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Methionine residue 35 is critical for the oxidative stress and neurotoxic
properties of Alzheimer’s amyloid�-peptide 1–42
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Abstract

Amyloid �-peptide 1–42 [A�(1–42)] is central to the pathogenesis of Alzheimer’s disease (AD), and the AD brain is under intense
oxidative stress. Our laboratory combined these two aspects of AD into the A�-associated free radical oxidative stress model for neu-
rodegeneration in AD brain. A�(1–42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in
neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at
discerning molecular mechanisms by which A�(1–42)-associated free radical oxidative stress and neurotoxicity arise. The single methio-
nine located in residue 35 of A�(1–42) is critical for these properties. This review presents the evidence supporting the role of methionine
in A�(1–42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling
between the centrality of A�(1–42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Alzheimer’s disease (AD) is the leading cause of demen-
tia in the elderly, and is the fourth leading cause of death
in the United States, where, currently, more than 4 million
persons have this neurodegenerative disorder[33]. In the ab-
sence of intervening therapies, it is estimated that 14 million
Americans and more than 22 million persons worldwide
will develop AD in the next few decades[32]. One princi-
pal pathological hallmark of AD is the presence of senile
plaques in vulnerable brain regions. These plaques consist
of a dense core of an aggregated peptide, amyloid�-peptide
(A�), whose length varies from 39 to 43 amino acid
residues, surrounded by a sheath of dying neurites and other
components.

Based mostly on genetic evidence of early- and late-onset
familial AD, A� is postulated to be central to the patho-
genesis of this disorder[68]. In addition, the AD brain is
under extensive oxidative stress (review[49]), with the chief
biomarkers being protein oxidation[4,5,27,43,69,70,73],
lipid peroxidation [23,42,45,49,50,53,58,59,74], DNA,
and RNA oxidation[20,28,44,54,55], advanced glycation
end products[71,72,81] and widespread occurrence of
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3-nitrotyrosine, a product of peroxynitrite-induced tyrosine
nitration [72].

Our laboratory has united these two aspects of AD—the
importance of A� in the pathogenesis of this disorder and the
extensive oxidative stress under which the AD brain exists—
into a comprehensive model of neuronal death in AD brain.
The model is based on amyloid�-peptide-associated oxida-
tive stress induced neurotoxicity[10,12,78]. Consistent with
this model, our laboratory and other laboratories have shown
that, in ways that are inhibited by free radical scavengers
such as Vitamin E, melatonin, estradiol, EUK-34, etc. A�
induces: lipid peroxidation[7,8,12,18,22,35,47,48], protein
oxidation[24,25,76,77,83–87], ROS formation[86], inhibi-
tion of key transport proteins[24,25,34,39,46,47,52,85,87],
and enzymes[1–3,13,26,83], and other markers of oxidative
stress (recently reviewed in[78]).

Cellular mechanisms associated with A�-induced free
radical oxidative stress that may lead to neuronal dysfunction
and neurotoxicity include, among others[78]: A�-derived
lipid peroxidation products, e.g. 4-hydroxynonenal or
acrolein, which upon reaction with membrane proteins
changes their conformation and induces oxidative events
[11,13,61,62,75]; mitochondrial dysfunction[6]; neuroin-
flammation secondary to A� fibril formation [15]; acti-
vation of certain receptors leading to Ca2+ accumulation
with subsequent ROS formation[37]; and apoptosis[36].
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Fig. 1. Reversible oxidation of methionine to methionine sulfoxide. Me-
thionine sulfoxide can be further irreversibly oxidized to methionine sul-
fone.

ApoE genotype is a risk factor for AD that modifies the
susceptibility of synaptosomes to A�-induced structural
and oxidative effects[38]. As outlined in the following
sections, the mechanism of A�-associated oxidative stress
must certainly involve the single methionine residue of
A� at position 35[14,77,84], and there is the evidence
supporting this mechanism that is the subject of this review.

2. Methionine as initiator of free radical processes in
peptides

Methionine is one of the most easily oxidized amino
acids. Methionine, an essential amino acid, undergoes a
reversible oxidation under relatively mild conditions lead-
ing to formation of methionine sulfoxide that can exist in
two diastereomeric forms. In fact, oxidation of methionine
in living systems might serve two purposes: (a) a regula-
tory function similar to that of phosphorylation of tyrosine
residues; (b) an antioxidative defense: by oxidizing the
presumably surface-exposed methionine residues, other im-
portant amino acids are spared. The former function is sup-
ported by occurrence of methionine in active sites of several
enzymes[40,82], and the latter function is supported by the
presence of peptide methionine sulfoxide reductase (pMSR)
enzyme in brain and elsewhere[40,69]. Interestingly, stud-
ies have shown that pMSR seems to be specific to only one
type of sulfoxide diastereomer as in the case of reduction
of calmodulin in vitro, suggesting that the accumulation
of methionine sulfoxide in the aged organism might be a
consequence of pMSR diastereomeric selectivity[69]. In
AD brain, pMSR activity is reduced[21], suggesting the
possibility that surface-exposed Met residues no longer can
serve their antioxidant function. Methionine sulfoxide can
be further oxidized to form a corresponding sulfone (Fig. 1);
however, this process requires a much stronger oxidant, and
as a result it is not an easily reversible process.

Mechanistic aspects of free radical oxidation of sulfur in
methionine, or methionine containing peptides have been
extensively studied[56,57,63,65]. Considering free radical
initiated oxidation, the sulfur atom of methionine can be
easily attacked by hydroxyl radicals leading to formation
of a sulfuramyl radical cation (S+) or hydroxysulfuramyl

Fig. 2. Top: amino acid sequence of A�(1–42). Note the position of
Met in residue 35. Bottom: methionine residue 35 side chain struc-
ture for A�(1–42), and its slight modification in A�(1–42M35NLE) and
A�(1–42M35Sox).

radical cation. Several oxidative pathways can result from
these sulfuramyl radicals. They can react with superox-
ide to produce the corresponding sulfoxide via several
possible pathways[56]. Alternatively, as in case of
N-terminal methionyl peptides, sulfuramyl radical cation
can also undergo a proton transfer between the N-terminal
nitrogen to form a nitrogen–sulfur radical cation that rear-
ranges to give azasulfonium compounds[57]. It appears that
a H-atom abstraction step is likely from the neighboring
methyl group on Met, forming an�(alkylthio)alkyl radical
of methionine that can subsequently react with paramagnetic
oxygen to form a highly reactive peroxyl radical or other
species such as formaldehyde and sulfhydryl[65]. In another
model system, dipeptides containing N-terminal Ser or Thr,
free radical initiated oxidation of C-terminal methionine
has resulted in release of formaldehyde, or acetaldehyde for
Ser and Thr, respectively, via proton transfer mechanisms
[65]. This type of chemistry is not unique to dipeptides,
however, provided that the larger N-terminal Ser or Thr
peptide possesses enough conformational flexibility to al-
low close contact in space between these amino acids and
C-terminal Met[63].

In the case of A� peptides, as discussed further, it is
postulated that interaction of the S-atom of Met with the
carbonyl oxygen of Ile-31 leads to an intermediate that can
be oxidized by molecular oxygen to form a sulfuramyl free
radical[65].

3. Importance of methionine in A�(1–42)-induced
oxidative stress and neurotoxicity

Fig. 2 shows the structure of A�(1–42), which has a
single methionine at residue 35. Addition of A�(1–42)
to 9–11-day-old primary hippocampal cultures leads to
protein oxidation, indexed by protein carbonyls[11], and
neurotoxicity, indexed by Trypan blue exclusion[78,84–87]
(Fig. 3A). Vitamin E, a chain-breaking antioxidant, sig-
nificantly modulates the oxidative stress and neurotoxic
effects of A�(1–42) (Fig. 3B and C), as would be expected
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Fig. 3. (A) The relative changes in neuronal survival and protein carbonyl content in 9–11-day-old rat embryonic hippocampal neuronal cultures treated
with 10�M of each indicated peptide for 2 days. Both neuronal survival and protein carbonyl content are expressed as the mean(%) ± S.E.M. of
untreated control cultures. Statistical comparisons were made using ANOVA. Only A�(1–42) caused statistically significant changes in both neuronal
survival and protein carbonyl content (P < 0.001, n = 3–6), with eachn a minimum of four replicates. (B) The relative changes in neuronal survival
and protein carbonyl content in 9–11-day-old rat embryonic hippocampal neuronal cultures treated with A�(1–42) (10�M) for 2 days without or with
pretreatment with the antioxidant, Vitamin E (50�M). Both neuronal survival and protein carbonyl content are expressed as the mean(%) ± S.E.M. of
untreated control cultures. Statistical comparisons were made using ANOVA. A�(1–42) caused statistically significant changes in both neuronal survival
and protein carbonyl content relative to controls (P < 0.001), while Vitamin E-treated cells exposed to A�(1–42) yielded neuronal survival and protein
carbonyl content means that were statistically identical to those of untreated controls. (n = 2–4, with eachn a minimum of four replicates). (C) Inhibition
of A�(1–42)-induced ROS formation, detected by the conversion of 2′,7′-dichlorofluorescin to 2′,7′-dichlorofluorescein, in 9–11-day-old rat embryonic
hippocampal neuronal cultures. Color images were obtained using a fluorescence confocal microscope and digitized. Quantification of the images was
performed using imaging software, and mean± S.E.M. values are presented. A�(1–42) induces about a four-fold increase in ROS over untreated controls
(P < 0.001), while Vitamin E pretreatment for 1 h prior to A�(1–42) addition leads to a mean ROS value that is highly significantly different than that of
A�(1–42) (P < 0.005) (n = 3, with eachn the mean of 8–11 neurons). (D) EPR spectra of A�(1–42) after 60 h incubation at 37◦C with highly purified
PBN in buffer containing 2 mM deferroxamine mesylate and prepared with water stored over chelex-100 beads. The PBN was synthesized and repeatedly
recrystallized and resublimed in our laboratory. Purity was evaluated using NMR and HPLC analyses: (a) EPR spectrum of PBN after 60 h incubation.
Note the absence of any resonance lines; (b) EPR spectrum of A�(1–42) after 60 h incubation with highly purified PBN. A prominent four-line spectrum
and a weak six-line spectrum is observed; and (c) EPR spectrum of A�(1–42M35NLE) after 60 h incubation with highly purified PBN. Note the absence
of a spectrum in this peptide in which the S-atom of methionine residue 35 of A�(1–42) has been replaced by a methylene (–CH2–) group.
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Fig. 3. (Continued ).

if a free radical process is operative[86]. Replacement of
the sulfur atom of methionine in A�(1–42) by a methy-
lene moiety (–CH2–) leads to a norleucine derivative
[A�(1–42M35NLE)] (Fig. 2). Substitution of this one
S-atom of this approximately 4000-Da A�(1–42) peptide
by CH2 is unlikely to cause significant alterations in peptide
structure (same side chain length and hydrophobicity) al-
though there is no data to support this speculation. Addition
of A�(1–42M35NLE) to 9–11-day-old primary hippocam-
pal cultures causes no protein oxidation, no neurotoxicity,
and no free radical formation[84] (Fig. 3A). Further, in
contrast to native A�(1–42), A�(1–42M35NLE) produces
no electron paramagnetic resonance (EPR) spectrum in the
presence of the highly purified spin trap PBN and metal ion
chelators[84] (Fig. 3D). These results are consistent with
the notion that methionine residue 35 is essential for the
oxidative stress and neurotoxic properties of A�(1–42). In
support of this idea, oxidation of the sulfur of methionine
in A�(1–42), leading to A�(1–42M35Sox) (Fig. 2), is also
not toxic to cells and produces no protein oxidation[80]
(Fig. 3A). This result probably arises from the fact that
the sulfur is already oxidized in the methionine residue of
A�(1–42) and can not easily be oxidized further to the sul-
fone. However, although A�(1–42M35Sox) is not toxic to
neurons, this peptide does inhibit mitochondrial function as
assessed by the MTT reduction assay[80], a result confirm-
ing previous studies of Seilheimer et al.[67]. In one study,
the substitution of norleucine for methionine in A�(1–42)
still resulted in toxicity[60]. These researchers used differ-

ent neuronal culture conditions than used in our laboratory,
and, in contrast to usual studies of aged neurons (9–11 days
in culture at which time transporters and other key cellu-
lar components are fully expressed), 2-day-old neuronal
cultures were used to assess neurotoxicity.The totality of
the above results suggest that the methionine residue of
A�(1–42) is important for oxidative stress and neurotoxicity.
However, since emerging evidence suggests that aggregation
of A� peptides is essential for their toxicity, is the absence
of oxidative stress and neurotoxicity in A�(1–42M35NLE)
and A�(1–42M35Sox) due to the lack of fibril formation
in these methionine-modified peptides?Fig. 4 shows that
A�(1–42), A�(1–42M35NLE, and A�(1–42M35Sox form
fibrils when viewed by electron microscopy, while the
reverse sequence of A�(1–42) [A�(42–1)] is devoid of
fibrils. This result, also seen if Vitamin E, which inhibits
A�(1–42)-induced oxidative stress and neurotoxicity[86],
is added to A�(1–42) (Fig. 4), [79], suggests that it is not the
lack of aggregation of these methionine-modified peptides
that prevents oxidative stress and neurotoxicity. Rather, we
propose that is it is the absence or diminution of free radi-
cals associated with the peptide that provides the explana-
tion of the non-oxidative and non-toxic properties of these
modified peptides.

The importance of methionine in A�(1–42)-associated
oxidative stress also was demonstrated in vivo[84]. Trans-
genic Caenorhabditis elegans were genetically modified
using anunc-54 promoter to produce human A�(1–42) that
is deposited in the muscle wall of the worm[19]. Animals
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Fig. 4. Fibril formation assessed by electron microcopy. Peptides, 1 mg/ml, were dispersed in 500�l deionized water and incubated for 48 h at 37◦C.
Five microliter of each peptide mixture was placed on separate copper formvar carbon-coated grids. After 1–5 min at room temperature, excess water was
drawn off, and samples were counterstained with 2% uranyl acetate. Air-dried samples were examined in a transmission EM at 75 kV. (A) A�(1–42),
which induces oxidative stress in and is toxic to neurons. (B) A�(1–42M35NLE), which does not induce protein oxidation nor is it neurotoxic. (C)
A�(1–42M35Sox), which does not induce protein oxidation nor is it neurotoxic. (D) A�(1–42) in the presence of Vitamin E (DMSO), which inhibits
protein oxidation and neurotoxicity. (E) A�(1–42) in the presence of DMSO alone. (F) A�(42–1).

expressing human A�(1–42) phenotypically are paralyzed
when placed on a food source in stark contrast to vector-only
worms that are mobile. The A�(1–42) deposited is in the
�-sheet conformation assessed by thioflavin T and the fluo-
rescent Congo Red derivative, X-34[41]. If our model for
A�(1–42)-associated free radical oxidative stress[10,12,78]
is correct, a prediction would be that worm proteins should
have increased oxidation relative to the vector controls.
Table 1shows that this is the case[84]. A different trans-
genicC. elegans construct that express the same amount of
peptide as that deposited in transgenic animals expressing
native human A�(1–42) [19], but has methionine substi-
tuted by cysteine, no longer shows any increased protein

Table 1
In vivo protein oxidation in transgenicC. elegans in which human
A�(1–42) is expressed

Construct Protein oxidationa P value

Human A�(1–42) 175± 6 (6) <0.001
Human A�(1–42M35C) 96± 3 (4) N.S.

a Percent of theunc-54 vector only controls. Mean± S.E.M. (number
of samples) are presented. Protein oxidation was determined by imaging
Western blots of immunochemically-detected protein carbonyls relative to
those of the vector control.
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oxidation (Table 1). Methionine is a thio-ether, and, as
such, can undergo free radical chemistry[56,57,63,65,66].
In contrast, cysteine is a thio-alcohol, which does not
have the same chemistry as thio-ethers. Alternatively, the
cysteine-containing A�(1–42) has a potential for disulfide
formation, which could conceivably inhibit its reactivity.
These in vivo results are consistent with the in vitro studies
that suggest the importance of methionine in the oxidative
stress and neurotoxic properties of A�(1–42). These trans-
genicC. elegans worms with methionine substituted by Cys
are no longer paralyzed[19], consistent with the notion that
it is the oxidative stress induced by the human A�(1–42)
that produces the muscle paralysis in these worms. Cur-
rently, we are testing different amino acid substitutions in
C. elegans with the aim of gaining additional insight into
toxicity mechanisms of human A�(1–42).

In addition to the criticality of methionine for the oxida-
tive stress and neurotoxic properties of A�(1–42), similar
findings were observed for A�(1–40) and A�(25–35)[77].
Many researchers have used this latter, 11-amino acid frag-
ment of A�(1–42) as a low-cost alternative to full-length
A�(1–42) peptide, since this smaller peptide mimics sev-
eral of the oxidative and neurotoxic properties of full-length
A�(1–42). However, these properties usually are manifested
much sooner (hours) than those of A�(1–42) (1–2 days)
and often are more pronounced. These differences may re-
flect different molecular mechanisms for oxidative stress
and neurotoxicity between the peptides. The most obvi-
ous difference with respect to the methionine residue is
that Met is C-terminal in the shorter peptide. To investigate
the role of C-terminal Met in A�(25–35), several studies
were conducted[77,80]. Truncation of A�(25–35) to pro-
duce A�(25–34), i.e. no Met, leads to a non-oxidative and
non-neurotoxic peptide[77]. Similarly, elongation of the
peptide to A�(25–36), i.e. Met is no longer C-terminal, also
leads to a non-oxidative and non-neurotoxic peptide[80].
These results with this shorter peptide are consistent with
the notion shown inFig. 5 (bottom) that the carboxylate
oxygen can attack the sulfur atom on Met, thereby mak-
ing a six-membered ring, to form a sulfuramyl free radical.
Either directly by H-atom abstraction or though other free

�
Fig. 5. Top: Plausible mechanism for sulfuramyl free radical cation localized on Met residue 35 of A�(1–42) to induce lipid peroxidation and protein
oxidation in neurons, ultimately leading to the death of the neuron. The S+ radical is postulated to be formed either by (a) reaction of molecular oxygen
with the S-atom of Met, whose electronic structure has been altered by interaction of the S-atom of Met with the carbonyl oxygen of Ile residue 31 in
an �-helical conformation or (b) following peptide-bound redox metal ion associated chemistry (see text). Extraction of a H-atom from an unsaturated
C-atom on a phospholipid acyl chain or from a susceptible protein would lead to a C-centered free radical, M. This, in turn, would immediately bind
paramagnetic oxygen, forming a peroxyl free radical, thereby propagating the radical process. The latter could induce lipid and protein oxidation,ROS
formation, reactive lipid peroxidation products, and, eventually, cell death. H-atom abstraction by the sulfuramyl radical also is postulated to occur either
between adjacent chains involving Gly-33 or in the same chain, forming a CH2 radical on the former methyl group of Met-35. In either case, oxygen
would immediately bind forming a peroxyl free radical that would lead to neurotoxicity as described before. The SH+ moiety on Met would immediately
lose its H+ since the pKa is −5, reforming Met. Thus, the cycle could be catalytic. Vitamin E, a chain-breaking antioxidant, would intercept peroxyl free
radicals, thereby stopping the propagation steps. See text for more details. Because Met on A�(25–35) is C-terminal, we propose that the Met-associated
free radical process is different than that of A�(1–42). The carboxylate oxygen of C-terminal Met could attack the S-atom, making a six-membered
ring containing a sulfuramyl free radical. Such an attack would not be possible with the C-terminal amide or in A�(25–34) that lacks Met, which may
explain why these modifications render A�(25–35) to be non-oxidative and non-neurotoxic. Subsequent reactions lead back to Met, providing a catalytic
route for oxidative stress and neurotoxicity. See text for more details.

radical propagating steps, this sulfuramyl free radical could
lead to the observed protein and lipid peroxidation. Loss of
H+ from SH+ (pKa is −5) by any base present leads to the
regeneration of methionine, and the whole process would
be catalytic. Hence, this may account for the increased ra-
pidity and increased oxidative stress and neurotoxicity with
A�(25–35) relative to A�(1–42), which because the Met is
not C-terminal can not participate in this mechanism of ox-
idative stress. Rather, A�(1–42) must have other means of
leading to the sulfuramyl free radical on Met (see following
sections).

The mechanism posited inFig. 5 for A�(25–35) was
strengthened by studies with A�(25–35amide)[80]. If the
carboxylate oxygen of A�(25–35) were replaced by an
amide (NH2), then the initial attack on the sulfur would not
be feasible. One would predict that this peptide would be
non-oxidative and non-neurotoxic. This is exactly what is
found [80].

For A�(1–42) the mechanism by which Met initiates a
sulfuramyl free radical remains unclear. However, several
possibilities are possible. In the elegant studies by Schöne-
ich described before, it is clear that if the Met residue of A�
exists in an�-helical environment, which has been demon-
strated based on NMR studies of A�(1–40) [16] and in
other biophysical studies with A�(1–42)[17], the carbonyl
oxygen of thei + 4 residue (Ile-31) potentially can interact
with the S-atom of Met, possibly changing its redox chem-
istry such that molecular oxygen can oxidize Met to the sul-
furamyl free radical. If this were the case, then subsequent
free radical propagation steps can ensue leading to lipid
peroxidation and protein oxidation. A different mechanism
has been proposed by Huang et al.[29,30]. These scientists
report that A�(1–42) can reduce peptide-bound Cu(II) to
Cu(I) and form H2O2 [29,30]. Cu(I), in turn, can react with
the H2O2 to form hydroxyl free radicals. Bush states that if
any amino acid is substituted for methionine, no toxicity en-
sues[9]. Additionally, if exogenous methionine is added to
A�(1–28)—a fragment lacking toxic properties of the wild
type-there is an increase rate of Cu(II) reduction supporting
a critical role of methionine is such processes[17]. These
researchers also demonstrated insertion of A�(1–42) into
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model lipid bilayer with the methionine located deep in the
bilayer is as�-helix conformation. Such orientation could
position a putative sulfuramyl radical to abstract H-atom
from an allylic carbon on acyl chain of lipids and could sug-
gest the potential interaction of Ile-31 and Met-35 as noted
before. Our attempts to dissect these two possibilities (one,
a redox metal ion-independent, structurally-based oxidation
of Met, and the second, a process involving peptide-bound
redox metal ions) are on-going. Progress has been made in
one approach. If to the norleucine-substituted A�(1–42),
A�(1–42M35NLE), which, as noted before, is non-oxidative
and non-neurotoxic, Cu(II) is added, there still remains no
oxidative stress and no neurotoxicity[78], consistent with
the thesis of this review that methionine is the key player in
these properties of A�(1–42). Supporting this view, if the
putative Cu(II) binding sites of His 6,13,14 in A�(1–42) are
substituted by Tyr, which binds Cu(II) at least a 100-fold
less well than does His[51], then this Met-containing
peptide is still oxidative and still inhibits mitochondrial
function [78].

Recently, a paper reporting the results of theoretical cal-
culations suggested that a sulfuramyl free radical on Met of
one molecule of A�(1–42) could abstract a H-atom from the
�-carbon of Gly-33 of an adjacent peptide in a�-sheet con-
formation[64]. Only Gly-33 was able to participate in this
H-atom transfer according to the authors. To test this idea, we
substituted Gly-33 in A�(1–42) by Val [A�(1–42G33V)],
which would not be able to participate in H-atom transfer
to Met-35. In contrast to native A�(1–42), A�(1–42M35V)
caused far less protein oxidation and induced no neurotoxi-
city [31]. If this mechanism is applicable in AD brain, sev-
eral points are worth noting. First, H-atom abstraction from
the �-carbon of Gly-33 would form a C-centered free radi-
cal that would immediately bind molecular oxygen forming
a peroxyl free radical (seeFig. 5). The latter can induce pro-
tein oxidation and lipid peroxidation[11], which can lead
to cell death. Secondly, this mechanism does not require
participation by redox metal ions, providing another mech-
anism by which oxidative stress can arise. Schöneich has
shown that a sulfuramyl radical also can abstract a H-atom
from the methyl group next to the sulfur atom in Met on the
same peptide, forming a CH2 free radical[64]. As before,
such a free radical would immediately bind molecular oxy-
gen forming a peroxyl free radical, and protein oxidation
and lipid peroxidation could follow as before. More research
to dissect these possibilities is needed and ongoing.

This review has summarized results of several studies that
show the critical importance of methionine in the oxida-
tive stress and neurotoxic properties of A�(1–42). Given the
centrality of A�(1–42) to the pathogenesis of AD and the
extensive oxidative stress under which the AD brain exists,
these results may unite these aspects of this dementing dis-
order under the aegis a model for neurotoxicity in the AD
brain based on methionine-initiated, A�(1–42)-associated
free radical oxidative stress and neurotoxicity. If so, these
results strongly support that notion that intervention in AD

by brain accessible antioxidants may provide a promising
therapeutic strategy for this disorder.

Addendum

Consistent with the notion that the secondary structure of
A�(1–42) is important in the oxidative stress and neurotoxic
properties of the peptide, we substituted the helix-breaking
amino acid, proline, for isoleucine in residue 31. This
breaks interaction of the carbonyl oxygen of Ile-31 with the
S-atom of Met-35. As predicted, this substituted peptide
is no longer oxidative nor neusotoxic[88]. Additionally,
if the chemistry of methionine is maintained in A�(1–42),
but the initial target of the posited sulfuramyl radical is
no longer available, no neurotoxicity nor oxidative damage
is predicted. This prediction was confirmed by substitu-
tion of the negatively charged amino acid aspartic acid for
glycine-37. The negative charge is predicted to force the
lipid bilayer-resident methionine out of the low dielectric
medium of the lipid bilayer. When this modified peptide was
incubated with hippocampal neurons, no oxidative stress
nor neurotoxicity resulted[89], consistent with the notion
that lipid peroxidation induced by A�(1–42) is an early
event in the oxidative stress and neurotoxicity associated
with this peptide[90] and perhaps in AD brain[91].
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