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Background: Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting

in inflammation, necrosis, and fibrosis. There are currently no drugs limiting pancreatic

fibrosis associated with CP, and there is a definite need to fill this void in patient care.

Materials and methods: Pancreatitis was induced in C57/BL6 mice using supraphysiologic

doses of cerulein, and apigenin treatment (once daily, 50 mg per mouse by oral gavage) was

initiated 1wk into the recurrent acute pancreatitis (RAP) protocol. Pancreata were harvested

after 4wk of RAP. Immunostainingwith fibronectin antibodywas used to quantify the extent

of pancreatic fibrosis. To assess how apigeninmay decrease organ fibrosis, we evaluated the

effect of apigenin on the proliferation and apoptosis of human pancreatic stellate cells

(PSCs) in vitro. Finally, we assessed apigenin’s effect on the gene expression in PSCs stimu-

lated with parathyroid hormoneerelated protein, a profibrotic and proinflammatory medi-

ator of pancreatitis, using reverse transcription-polymerase chain reaction.

Results: After 4 wk of RAP, apigenin significantly reduced the fibrotic response to injury

while preserving acinar units. Apigenin inhibited viability and induced apoptosis of PSCs in

a time- and dose-dependent manner. Finally, apigenin reduced parathyroid hormonee

related proteinestimulated increases in the PSC messenger RNA expression levels of

extracellular matrix proteins collagen 1A1 and fibronectin, proliferating cell nuclear anti-

gen, transforming growth factor-beta, and interleukin-6.

Conclusions: These in vivo and in vitro studies provide novel insights regarding apigenin’s

mechanism(s) of action in reducing the severity of RAP. Additional preclinical testing of

apigenin analogs is warranted to develop a therapeutic agent for patients at risk for CP.
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1. Introduction herbs, and beverages such as chamomile tea [16]. Herein, we
Chronic pancreatitis (CP) is a progressive, irreversible disease

process characterized by chronic inflammation, glandular ne-

crosis, and fibrosis [1]. With repeated injury, functional

pancreatic tissue is replaced with a fibrotic scar; and when

pancreatic reserve is exhausted, exocrine and endocrine

insufficiencies develop [2]. Patients have a poor quality of life

and are burdened by chronic abdominal pain, impaired diges-

tion, malnutrition, anorexia, diabetes, and disease-related

complications such as pseudocyst formation [3]. CP also in-

creases a patient’s risk of developing pancreatic cancer [4].

Accumulating genetic, clinical, and experimental evidence

support the hypothesis that CP is the result of multiple epi-

sodes of recurrent acute pancreatitis (RAP) [5e7]. The risk

factors that are associatedwith the development of CP include

alcohol consumption, smoking, nutritional factors, hereditary

predisposition, efferent duct obstruction, immunologic fac-

tors, and metabolic disease [2]. Irrespective of the etiology,

pancreatitis involves a common cascade of events as follows:

acinar cell injury causing aberrant zymogen secretion and

premature activation, tissue autodigestion, generation of an

inflammatory response, focal necrosis, and fibrosis [5,6,8].

With recurrent episodes of acute pancreatitis (AP), the

pancreas is unable to adequately recover from the repeated

injury, perpetuating a microenvironment of chronic inflam-

mation and irreversible fibrosis [5,6].

Pancreatic stellate cells (PSCs) are responsible for gener-

ating the characteristic glandular scarring of CP [9]. Pancreatic

injury promotes the activation of PSCs, which rapidly prolif-

erate, migrate to sites of injury, synthesize and remodel

extracellularmatrix (ECM) proteins, and secrete cytokines and

growth factors, further amplifying the immune response

[9,10]. Parathyroid hormoneerelated protein (PTHrP) has been

identified as a profibrotic and proinflammatorymediator of AP

and CP [11,12]. PSCs not only express the G proteinecoupled

receptor for PTHrP but also have been shown to secrete the

PTHrP protein in response to injury [11e14].

Currently, treatment options for CP are limited to supportive

care and symptom palliation. Patients must adapt to a lifestyle

involving chronic pain management, digestive enzyme

replacement, vitamin supplementation, and glucose control [3].

Medical management often fails with advanced disease, and

patients are offered more invasive interventions, ranging from

endoscopic stenting of strictures to surgical bypass procedures

or even total pancreatectomy [15]. There is a definite need to

develop pharmacologic agents directed at the pathogenesis of

CP, reducing pancreatic damage, inflammation, and fibrosis.

Apigenin (40,5,7-trihydroxyflavone) is a natural compound

with low intrinsic toxicity, found in various fruits, vegetables,
1 2
Weeks of RAP:

Cerulein 50 μg/kg, intrape

Apigenin 50 μg
1 x

Fig. 1 e Schematic of translational RAP mode
report how apigenin protects the pancreas from repeated

pancreatic injury, and therefore slows the development of CP.

This is accomplished, in part, by apigenin as follows: 1)

inhibiting PSC proliferation; 2) inducing PSC apoptosis; and 3)

and minimizing PTHrP-mediated PSC response to injury. Our

data suggest that apigenin and/or apigenin-like compounds

could be developed into novel pharmacologic inhibitors of RAP

progression in patients at risk for CP.
2. Materials and methods

2.1. Materials

Cerulein (CR) was purchased from Bachem (Torrance, CA).

Apigenin was purchased from SigmaeAldrich (St. Louis, MO).

The human parathyroid-related protein (1-36) was purchased

from PolyPeptide Laboratories (San Diego, CA). The following

reagents were purchased from DAKO (Carpinteria, CA): target

retrieval solution, antibody diluent, liquid 3,3’-dia-

minobenzidine (DAB), and substrate chromogen system.

Fibronectin antibody was purchased from Santa Cruz

Biotechnology (Dallas, TX). The following products were pur-

chased from Vector Laboratories, Inc (Burlingame, CA): bio-

tinylated secondary antibody, VECTASTAIN Elite ABC kit, and

VectaMount. The hematoxylin 7211 counterstain was pur-

chased from Thermo Fisher Scientific, Inc (Kalamazoo, MI).

Cell culture reagents were used from the following com-

panies: Dulbecco’s Modified Eagle Medium (DMEM) (VWR,

Radnor, PA); collagen from calf skin, penicillin, streptomycin,

amphotericin, and gentamicin (Invitrogen, Carlsbad, CA);

insulin-transferrin-selenium-ethanolamine (Gibco, Grand Is-

land, NY); nonessential amino acids (SigmaeAldrich); and

fetal bovine serum (FBS; Lonza, Walkersville, MD).

2.2. RAP model of chronic pancreatitis

All animal studies were approved by the University of Texas

Medical Branch Institutional Animal Care andUse Committee,

which is fully accredited by the Association for Assessment

and Accreditation of Laboratory Animal Care International.

We used a well-established model of recurrent pancreatic

injury to induce CP. Repeated administration of the chole-

cystokinin analog, CR, leads to hyperstimulation of pancreatic

acinar cells, aberrant zymogen secretion, and premature

activation [17,18]. Over time, the repeated cycles of injury and

inflammation result in the histologic and pathophysiological

characteristics of CP [8,17]. Male and female C57/BL6 mice

(Harlan Laboratories, Indianapolis, IN; and The Jackson
3 4
ritoneal, 5x/d, 3 d/wk

/mouse, oral gavage, 
/d, 6 d/wk

Harvest pancreas,
fix and paraffinize,
IHC fibronectin

l in mice. IHC [ immunohistochemistry.
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Laboratory, Bar Harbor, ME), 6e8-wk-old, were randomly

divided into two groups and received either five hourly

intraperitoneal injections of CR (50 mg/kg mouse weight) or

vehicle (phosphate-buffered saline, PBS) 3 d per week

(Monday, Wednesday, Friday) for a total of 4 wk (Fig. 1). The

randomization was performed without regard to sex.

2.3. Apigenin treatment

After 1 wk following the RAP protocol, mice in both the CR and

PBS groups were further subdivided into two groups and

treated by oral gavage with either apigenin (50 mg) or vehicle

(0.5%methylcellulose þ 0.025% Tween20 in ddH20) once daily,

6 d per week for the remaining 3 wk of RAP induction (Fig. 1).

At the end of 4wk, pancreatawere harvested and processed as

described in the following. All treatments and evaluation of

pancreatic tissue were performed without regard to sex.

2.4. Immunohistochemistry

Pancreata were fixed in 10% formalin for 72 h at 4�C,
embedded in paraffin blocks, sectioned (5 mm), and transferred

to glass slides. Before immunostaining, the slides were

deparaffinized with xylene, rehydrated through an ethanol

gradient, and washed with ddH20 for 3 min thrice. Heat-

mediated antigen retrieval was performed by incubating

slides in citrate buffer (10 mM, pH 6.1) for 30 min at 97�C. The
slides were washed with ddH20 for 5 min twice. Endogenous

peroxidase activity was inhibited by treatment with 3%

hydrogen peroxide for 20 min at 20�C. Nonspecific antibody

binding was blocked using a solution of 5% rabbit serum and

1% bovine serum albumin in phosphate buffered saline (PBS)

for 3 h at 20�C. Incubation with the primary antibody (rabbit

antifibronectin, 1:600 in antibody diluent) was preformed

overnight (w16 h) at 4�C in a humidity chamber.

The slides were washed in PBS-0.1% Tween20 (PBS-T) for

5 min twice followed by washes with PBS 5 min twice. Incu-

bation with secondary antibody (biotinylated rabbit anti-goat,

1:400 in antibody diluent) was completed for 30 min at 20�C in

a humidity chamber. This was followed by the PBS-T and PBS

washes as described previously. Fibronectin immunoreac-

tivity was visualized using the VECTASTAIN Elite ABC kit, and

color development was achieved with DAB. The slides were

washed with ddH20 for 3 min twice and counterstained with

hematoxylin 7211. Finally, the slides were dehydrated with an

ascending graded series of ethanol followed by xylene. Cov-

erslips were adhered with VectaMount.

2.5. Image analysis

Ten nonoverlapping images of each pancreas (�400) were

taken using a BX51 microscope and DP71 Olympus digital

camera. The imageswere analyzed usingNIH free-ware Image

ProcessingandAnalysis in Java (ImageJ) 1.46ralongwithacolor

deconvolutionplug-in [19],whichenabledquantificationof the

percentage of fibronectin staining (brown color) per�400 field.

The region of interest was set as the entire �400 image. The

sequence of commands used included background subtrac-

tion; automatic adjustment of brightness/color; color decon-

volution using the H DAB vector and selection of the brown
channel;minimal thresholding; and automatedmeasurement

of mean area of brown color within the region of interest.

2.6. Isolation and culture of human PSCs

At the time of surgical resection, discarded human pancre-

atic tissue was collected under an institutional review board-

approved protocol. The PSCs were isolated using an

outgrowth method [20,21] and used without regard to sex.

Briefly, fresh pancreatic tissue was minced into 0.5-mm3

pieces and placed into a T-25 collagen-coated flask (15 mg/mL)

containing 3 mL of DMEM media supplemented with peni-

cillin 200 U/mL, streptomycin 200 mg/mL, amphotericin B

0.25 mg/mL and gentamicin 50 mg/mL, 1% insulin-transferrin-

selenium-ethanolamine, 1% nonessential amino acids, and

10% FBS. The cells were grown at 37�C in a humidified 5% CO2

atmosphere. After 3e4 wk in culture, the presence of PSCs

was confirmed by immunostaining for vimentin, a-smooth

muscle actin, and glial fibrillar acidic protein. The primary

PSCs cultures were immortalized by transducing the cells

with lentivirus containing SV40 large T antigen and human

telomerase (plasmids #12245 and #12246; Addgene, Cam-

bridge, MA).

2.7. Cell proliferation assays

To quantify cell proliferation over time, PSCs were plated in

quadruplicate in a 12-well plate (1.5 � 105 cells per well)

containing DMEM with 10% FBS. The next day, the media

were changed to DMEM with 1% FBS, and the cells were

treated with either apigenin (30 mM) or vehicle (dimethyl

sulfoxide [DMSO]) for 24, 48, and 78 h. At each time point, the

cells were recovered from the wells using trypsin, and the

number of cells per well were quantified with a Coulter Z1

Particle Counter (Beckman, Hialeah, FL).

To evaluate cell viability relative to the dose of apigenin,

PSCs were seeded in sextuplicate in a 96-well plate (3 � 103

cells per well) containing DMEM with 10% FBS. The next day,

the media were changed to DMEM with 1% FBS, and the cells

were treated with increasing doses of apigenin (0e50 mM) for

48 h. Then, the alamarBlue reagent (DAL1025; Thermo Fisher

Scientific) was added to the cell culture media (1/10th the well

volume) for a 4-h incubation at 37�C, protected from light.

Metabolically active cells convert resazurin to the highly

fluorescent product resorufin, which was measured at exci-

tation and/or emission wavelengths of 544/590 nm by a

SpectraMax M2 Microplate Reader (Molecular Devices, Sun-

nyvale, CA). The average fluorescent reading frommedia-only

wells was subtracted from the data output, accounting for

background fluorescence. Apigenin did not interfere with the

assay as it is weakly fluorescent in aqueous solutions [22].

2.8. Cell death assay

PSCs were seeded in triplicate in a 96-well plate (8 � 103 cells

per well) containing DMEM with 10% FBS. The next day, the

media were changed to DMEMwith 1% FBS, and the cells were

treated with apigenin for various time points and concentra-

tions (0e50 mM for 14e16 h) using serial dilutions. In-well cell

lysis and the Cell Death Detection ELISAPLUS assay (Version

http://dx.doi.org/10.1016/j.jss.2015.02.032
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11.0; Roche Applied Science, Indianapolis, IN) were performed

according to the manufacturer’s protocol, which involves

antibodies binding to mononucleosomes and oligonucleo-

somes that are specific to apoptosis rather than necrosis.

Untreated cells served as the negative control, and the kit

included a DNA-histone complex as a positive control.

Absorbance output was measured at 405 nm using an ELx808

Automated Microplate Reader (Bio-TEK Instruments, Inc,

Winooski, VT). Apigenin’s two intrinsic absorbance bands,

Band I (300e390 nm) and Band II (250e280 nm) [22], lie outside

the spectra measured in this assay [22].
2.9. RNA isolation and reverse transcription-polymerase
chain reaction

Total RNA was isolated from cells using an RNAqueous kit

(Ambion, Austin, TX) following themanufacturer’s protocol.

RNA concentrations were quantified using a NanoDrop

Technologies spectrophotometer (Wilmington, DE). Total

RNA quality was assessed with an RNA Nano chip and Agi-

lent Technologies 2100 Bioanalyzer (Santa Clara, CA). Com-

plimentary DNA was generated from 1 mg of total RNA using

the TaqMan Reverse Transcription Reagents Kit (Life Tech-

nologies, Grand Island, NY). Reverse transcription-

polymerase chain reaction was performed with the Fast-

Start Universal SYBR-green Master Mix (Roche); the primers

are listed in Table, and the ABI Prism 7500 Sequence

Detection System (Life Technologies). The threshold cycle

(CT) values for each gene target were normalized to 18S

levels. Relative expression level was calculated using n-fold

change¼ 2�DDC
T, where DDCT represents CT (target sample)�

CT (control).
2.10. Statistical analysis

For the cell proliferation and cell death assays, dose-response

curves were generated by plotting fluorescence or absorbance

versus log [apigenin]. A best-fit curve was created using

nonlinear regression (GraphPad Prism5; GraphPad Software

Inc, La Jolla, CA), and the half maximal inhibitory concentra-

tion (IC50) or half maximal effective concentration (EC50)

determined from the graph. SPSS v20 (IBM, Armonk, NY) was

used to conduct statistical analysis, which included one-way

analysis of variance and post hoc analysis with TukeyeK-

ramer multiple comparisons test. Significance was set at

P < 0.05.
Table e List of primers used in SYBR-green reverse transcripti

Primer Species Forw

Collagen type 1a1 Human GGCAGCC

Fibronectin Human ATGGTGTCAG

TGF-b1 Human GCACGTGG

PCNA Human GGGCGTG

IL-6 Human ATGAACTC

IL-8 Human GGCAGCC
3. Results

3.1. Apigenin reduced stromal fibrosis in an in vivo
model of RAP

To determine whether apigenin can inhibit the development

of CP, we used a well-characterized mouse model of RAP,

which has been shown to produce the morphologic,

biochemical, and pathophysiological features of humans with

CP [8,17]. Mice were treated with supraoptimal doses of CR, a

cholecystokinin 1 receptor agonist. Consecutive hourly in-

jections of CR causes hyperstimulation of acinar cells;

proteases-like trypsinogen accumulate within the acini and

activate prematurely, causing autodigestion, tissue injury,

and generation of an acute inflammatory response [23,24].

To model a clinically relevant situation, we initiated the

RAP protocol 1 wk before apigenin therapy (Fig. 1). Apigenin

(50 mg, once daily, 6 d/wk, by oral gavage) was administered

the remaining 3 wk of RAP. A total of three independent ex-

periments were performed. Supraoptimal doses of CR induced

pancreatic injury characteristic of CP (Fig. 2A) as follows: the

acini were atrophic and heterogeneous in size and shape; the

interstitial space was increased by edema, inflammatory

infiltrate, and stromal fibrosis, which was stained brown by

fibronectin immunohistochemistry. This morphologic dam-

age induced by our model is consistent with that produced by

others following the same protocol and time period [25].

The histologic appearance of normal pancreatic architecture

was illustrated in the control mice treated with vehicle (PBS and

0.5% methylcellulose þ 0.025% Tween20 in ddH20; Fig. 2B). The

pancreatic histology of mice treated with apigenin alone was

comparable with that of the vehicle group (Fig. 2D). During CR-

induced RAP, apigenin treatment reduced the severity of

pancreatic injury as follows: preserving acinar units; decreasing

interstitial edema; reducing inflammatory infiltrate; and limiting

periacinar and perilobular fibrosis (Fig. 2C). Quantification of CR-

induced fibrosis was performed by immunohistochemical

staining for fibronectin. Image analysis of ten nonoverlapping

representative fields of each pancreas confirmed that fibro-

nectin protein was significantly reduced by 58% (P < 0.001) in

mice treated with apigenin during RAP (Fig. 2E).
3.2. Apigenin inhibited PSC cell viability in a time- and
dose-dependent manner

Apigenin has been shown to possess multiple beneficial

properties, including antiproliferative, proapoptotic, and
on-polymerase chain reaction.

ard primer Reverse primer

TTCCTGATTTCTG CTTGGCAAAACTGCACCTTCA

ATACCAGTGCTACTG TCGACAGGACCACTTGAGCTT

AGCTGTACCAGAA CTGAGGTATCGCCAGGAATTG

AACCTCACCAGTA TCATTGCCGGCGCATT

CTTCTCCACAAGCG CCCCAGGGAGAAGGCAAC

TTCCTGATTTCTG CTTGGCAAAACTGCACCTTCA

http://dx.doi.org/10.1016/j.jss.2015.02.032
http://dx.doi.org/10.1016/j.jss.2015.02.032


Fig. 2 e Apigenin reduced fibrosis in a preclinical model of RAP in mice. Representative 3400 images of slides stained for

fibronectin by immunohistochemistry and counterstained with hematoxylin are presented in (AeD). Each study group had

5e6 mice. Apigenin’s vehicle was 0.5% methylcellulose D 0.025% Tween20 in ddH20, and the vehicle for CR was PBS. The

treatment groups included (A) CR (Dapigenin’s vehicle); (B) both vehicles; (C) CR D apigenin; and (D) apigenin (DCR’s

vehicle). The percent area of brown fibronectin stain was quantified using computational ImageJ analysis with results

graphed in (E). The animal experiment was repeated in triplicate, and *** indicates a significant P value <0.001. (Color

version of figure is available online.)
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anti-inflammatory activity [16]. Therefore, we hypothesized

that apigenin’s antifibrotic effect seen in our preclinical ani-

mal model is due to the growth inhibition of PSCs, the cells

which are responsible for the dysregulated ECM deposition

and remodeling [9]. To test our hypothesis, we performed an

in vitro proliferation assay. PSCs were treated with a single

dose of apigenin (30 mM) or vehicle (DMSO), and the cells were

counted at three different time points. Compared to vehicle,

apigenin treatment inhibited PSC growth over time (Fig. 3A).

A dose-response curve was generated to determine apige-

nin’s IC50, which represented the concentration at which

apigenin induces 50% inhibition of PSC viability. PSCs were

treated with escalating doses of apigenin for a set period of

48 h, and cell viability was assessed using the alamarBlue

assay. PSC cell viability was found to decrease with increasing

concentrations of apigenin (Fig. 3B). As we have previously
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reported, the IC50 of apigenin was confirmed as 18.6 � 1.6 mM

(mean � standard error of the mean) based on data from ten

independent assays [26].

3.3. Apigenin induced apoptosis in a time- and
dose-dependent manner

PSCs in CP are not only metabolically active with a high

mitotic index but they display limited cell death [9], further

perpetuating the fibrotic response to repeated pancreatic

injury. The Cell Death Detection ELISA assay was used to

evaluate how apigenin induces PSC apoptosis over time. PSCs

were treated with a single dose of apigenin (50 mM), and their

apoptosis was assessed at several time points. Significant cell

death was induced beyond 2 h and increased with incubation

time up to 6 h (Fig. 4A).
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Fig. 4 e Apigenin induced PSC apoptosis in a time- and dose-dependent manner. (A) PSCs were treated with apigenin

(50 mM) over the time points indicated, and the Cell Death Detection ELISAPLUS assay was performed. (B) PSC were treated

with apigenin at various doses for 14e16 h. Apoptosis was quantified as in (A), and the dose-response curve was generated.

The graph represents a single assay, and apigenin’s half maximal effective concentration (EC50) (24.5 ± 2.5 mM) is derived

from a total of seven independent assays [26].
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PSCswere then treatedwith increasing doses of apigenin for

a fixed time of 14e16 h. The dose-response studies showed that

apigenin induced PSC apoptosis in a concentration-dependent

manner (Fig. 4B). We have previously reported the EC50 of api-

genin as 24.5 � 2.5 mM, which represented the concentration

that yielded half the maximal amount of cell death [26]. The

EC50 was confirmed by seven independent assays.
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transcription-polymerase chain reaction, we investigated

the messenger RNA (mRNA) expression of ECM proteins

collagen 1A1 and fibronectin, cell proliferation marker

proliferating cell nuclear antigen, transforming growth

factor-beta 1 (TGF-b1), and proinflammatory cytokines

interleukin (IL)-6 and IL-8 in PSC cells at 12 h. Apigenin

significantly reduced PSC transcriptional response to PTHrP

in all the factors evaluated (P < 0.001), except, in the case of

IL-8 mRNA, where the reduction caused by apigenin is in-

dependent of PTHrP. Furthermore, apigenin decreased the

basal mRNA expression of all proteins assayed, with the

exception of fibronectin (Fig. 5).
4. Discussion

CP is a necroinflammatory disease where functional paren-

chymal is replaced with scar. According to the RAP hypothe-

sis, CP is the result of repeated episodes of AP [5e7]. The

cascade of events is initiated by acinar cell injury. Intracellular

zymogens become prematurely activated, and pancreatic

autodigestion generates proinflammatory mediators such as

TGF-b [27] and PTHrP [11,12]. PSCs play a central role in the

normal physiologic response to injury, secreting, and remod-

eling the ECM [9]. Patients can recover from a bout of AP;

however, recurrent insults amplify the degree of injury and

inflammation, interrupt the repair process, and promote the

progression to CP. Because CP has no cure, there is a need to

develop therapies, such as apigenin, to directly inhibit the

progression to CP.

We show that daily administration of apigenin, 50 mg/

mouse (z2.5 mg/kg) by oral gavage, significantly limited

stromal fibrosis while preserving acinar units (Fig. 2). When

comparing mice subjected to CR-induced RAP, apigenin

treatment reduced fibronectin immunohistochemical stain-

ing by 58%. We have previously used the RAP model to eval-

uate apigenin’s antifibrotic effect at a lower dose (10 mg/

mouse,z 0.5 mg/kg, by oral gavage 5 d/wk), which resulted in

a 37% reduction in fibronectin staining [26]. Thus, the higher

dose of apigenin produced a greater decrease in stromal

fibrosis.

Lampropoulos et al. [28] evaluated the application of api-

genin in AP. Rats underwent biliopancreatic duct ligation fol-

lowed by a single 5 mg dose of apigenin administered orally.

After 72 h, apigenin treatment limited pancreatic tissue

edema, necrosis, inflammatory infiltrate, and myeloperox-

idase activity [28]. Because CP is the result of RAP, our findings

are consistent in that apigenin preserves pancreatic

architecture.

In our preclinical mouse model of CP, we thought api-

genin treatment may produce this protected phenotype by

altering the activity of PSCs, which are responsible for

generating the fibrotic response to pancreatic injury. In CP,

there is a shift in homeostasis, favoring PSC activation over

quiescence. Activated PSCs are identified by a-smooth

muscle actin expression and a myofibroblastic phenotype

actively proliferating with limited apoptosis; producing and

remodeling ECM structural components, such as fibronectin

and collagen; and promoting inflammation by generating
signaling molecules, such as TGF-b, TNF-a, IL-6, and IL-8

[9,29,30].

We found that apigenin reduced cell viability (Fig. 3) and

promoted apoptosis (Fig. 4) of PSCs in a time- and dose-

dependent manner. A similar study was conducted with he-

patic stellate cell, which mediate the fibrotic response of the

liver; it revealed that hepatic stellate cell proliferation was

inhibited with escalating doses of apigenin [31]. Thus, apige-

nin acts as an antifibrotic agent by directly targeting the cells

responsible for the aberrant deposition of ECM.

In humanCP tissues, immunostaining for PTHrP confirmed

in vitro studies that found PTHrP expression to be upregulated

in pancreatitis, resulting in an amplification of the fibrotic and

inflammatory response to pancreatic injury [11,12]. PSCs,

acinar, and islet of Langerhans cells all express the PTHrP cell

surface receptor, PTH1R [11,14,32]. Falzon et al. reported that

primary and immortalized PSCs responded to PTHrP by

increasing mRNA levels of ECM proteins pro-collagen 1 and

fibronectin [11].

We have shown that apigenin diminished PSC response to

the proinflammatory mediator PTHrP by significantly

reducing mRNA transcripts of collagen 1A1 and fibronectin

(Fig. 5A and B), corresponding to our in vivo study findings.

Because apigenin decreased proliferating cell nuclear antigen

levels, the compound’s antiproliferative activity may be, in

part, due to PTHrP inhibition (Fig. 5C). Finally, apigenin

reduced mRNA levels of proinflammatory growth factor TGF-

b1 and cytokines IL-6 and IL-8 (Fig. 5DeF). The level of IL-6 has

been shown to correspond with the degree of injury in CP

[33e35], emphasizing the importance of apigenin regulating

both the inflammatory and fibrotic response to minimize the

severity of pancreatic damage.

These findings reinforced Falzon’s studies, where PTHrP

knockout mice treated with CR or pancreatic duct ligation

decreased PSC activation (i.e., less a-smooth muscle actin

positively stained cells); reduced Sirius red staining of

pancreatic fibrosis and primary PSC pro-collagen 1 mRNA

levels; minimized IL-6 synthesis; and protected the pancreas

from histologic damage [12]. Interestingly, apigenin pretreat-

ment reset the threshold for basal transcriptional activity of

an ECMprotein, signalingmolecules and cytokines involved in

CP but not for fibronectin (Fig. 5B). Because only a single 12-h

time point was analyzed, a time course study may reveal a

later time when basal fibronectin expression may be

decreased.

Apigenin-like compounds have the potential to be used in

high-risk patients with a severe bout of AP and/or risk factors

for recurrent pancreatitis (i.e., alcoholism, hyper-

triglyceridemia, structural or genetic anomalies, and so forth)

to reduce the likelihood of RAP progression to CP. Even though

there are abundant dietary sources of this natural compound

with low intrinsic toxicity, apigenin’s clinical application is

limited by its poor bioavailability, aqueous solubility, and

metabolic instability. We have worked with medicinal chem-

ists to develop novel apigenin analogs with enhanced potency

in vitro, improved solubility, and comparable antifibrotic ef-

fects in a proof-of-concept study [26].

Our future studies will involve elucidating molecular

mechanisms by which apigenin protects acinar cells from

pancreatic injury. The results from our preclinical animal
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model can be strengthened by incorporating additional

models of CP such as duct ligation, alcohol feeding, or

genetically modified mice [17]. It would be interesting to see

how effective apigenin would be when pancreatic damage is

induced over a longer period (>1 wk) before initiating

treatment. The antiproliferative and proapoptotic activity of

apigenin could be further defined by studying signaling

pathways involved in cell cycle arrest and cell death

pathway activation. Before clinical trials, additional testing

must be performed to evaluate apigenin’s pharmacoki-

netics, pharmacodynamics, and toxicology profile. The re-

sults from our in vitro studies and the translational animal

model of CP support further development of apigenin ana-

logs as a potential therapeutic in RAP.
5. Conclusions

In summary, CP is a noncurable progressive disease process

due to repeatedpancreatic injury. There are currently no drugs

targeting the pathogenesis of CP. Our overall objective was to

fill this void in patient care by developing a pharmacologic

agent for the treatment of RAP, thereby limiting progression to

CP.Wehave identified apigenin as a promising lead compound

for further drug development. In our preclinical animal model

of RAP, apigenin significantly reduced stromal fibrosis while

protecting the pancreas fromhistologic damage. Apigenin acts

as anantifibrotic agentby inhibitingproliferationand inducing

apoptosis of PSC, which generate the irreversible scarring that

replaces functional pancreatic tissue in CP. This, in part, is

mediated through apigenin limiting PSC response to PTHrP, a

profibrotic and proinflammatory mediator of pancreatitis.

These findings support further development of apigenin and

its new analogs as a therapeutic in RAP.
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