浙江省科技型企业---加速您的多肽研究
首页 >多肽产品 >INSL4A Chain/Insulin-like 4A Chain(Human)

多肽产品

INSL4AChain/Insulin-like4AChain(Human),H2N-Ser-Gly-Arg-His-Arg-Phe-Asp-Pro-Phe-Cys-Cys(Acm)-Glu-Val-Ile-Cys-Asp-Asp-Gly-Thr-Ser-Val-Lys-Leu-Cys-Thr-COOH,H2N-SGRHRFDPFC-C(Acm)-EVICDDGTSVKLCT-OH,杭州专肽生物的产品

INSL4A Chain/Insulin-like 4A Chain(Human)

编号:145846

CAS号:

单字母:H2N-SGRHRFDPFC-C(Acm)-EVICDDGTSVKLCT-OH

纠错
  • 编号:145846
    中文名称:INSL4A Chain/Insulin-like 4A Chain(Human)
    英文名:INSL4A Chain/Insulin-like 4A Chain(Human)
    单字母:H2N-SGRHRFDPFC-C(Acm)-EVICDDGTSVKLCT-OH
    三字母:H2N

    N端氨基

    -Ser

    丝氨酸

    -Gly

    甘氨酸

    -Arg

    精氨酸

    -His

    组氨酸

    -Arg

    精氨酸

    -Phe

    苯丙氨酸

    -Asp

    天冬氨酸

    -Pro

    脯氨酸

    -Phe

    苯丙氨酸

    -Cys

    半胱氨酸

    -Cys(Acm)

    侧链Acm保护的半胱氨酸

    -Glu

    谷氨酸

    -Val

    缬氨酸

    -Ile

    异亮氨酸

    -Cys

    半胱氨酸

    -Asp

    天冬氨酸

    -Asp

    天冬氨酸

    -Gly

    甘氨酸

    -Thr

    苏氨酸

    -Ser

    丝氨酸

    -Val

    缬氨酸

    -Lys

    赖氨酸

    -Leu

    亮氨酸

    -Cys

    半胱氨酸

    -Thr

    苏氨酸

    -OH

    C端羧基

    氨基酸个数:25
    分子式:C119H187N35O39S4
    平均分子量:2860.23
    精确分子量:2858.26
    等电点(PI):9
    pH=7.0时的净电荷数:3.12
    平均亲水性:0.27142857142857
    疏水性值:-0.24
    外观与性状:白色粉末状固体
    消光系数:-
    来源:人工化学合成,仅限科学研究使用,不得用于人体。
    纯度:95%、98%
    盐体系:可选TFA、HAc、HCl或其它
    生成周期:2-3周
    储存条件:负80℃至负20℃
    标签:侧链保护基肽    促胰岛素分泌肽(Exendins)    胰岛素样生长因子(Insulin-Like Growth Factors, IGF)   

  • Definition

    The exendins are peptides that are found in the salivary secretions of the Gila monster and the Mexican Bearded Lizard, reptiles that are endogenous to Arizona and Northern Mexico. Exendin-3 is present in the salivary secretions of Heloderma horridum (Mexican Beaded Lizard), and exendin-4 is present in the salivary secretions of Heloderm suspectum (Gila monster) 1.

    Related Peptides
    The GLP-1 structurally related peptides exendin-4 and exendin (9-39) amide were found to act, in rat liver and skeletal muscle, as agonist and antagonist, respectively, of the GLP-1 (7-36) amide effects on glucose metabolism 2.

    Discovery
    In 1982, it was observed that the crude venom of the Gila monster Heloderma suspectum was a potent pancreatic secretagogue. Purification and sequencing of the active factors mediating this effect led to the discovery of the peptides helodermin and exendin-4 3.

    Structural Characteristics
    The exendins have some sequence similarity to several members of the glucagon-like peptide family, with the highest homology, 53%, being to GLP-1[7-36] NH2  2. An amino acid sequencing assay for peptides containing an amino-terminal histidine residue (His1) was used to isolate a 39-amino acid peptide, exendin-4, from H. suspectum venom. Exendin-4 differs from exendin-3 by two amino acid substitutions, Gly2-Glu3 in place of Ser2-Asp3, but is otherwise identical. The structural differences make exendin-4 distinct from exendin-3 in its bioactivity 4.

    Mode of Action
    In normal rats, exendin-4, like GLP-1 and insulin, enhanced glucose uptake. This effect, which is mediated to a certain extent by some kinases (PI3K/ PKB, p70s6k and MAPKs), may be caused by the peptide acting, at least in part, through the muscle GLP-1 receptors. Exendin-9 also stimulated the same kinases, except for PKB, but failed to modify basal glucose uptake 5. Pharmacological studies have led to reports that exendin-4 can act at GLP-1 receptors in vitro on certain insulin-secreting cells, at dispersed acinar cells from guinea pig pancreas, and at parietal cells from stomach; the peptide is also reported to stimulate somatostatin release and inhibit gastrin release in isolated stomach.
    Exendin-3 and exendin-4 were reportedly found to stimulate cAMP production in, and amylase release from, pancreatic acinar cells.1

    Functions
    Like GLP-1 (7-36) amide, exendin-4 increased glycogen synthase activity and glucose incorporation into glycogen in both tissues and also stimulated exogenous D -glucose utilization and oxidation in muscle. These effects of GLP-1(7-36) amide and exendin-4 were inhibited by exendin (9-39) amide 2. Novel modified exendins and exendin agonists having an exendin or exendin agonist linked to one or more polyethylene glycol polymers, and related products and methods are useful, for example, in the treatment of diabetes, including Type 1, Type 2, and gestational diabetes, in the treatment of disorders which would be benefited by agents which modulate plasma glucose levels or suppress glucagon secretion, and in the treatment of disorders which would be benefited by the administration of agents useful in modulating the rate of gastric emptying or food intake, including obesity, eating disorders, insulin-resistance syndrome, and triglyceride levels, and to treat subjects suffering from dyslipidemia. The methods are also useful for lowering plasma lipid levels, reducing cardiac risk, reducing appetite, and reducing the weight of subjects.1

    References

    1. Eng J, Andrews PC, Kleinman WA, Singh L, Raufman JP (1990). Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom. J Biol Chem., 265(33):20259-20262
    2. Alcántara AI, Morales M, Delgado E, López-Delgado MI, Clemente F, Luque MA, Malaisse WJ, Valverde I, Villanueva-Peñacarrillo ML (1997). Exendin-4 Agonist and Exendin(9-39)amide Antagonist of the GLP-1(7-36)amide Effects in Liver and Muscle. Archives of Biochemistry and Biophysics., 341(1):1-7.
    3. Pohl M, Wank SA (1998). Molecular cloning of the helodermin and exendin-4 cDNAs in the lizard. Relationship to vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide and glucagon-like peptide 1 and evidence against the existence of mammalian homologues. J Biol Chem., 273(16):9778-9784.
    4. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP (1992). Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem., 267(11):7402-7405.
    5. Sancho V, Trigo MV, González N, Valverde I, Malaisse WJ, Villanueva-Peñacarrillo ML (2005). Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. J Mol Endocrinol., 35(1):27-38.

    Definition
    Insulin-like growth factors (IGF)-1 and IGF-2 are ubiquitously expressed peptides with sequence homology to insulin.

    Related Peptides
    IGFs interacts with a specific receptor on the cell membrane, namely, the IGF-I receptor (IGF-IR), and the interaction is regulated by a group of specific binding proteins. All of these molecules are considered to be members of the IGF family, which includes the polypeptide ligands IGF-I and IGF-II, two types of cell membrane receptors (i.e., IGF-IR and IGF-IIR), and six IGF-binding proteins (i.e., IGFBP-1 through IGFBP-6).

    Structural Characteristics
    IGFs
    IGF-I and IGF-II are single-chain polypeptides. The two molecules have 62% homology in their amino acid sequences. The molecules share additional structural similarities, and their structures resemble the structure of proinsulin1. IGF I consists of 70 amino acid residues, IGF I1 of 67, grouped into domains A and B (similar to insulin), C (analogous to the connecting peptide of proinsulin) and D (not present in insulins). The three intrachain disulfide bridges in IGF 1 and I1 have shown to be located in analogous positions to those in (pro) insulin1.

    IGFBPs
    The primary structures of mammalian IGFBPs appear to contain three distinct domains of roughly equivalent sizes: the conserved N-terminal domain, the highly variable midregion, and the conserved C-terminal domain.N-terminal domain contains 80–93 amino acid residues after the signal. Ten to 12 of the 16–20 cysteines found in the prepeptides are located within this domain. In IGFBP-1 to -5, these 12 cysteines are fully conserved, whereas in IGFBP-6, 10 of the 12 cysteines are invariant2.Midregion ranging in size from 55 amino acid residues to 95 amino acids separates the N-terminal domain from the C-terminal domain. The amino acid sequence for each midsegment appears to be unique to the protein. C-terminal region are highly conserved and, 6 cysteines of the total 16–20 cysteines are found in the C terminus and are strictly conserved2.

    IGF Receptors
    Both IGF-IR and IGF-IIR are glycoproteins and are located on the cell membrane. IGF-IR is a tetramer of two identical a-subunits and two identical ß-subunits. Structurally, IGF-IR resembles the insulin receptor, and there is 60% homology between them. IGF-IIR is monomeric. Three ligand-binding regions are found in the extracellular domain of the receptor, one for IGF-II binding and two for proteins containing mannose-6-phosphate (M6P), including renin, proliferin, thyroglobulin, and the latent form of (TGF)-ß transforming growth factor2.

    Mode of Action
    Binding of IGFs to IGF-IR activates the receptor's tyrosine kinase activity, which triggers a cascade of reactions. Two distinct signal transduction pathways have been identified for IGF-IR. One pathway activates Ras protein, Raf protein, and mitogen-activated protein kinase, and the other pathway involves phosphoinositol-3-kinase. IGF-IR is involved in cell transformation. In vitro experiments have shown that removal of IGF-IR from the cell membrane by eliminating the IGF-IR gene, by suppressing its expression, or by inhibiting its function can abolish cell transformation3. IGFBPs have multiple and complex functions. IGFBPs are able to inhibit or to enhance the action of IGFs, resulting in either suppression or stimulation of cell proliferation. These opposing effects of IGFBPs on IGFs are determined by the molecular structures of the binding proteins. When binding to IGFs, IGFBPs play three major roles: 1) transporting IGFs, 2) protecting IGFs from degradation, and 3) regulating the interaction between IGFs and IGF-IR. Normally, IGFBPs have higher binding affinity to IGFs than does IGF-IR; therefore, binding of IGFBPs to IGFs blocks the interaction between IGFs and IGF-IR and suppresses IGF action. However, binding of IGFBPs to IGFs also protects IGFs from proteolytic degradation, and that protection can enhance the action of IGFs by increasing their bioavailability in local tissue3.

    Functions
    Direct Involvement in Cancer - IGF-I and IGF-II are strong mitogens for a wide variety of cancer cell lines. Animal experiments indicate that overexpression of IGF-I increase the likelihood of tumor development in certain tissues. The effects of IGFs on cancer cells are mediated through IGF-IR. Eliminating IGF-IR from the cell membrane, blocking the interaction of IGFs with IGF-IR, or interrupting the signal transduction pathway of IGF-IR can abolish the mitogenic action of IGFs on cancer cells. IGF-IR is overexpressed in certain cancers, and its overexpression is associated with aggressive tumors. A recent study indicates that the insulin receptor is involved in mediating the actions of IGF-II on breast cancer. Cancer cells with a strong tendency to metastasize have higher expression of IGF-II and IGF-IR than those with a low ability to do so.In cancer, IGFBPs regulate the action of IGFs. In most situations, the binding proteins suppress the mitogenic action of IGFs and promote apoptosis. It has been shown that IGFBP-3 inhibited breast cancer cell growth without interacting with IGFs4.

    IGF I protects and rescues hippocampal neurons against ß-amyloid- and human amylin-induced toxicity - Insulin-like growth factors (IGF-I and IGF-II) are well known trophic factors and their specific receptors are uniquely distributed throughout the brain, being especially concentrated in the hippocampal formation. IGFs possess neurotrophic activities in the hippocampus, an area severely affected in Alzheimer disease. There is evidence that ß-amyloid (aß)-derived peptides likely play an important role in the neurodegenerative process observed in Alzheimer disease, it has been shown that IGFs can be neuroprotective to hippocampal neurons against toxicity induced by amyloidogenic derivatives5.

    Reference:

    1.     Daughaday WH, Rotwein P (1989). Insulin-like growth factors I and II - Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev, 10:68–91.

    2.     Jones JI, Clemmons DR (1995). Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev., 16:3–34.

    3.     Clemmons DR (1997). Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev, 8:45–62.

    4.     Yu H, Rohan T (2000). Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute., 92 (18):1472-1489.

    5.     Doré S, Kar S, Quirion R (1997). Insulin-like growth factor I protects and rescues hippocampal neurons against ß-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci, 94:4772–4777.

  • 多肽H2N-Ser-Gly-Arg-His-Arg-Phe-Asp-Pro-Phe-Cys-Cys(Acm)-Glu-Val-Ile-Cys-Asp-Asp-Gly-Thr-Ser-Val-Lys-Leu-Cys-Thr-COOH的合成步骤:

    1、合成CTC树脂:称取2.69g CTC Resin(如初始取代度约为1.06mmol/g)和3.42mmol Fmoc-Thr(tBu)-OH于反应器中,加入适量DCM溶解氨基酸(需要注意,此时CTC树脂体积会增大好几倍,避免DCM溶液过少),再加入8.55mmol DIPEA(Mw:129.1,d:0.740g/ml),反应2-3小时后,可不抽滤溶液,直接加入1ml的HPLC级甲醇,封端半小时。依次用DMF洗涤2次,甲醇洗涤1次,DCM洗涤一次,甲醇洗涤一次,DCM洗涤一次,DMF洗涤2次(这里使用甲醇和DCM交替洗涤,是为了更好地去除其他溶质,有利于后续反应)。得到  Fmoc-Thr(tBu)-CTC Resin。结构图如下:

    2、脱Fmoc:加3倍树脂体积的20%Pip/DMF溶液,鼓氮气30分钟,然后2倍树脂体积的DMF 洗涤5次。得到 H2N-Thr(tBu)-CTC Resin 。(此步骤脱除Fmoc基团,茚三酮检测为蓝色,Pip为哌啶)。结构图如下:

    3、缩合:取8.55mmol Fmoc-Cys(Trt)-OH 氨基酸,加入到上述树脂里,加适当DMF溶解氨基酸,再依次加入17.11mmol DIPEA,8.13mmol HBTU。反应30分钟后,取小样洗涤,茚三酮检测为无色。用2倍树脂体积的DMF 洗涤3次树脂。(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。得到Fmoc-Cys(Trt)-Thr(tBu)-CTC Resin。氨基酸:DIPEA:HBTU:树脂=3:6:2.85:1(摩尔比)。结构图如下:

    4、依次循环步骤二、步骤三,依次得到

    H2N-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Arg(Pbf)-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Arg(Pbf)-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Gly-Arg(Pbf)-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    H2N-Gly-Arg(Pbf)-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    Fmoc-Ser(tBu)-Gly-Arg(Pbf)-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin

    以上中间结构,均可在专肽生物多肽计算器-多肽结构计算器中,一键画出。

    最后再经过步骤二得到 H2N-Ser(tBu)-Gly-Arg(Pbf)-His(Trt)-Arg(Pbf)-Phe-Asp(OtBu)-Pro-Phe-Cys(Trt)-Cys(Acm)-Glu(OtBu)-Val-Ile-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Gly-Thr(tBu)-Ser(tBu)-Val-Lys(Boc)-Leu-Cys(Trt)-Thr(tBu)-CTC Resin,结构如下:

    5、切割:6倍树脂体积的切割液(或每1g树脂加8ml左右的切割液),摇床摇晃 2小时,过滤掉树脂,用冰无水乙醚沉淀滤液,并用冰无水乙醚洗涤沉淀物3次,最后将沉淀物放真空干燥釜中,常温干燥24小试,得到粗品H2N-Ser-Gly-Arg-His-Arg-Phe-Asp-Pro-Phe-Cys-Cys(Acm)-Glu-Val-Ile-Cys-Asp-Asp-Gly-Thr-Ser-Val-Lys-Leu-Cys-Thr-COOH。结构图见产品结构图。

    切割液选择:1)TFA:H2O=95%:5%

    2)TFA:H2O:TIS=95%:2.5%:2.5%

    3)三氟乙酸:茴香硫醚:1,2-乙二硫醇:苯酚:水=87.5%:5%:2.5%:2.5%:2.5%

    (前两种适合没有容易氧化的氨基酸,例如Trp、Cys、Met。第三种适合几乎所有的序列。)

    6、纯化冻干:使用液相色谱纯化,收集目标峰液体,进行冻干,获得蓬松的粉末状固体多肽。不过这时要取小样复测下纯度 是否目标纯度。

    7、最后总结:

    杭州专肽生物技术有限公司(ALLPEPTIDE https://www.allpeptide.com)主营定制多肽合成业务,提供各类长肽,短肽,环肽,提供各类修饰肽,如:荧光标记修饰(CY3、CY5、CY5.5、CY7、FAM、FITC、Rhodamine B、TAMRA等),功能基团修饰肽(叠氮、炔基、DBCO、DOTA、NOTA等),同位素标记肽(N15、C13),订书肽(Stapled Peptide),脂肪酸修饰肽(Pal、Myr、Ste),磷酸化修饰肽(P-Ser、P-Thr、P-Tyr),环肽(酰胺键环肽、一对或者多对二硫键环),生物素标记肽,PEG修饰肽,甲基化修饰肽等。

    以上所有内容,为专肽生物原创内容,请勿发布到其他网站上。

  • 暂时没有数据