浙江省科技型企业---加速您的多肽研究
首页 >多肽产品 >缓激肽(Hyp³)-Bradykinin

多肽产品

37642-65-2,缓激肽(Hyp³)-Bradykinin,H2N-Arg-Pro-Hyp-Gly-Phe-Ser-Pro-Phe-Arg-COOH,H2N-RP-Hyp-GFSPFR-OH,杭州专肽生物的产品

缓激肽(Hyp³)-Bradykinin

缓激肽拮抗剂。

编号:149262

CAS号:37642-65-2

单字母:H2N-RP-Hyp-GFSPFR-OH

纠错
  • 编号:149262
    中文名称:缓激肽(Hyp³)-Bradykinin
    英文名:(Hyp³)-Bradykinin
    CAS号:37642-65-2
    单字母:H2N-RP-Hyp-GFSPFR-OH
    三字母:H2N

    N端氨基

    -Arg

    精氨酸

    -Pro

    脯氨酸

    -Hyp

    羟基脯氨酸

    -Gly

    甘氨酸

    -Phe

    苯丙氨酸

    -Ser

    丝氨酸

    -Pro

    脯氨酸

    -Phe

    苯丙氨酸

    -Arg

    精氨酸

    -OH

    C端羧基

    氨基酸个数:9
    分子式:C50H74N15O12
    平均分子量:1077.22
    精确分子量:1076.56
    等电点(PI):-
    pH=7.0时的净电荷数:2.97
    平均亲水性:0.26
    疏水性值:-0.98
    消光系数:-
    来源:人工化学合成,仅限科学研究使用,不得用于人体。
    储存条件:负80℃至负20℃
    标签:氨基酸衍生物肽    缓激肽(Bradykinin)   

  • Definition

    Bradykinin is a nonapeptide that is mainly found in animal preparations that are treated with the venom of the snake, Bothrops jararaca1,2.  It dialates blood vessels that in turn leads to decrease in blood pressure2. Bradykinin analogs are slightly modified structural derivatives of bradykinin that perform similar functions as bradykinin3.

    Discovery

    Bradykinin was discovered in the blood plasma of animals that were treated with the venom from the Brazilian snake, Bothrops jararaca1,2.  The discovery was part of a study that was related to toxicology of snake bites.  Bradykinin analogs were synthesized by solid-phase techniques in 1975 and their function was studied in rats and rabbits3.

    Classification

    Bradykinin is a 9 amino acid peptide that belongs to the kinin family of proteins4.  It has homologs in several animals including other snakes, frog, dog and humans4.

    Structural Characteristics

    Bradykinin has the sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg3.  Several analogs of bradykinin have been synthesized. They are also nanopeptides containing substitutions of various amino acids of bradykinin. For example two analogs of bradykinin were synthesized one with 7-beta-homo-L-proline and the other with 8-beta-homo-L-phenylalanine substitutions3.  It was found that both of them are resistant to enzymatic degradation3.

    Mode of action

    Bradykinin binds to two different kinin G protein coupled receptors- B1 and B25.  Upon binding to these receptors it induces conversion of GTP to GDP which in turn triggers the conversion ATP to cAM which then acts as a second messenger resulting in the activation of genes.  B1 receptor is expressed as a result of tissue injury and is found to play a role in inflammation while B2 receptor participates in the vasodilatory role of bradykinin5,6.  Bradykinin analogs function is a similar fashion although depending on their structure they might have varying affinities to the receptors compared to bradykinin7. Also analogs of bradykinin have been synthesized that are specific to one of these receptors7.

    Functions

    Bradykinin is a potent endothelium-dependent vasodilator, causes contraction of non-vascular smooth muscle, increases vascular permeability and also is involved in the mechanism of pain. Bradykinin also causes natriuresis, contributing to a drop in blood pressure8. Bradykinin raises internal calcium levels in neocortical astrocytes causing them to release glutamate9. Overactivation of bradykinin is thought to play a role in a rare disease called Hereditary Angioedema, also known as Hereditary Angio-Neurotic Edema10. 

    Some analogs of bradykinin have been found to have prolonged hypotensive action compared to bradykinin (Eg: beta-H-Pro-bradykinin)3.  Some analogs have relative or even lower potencies compared to bradykinin (Eg: HArg1-Bradykinin and HArg9 Bradykinin)7.  Other analogs have been studied for their potential of finding bradykinin antagonists that might be useful in the treatment of angio-neurotic edema.  

    References

    1.     Partridge, SM (1948). (Title or abstract not available), Biochem. J., 42, 238.

    2.     Allen PK, Kusumam J, Yoji S, Yoshitaka N, Berhane G, Sesha R and Michael S (1998). Bradykinin formation: Plasma and tissue pathways and cellular interactions. Clinical reviews in allergy and immunology, 16, 4, 403-429.

    3.     Ondetti MA, Engel SL (1975). Bradykinin analogs containing beta.-homoamino acid, J. Med. Chem.,18 (7), 761–763.

    4.     Roseli A, Gomes S, Jair RC, Luis J and Valdemar H (1996). Met-Lys-Bradykinin-Ser, the kinin released from human kininogen by human pepsin. Immunopharmacology, 32, 76-79.

    5.    Peter GM, Amrita A, and Mauro P (2000). Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules. J Exp. Med., 192, 367-380.

    6.     Duchene J, Lecomte F, Ahmed S, Cayla C, Pesquero J, Bader M, Perretti M and Ahluwalia A, (2007). A Novel Inflammatory Pathway Involved in Leukocyte Recruitment: Role for the Kinin B1 Receptor and the Chemokine CXCL5. J Immunol., 179, 4849-4856.

    7.     Max ES, Phyllis AL (1974). Synthesis and pharmacology of homoarginine bradykinin analog. J. Med. Chem., 17 (11), pp 1227–1228.

    8.     Dendorfer A, Wolfrum S, Wagemann M, Qadri F, Dominiak P, (2001). Pathways of bradykinin degradation in blood and plasma of normotensive and hypertensive rats. Am J Physiol Heart Circ Physiol., 280:H2182

    9.     Kuoppala A, Lindstedt KA, Saarinen J, Kovanen PT, Kokkonen JO (2000). Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma. Am J Physiol Heart Circ Physiol, 278(4):H1069-74.

    10.   Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G (2007). Nonallergic angioedema: role of bradykinin. Allergy, 62(8):842-56.

  • Bradykinin antagonist.

  • 暂时没有数据
  • 暂时没有数据