA in 30% ACN (aq). One μL
of the above processed samples (n = 12/group) was spotted
(N = 8) on a 384/600 anchor chip target plate (Bruker Daltonics,
Bremen, Germany). One μL of matrix solution (10 mg/mL
α-cyano-4-hydroxy cinnamic acid in 50% acetonitrile, 0.1%
TFA) was added on the sample spot and was mixed as
described previously [34,35]. An on-target washing of the
sample spot was carried out by placing 2.5 μL of cold 1%
TFA in water on the dried sample spot, and the liquid was
removed after 10 s. Washed spots were dried and analyzed by
MALDI-TOF–TOF-MS using a Bruker Daltonics Autoflex III
time-of-flight mass spectrometer (Bruker Daltonics, Bremen,
Germany) equipped with a Smart BeamTM laser (355 nm
wavelength), a 1 GHz sampling rate digitizer, a pulsed ion
extraction source, and a TOF–TOF-MS analyzer. Calibration
was done using external protein and peptide calibration
standards (m/z range of 1000 to 6000 Da; Bruker). Detection
was carried out both in linear and reflectron positive modes.
In a typical experiment, a composite spectrum (total of 4000
shots) was obtained by summation of twenty 200-shots of
individual spectra. The sampling sites were selected random-
ly for every sample in order to obtain homogenous sampling.
Eight spots/sample were analyzed to enhance overall homo-
geneity of sampling to obtain the optimal representative mass
spectra of the sample (for spot to spot reproducibility among
samples please see Supplementary Fig. 1). The data acquisi-
tion and processing were carried out using the Flex Control 3.3
and Flex analysis 3.3 software (Bruker Daltonics, Bremen,
Germany), respectively. Post-processed mass spectral data
(m/z values from the MS scan) were mined for candidate
biomarkers [34] by building discriminatorymodels (ClinProTools
software version 2.2, Bruker Daltonics, Bremen, Germany), and
by statistical analysis. Potential markers were subjected to
MS/MS analyses in “Lift” mode for protein identification. Lift
conditions used in this study were, ion source 1–6.00 kV;
ion source 2–5.30 kV; lens – 3.00 kV; reflectron 1–26.94 kV;
reflectron 2–11.48; lift 1–18.97 kV; lift 2 – 3.77 kV. The MS/MS
data were queried against SwissProt, NCBInr databases with
BioTools software (Bruker Daltonics, Bremen, Germany) using
theMASCOT search engine for protein identification. Number of
allowed missed cleavages was 1 and the variable modification
allowed was methionine oxidation, also decoy sequences were
included (FDR < 1).

2.7. Target protein marker analysis

Target markers included in this study were protein markers
relevant to inflammatory and endothelial injury pathways
which are some of the mechanisms associated with adverse
birth outcomes, especially low birth weight outcome, based
on previous work as stated above.

2.8. Affinity-based multiplex protein array analyses

Analysis of maternal plasma samples for target markers
related to endothelial dysfunction, inflammation and oxida-
tive stress such as cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-8,
IL10, IL12), chemokines (MCP-1, MIP-1β), cellular adhesion
molecules (VCAM, ICAM), matrix metalloproteinases (MMP-1,
MMP-2, MMP7, MMP-9, MMP-10) and vascular endothelial
growth factor (VEGF) were conducted by affinity-based mul-
tiplex protein array analysis (Biorad, Millipore) based on the
procedure reported by Surronen et al., 2010 [36].

2.9. Circulating endothelin isoforms

This procedure was conducted as described before [33].
Briefly, aliquots of 3rd trimester maternal plasma samples
(250 μL) were treated with 3,4-dichloroisocoumarin solution
in isopropanol to prevent conversion of big ET-1 to ET-1
during sample processing. These samples were then de-
proteinized with acidified acetone, followed by clean-up
using molecular weight cut-off filters (30 kDa). Clarified
samples were dried under a N2 flow, and were reconstituted
in the mobile phase A (composition is given below), and were
analyzed by a reversed phase HPLC-Fluorescence system.
Initial separation of endothelin isoforms (Big ET-1, ET-1, ET2
and ET-3) were carried out on a LC-318 column (25 cm length,
4.6 mm id, 5 μm particle size; Supelco, Oakville, ON) by
gradient elution using water-acetonitrile mobile phase
(A-30% acetonitrile (aq); B-90% acetonitrile (aq)) with 0.19% of
TFA used as the ion-pair reagent. Analytes were measured by
fluorescence detection at excitation and emission wave-
lengths of 240 nm and 380 nm, respectively.

2.10. Statistics and bioinformatic analyses

Post-processed 3rd trimester maternal plasma global pro-
teomic (m/z) data were mined for significant peptide
changes and discriminatory model building (ClinPro Tools
version 2.0, Bruker) and candidate biomarker identification
[34]. Target protein biomarker levels in the corresponding
maternal plasma samples were tested by one-way ANOVA
using infant birth weight (low vs normal) as a factor
(SigmaStat v3.5, SPSS Inc., Chicago, IL). Differences between
the maternal plasmatic proteomic changes for the target
biomarkers were determined by one-way analysis of
variance (ANOVA) using infant birth weight (low vs normal)
as a factor (SigmaStat v3.5, SPSS Inc., Chicago, IL). In
order to visualize the differential pattern of responses a
heat map with hierarchical clustering was constructed
using the Heat map software (Los Alamos National Laboratory,
Los Alamos, NM, USA; http://www.hiv.lanl.gov/content/
sequence/HEATMAP/heatmap_mainpage.html). Protein inter-
action networks and biofunctions were identified using
Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, www.
ingenuity.com) based on target and global protein marker
(p < 0.05) changes.

http://www.hiv.lanl.gov/content/sequence/HEATMAP/heatmap_mainpage.html
http://www.hiv.lanl.gov/content/sequence/HEATMAP/heatmap_mainpage.html
http://www.ingenuity.com
http://www.ingenuity.com


140 J O U R N A L O F P R O T E O M I C S 1 0 0 ( 2 0 1 4 ) 1 3 6 – 1 4 6
3. Results and discussion

Adverse pregnancy outcomes such as fetal growth restriction,
preterm birth, low birth weight, birth defects, perinatal and
infant death have been associated to a number of maternal
and prenatal factors including environmental contaminant
exposures [4–20,37–39]. Moreover, maternal physiological
changes have been shown to influence birth outcomes
[13,17]. In this study, a small subset of maternal plasma
samples from the MIREC cohort were analyzed by global
shotgun screening and targeted analyses for proteomic
changes to determine the efficiency of these biomarker
approaches in discriminating maternal physiological condi-
tions relevant to adverse pregnancy outcomes. Here, we have
defined the low infant birth weight as the low 10th percentile
of birth weight in this mother–infant cohort, <2.7 kg to gain
power in the low infant birth weight group (Fig. 1). Also, in this
preliminary work, we have attempted to use equal number of
cases (mothers with infants of low birth weights) and controls
(mothers with infants of normal birth weights). Gestational
age and maternal blood pressure profiles associated with
these two groups are illustrated in Fig. 1. These results suggest
comparably low gestational age (p < 0.001) in the low birth
weight group as compared to the controls. Also, both mean
systolic and diastolic blood pressure levels in mothers are
relatively higher in the low infant birth weight group
compared to the control group, but did not reach statistical
significance in this small sample size.

For the shotgun proteomic screening analysis of plasma,
we chose to conduct a very simple plasma fractionation
strategy with minimal sample handling steps, and used
adequate stabilizers to prevent any post-sample collection
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assessment of maternal physiological indices, questionnaires,
target marker profiles and other infant parameters. Future
analyses of the MIREC data sets will incorporate maternal age,
ethnicity and other parameters to determine the causes of
similar discrepancies.
Fig. 2 – Heat map of plasma peptide (m/z) expressions revealed s
weight (LBW) and normal birth weight (NBW) infants. Hierarchic
differentially expressed between the two groups. Green indicate
yellow-red version of the heatmap is available in supplementary
yellow indicates down regulation and red indicates up regulatio
A number of candidate tryptic peptidemarkers (e.g., obtained
by discriminatory model building using ClinPro Tools soft-
ware from Bruker Daltonics, as well as by one-way ANOVA
analysis) were subjected to MS/MS analysis, and the frag-
mentation spectra were matched against SwissProt or/and
m/z

ignificant (p < 0.05) differences between mothers of low birth
al clustering of the data reveal clusters of candidate peptides
s down regulation and red indicates up regulation. A
material. Note: (If the yellow–red figure is considered then,

n).
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NCBInR databases, using MASCOT search engine, for
protein identification. Although statistically strongest as-
signments with the highest ions score, low expect value and
unique peptide were used as criteria for potential protein
identification, the best matches with low scores were
retained if they were unique peptides and were biologically
relevant or significant (Supplementary material, Table S1). In
this work, our primary aim was to test the discriminatory
capability of the global proteomic strategy. In this
proof-of-principle effort, the most significant candidate
protein markers identified as mentioned above were used
as secondary addition to the primary data on target protein
markers to enhance the confidence in the networks selected
by the IPA analysis.



Fig. 4 – Results of IPA analysis performed based on fold changes in maternal plasma levels (low vs normal infant birth weight
groups) of both target and global protein biomarkers (A) NETWORK 1: Ophthalmic Disease, Cardiac Stenosis, Cardiovascular
Disease (Score 30). (B) NETWORK 2: Cellular Movement, Hematological System Development and Function, Immune Cell
Trafficking (Score 29). Green indicates down regulation and red indicates up regulation.
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Of the target markers analyzed, a subset of marker profiles
are illustrated in Fig. 3. The proinflammatory cytokines IL-8,
TNF-alpha, and IFN-gamma were all increased, while the
anti-inflammatory cytokine IL-10 was decreased, in plasma of
mothers associated with low birth weight infants suggesting a
proinflammatory state in these mothers. Similarly, plasmatic
ET-1, matrix metalloproteinase (e.g. MMP-9), MCP-1 and
VCAM implicated in cardiovascular diseases were elevated
[40]. We have previously shown [33,41,42] that in animals and
humans exposed to air pollutants there is an increase
in circulating endothelin isoforms (ET-1). ET-1 is a potent
vasoconstrictor peptide and is formed as a result of the
cleavage of its precursor peptide big ET-1 that is comparably
less potent by the action of endothelin converting enzyme
(ECE).[33] ET-1 is implicated in gestational hypertension and
gestational diabetes [43]. Similarly, matrix metalloproteinases
are evolving as new set of markers of endothelial injury and
are implicated in downstream signaling of vasoregulatory
events such as increase in circulating ET-1 levels [44,45].

IPA analysis with target and global protein biomarker
information generated several protein interaction net-
works. Two of these networks with the highest scores are
illustrated in Fig. 4A–B. The networks identified here are
associated with ophthalmic, cardiovascular, dermatological
and neurological conditions, cellular movement, immune
cell trafficking, hematological system development, small
molecule biochemistry, lipid metabolism and molecular
transport. It is noteworthy to see that urokinase plasmino-
gen activator receptor (PLAUR) in network 1 (cardiovascular
diseases; Fig. 4A) is up-regulated in mothers with low birth
weight infants in our preliminary work. It has been shown
by others that elevated levels of plasma urokinase plasmin-
ogen activator receptor in mothers infected with malaria
(pro-inflammatory condition) is predictive of low infant
birth weight.[46] Also, our results exhibit that matrix
metalloproteinases (MMPs) are up-regulated (network 1,
cardiovascular diseases, Fig. 4A; network 2, immune cell
trafficking, Fig. 4B) in mothers with low birth weight infants.
This is in line with the report by Sundrani et al., 2011, where
MMPs are implicated in the pathophysiology of adverse
pregnancy outcomes such as preterm labor that may result
in low birth weight infants.[47] The networks that we have
observed in this study also trigger detailed analysis of their
components for which we do not have data currently but
can be achieved through future affinity-based analyses.
Furthermore, when related to information on biological
functions and diseases, IPA analyses yielded profiles of
molecular and cellular functions, diseases/disorders and
physiological system development and functions with
associated significance values. These preliminary results
imply cell signaling, cellular movement, molecular trans-
port, organismal injury and abnormalities, inflammatory,
respiratory and cardiovascular effects-related changes in
mothers with low birth weight infants compared to the
ones with normal birth weight babies. Nevertheless, these
findings have to be further investigated through future work
on much larger set of samples.

Shot-gun proteomic methodologies face challenges in
terms of protein recoveries and experimental artifacts due to
intensive sample processing steps, issues of internal
standards, necessity of high-end analytical platforms and
bottle neck in data handling due to explosion in data
generation [31]. Nevertheless, our results demonstrate that
global shotgun proteomic approach is a promising tool in
understanding negative pregnancy outcomes. We intend to
apply this approach to advance our knowledge of environmental
contaminant exposure-mediated toxicity mechanisms that can
potentially lead to adverse pregnancy outcomes, and impacts
of nutritional intervention on these mechanistic pathways,
through future work. Increased sample size along with
LC-based separation of plasma followed by MS/MS analyses
and enhanced protein identification/validation processes
with emerging analytical and bioinformatics tools can
advance the application of such global proteomic analyses
to similar complex investigations.
4. Conclusion

High-throughput shotgun screening of global plasma prote-
omic changes is useful in discriminating mothers with
different physiologies that are related to low birth weight
(<2700 g), a potentially adverse pregnancy outcome. Consider-
able metabolic control is executed at the metabolite as well as
the protein levels including post-translational modifications,
constituting phenotypic plasticity. Our results indicate that
a mass spectrometry-based proteomic approach can capture
molecular phenotypes and can be of utility for the identification
of prognostic biomarkers of adverse pregnancy outcomes.
Combined use of the information from target biomarkers and
high-content global proteomics should provide valuable insight
into adverse outcome pathways.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jprot.2013.12.003.
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