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Abstract

To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, activity levels of representative enzymes in

semen and their sensitivities to inhibitors, cofactors, and peptide hormones were evaluated. The existence of seminal fractions and the

association of peptidases with these fractions were also characterized for the first time in snakes. The prominent inhibitors of

aminopeptidases (APs) were amastatin for acid, basic, and neutral; bestatin for basic; and diprotin A for dipeptidyl-IV. Cystyl and prolyl-

imino APs were similarly susceptible to the majority of these inhibitors. The basic and neutral were characterized as metallo-peptidases,

acid AP was activated by MnCl2, and cystyl, prolyl-imino, and type I pyroglutamyl were characterized as sulphydryl-dependent APs.

Angiotensin II, vasotocin, bradykinin, fertilization-promoting peptide, and TRH altered the majority of these peptidase activities; these

peptides are possible substrates and/or modulators of these peptidases. Peptidase activities were found in all seminal fractions: seminal

plasma (SP), prostasome-like (PR) structures, and soluble (S-) and membrane-bound fractions (MFs) of spermatozoa. The levels of activity

of each peptidase varied among different seminal fractions. In SP, the higher activities were puromycin-insensitive neutral and basic APs.

In PR, the higher activity was puromycin-insensitive neutral AP. In spermatozoa, the higher activity in subcellular SF was puromycin-

sensitive neutral, while in MF both puromycin-sensitive and -insensitive neutral APs were equally higher than the other examined

peptidases. Data suggested that these peptidases, mainly basic and neutral, have a high relevance in regulating seminal functions of

C. d. terrificus.
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Introduction

Enzyme hydrolysis leading to inactivation or processing
of peptides has been assumed to be a limitation step for
their biological activities. Many peptides, such as
angiotensins (Angs; Fraser et al. 2006), kinins (Blaukat
2003), substance P, enkephalins (Sastry et al. 1991),
endorphin (El-Haggar et al. 2006), oxytocin (OXT),
vasopressin (AVP; Assinder et al. 2000), LHRH (Amory
& Bremner 2003), TRH, and fertilization-promoting
peptide (FPP; Green et al. 1996), as well some peptidases,
particularly aminopeptidases (APs) and oligopeptidases
have been related to seminal physiology in mammals
(Fernández et al. 2002, Irazusta et al. 2004, Valdivia et al.
2004, Subirán et al. 2008). In this sense, Ang I and II are
hydrolyzed by acid AP (APA; EC 3.4.11.7; Kugler 1982)
and, also, by prolyl oligopeptidase (POP; EC 3.4.21.26;
Barret et al. 1998). The formation of Ang IV from Ang III
(Kugler 1982) and bradykinin (BK) from kallidin (Mizutani
et al. 1993) is catalyzed by neutral AP (APN). Enkephalin
is hydrolyzed by puromycin-insensitive APN (APN-PI;
E.C 3.4.11.2) and puromycin-sensitive APN (APN-PS, E.C
3.4.11.14; Fernández et al. 2002). Substance P,
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enkephalin, BK, OXT, AVP, LHRH (Barret et al. 1998),
TRH, and FPP (Siviter & Cockle 1995) are hydrolyzed by
POP. OXT and AVP are hydrolyzed by cystyl AP (CAP, EC
3.4.11.3; Davison et al. 1993). LHRH and TRH are
susceptible to type I pyroglutamyl AP (PAP-I, EC 3.4.19.3;
Cummins & O’Connor 1998), and FPP is a possible
substrate of this enzyme. BK, kallidin, met-enkephalin,
and somatostatin are hydrolyzed by basic AP (APB, EC
3.4.11.6; Barret et al. 1998). Substance Pand endorphin-
2 are substrates of dipeptidyl peptidase-IV (DPPIV, EC
3.4.14.5; Barret et al. 1998).

The distribution of peptidases in seminal fractions is
fundamental to the regulatory role of these enzymes.
Until the present, earlier studies of human seminal
fractions evaluated the distribution of only three of the
above-mentioned peptidases: APN (Fernández et al.
2002, Subirán et al. 2008), PAP, and POP (Valdivia et al.
2004). APN was detected in soluble (S-) and solubilized
membrane-bound fractions (MFs) of seminal plasma (SP)
and prostasomes (PRs; Fernández et al. 2002). In sperm,
APN was detected in the equatorial segment of the upper
post-acrosomal region of the head, in the neck, and
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Figure 1 LDH activity (meansGS.E.M.) in soluble (white bar) and
solubilized membrane-bound (black bar) fractions of whole semen of
C. d. terrificus. Number of animals is given in parentheses. *P!0.0003
(unpaired two-side Student’s t-test).

Table 1 Activity levels of aminopeptidases: acid (APA), basic (APB),
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along the tail (Subirán et al. 2008). Alterations of APN
levels in human semen were associated with different
abnormalities in the sperm of subfertile patients (Irazusta
et al. 2004). PAP-I and POPactivities were detected in SP
and in the PR fraction, as well as in soluble and
membrane-bound sperm subcellular fractions, and have
higher activities in necrozoospermia than in normo-
zoospermic semen (Valdivia et al. 2004). AP and
amylase activities are also known to be the main agents
in the liquefaction process of the ejaculated semen
coagulum, in humans (Chatterjee et al. 1997). Moreover,
AP inhibitors, bestatin and puromycin, are capable of
diminishing cellular proliferation and viability in
mammals (Takahashi et al. 1989, Constam et al. 1995).
However, bestatin is capable of restoring and promoting
follicular growth and ovulation after its suppression by
stress (Nakamura et al. 1998).

To our knowledge, the fractionation of semen and
the presence of seminal APs and POP have not yet
been studied in snakes. Furthermore, species possessing
sperm with long lifespans, such as the rattlesnake Crotalus
durissus terrificus, are interesting experimental models
to study the distribution and function of peptidases in
seminal fractions. In C. d. terrificus, spermatogenesis
begins in spring and has its peak in summer. The
spermatozoa are maintained in the male tract until
mating (middle of autumn; Almeida-Santos et al. 2004)
and, subsequently, in the female tract until ovulation
(spring; Almeida-Santos & Salomão 1997). The goal of the
present study was to evaluate the existence of mamma-
lian-like seminal fractions (SP, PR, and sperm), and to
characterize the activity levels of soluble and membrane-
bound APA, APB, APN-PI, APN-PS, CAP, PAP-I, DPPIV,
POP, and prolyl iminopeptidase (PIP) and their sensi-
tivities to inhibitors, cofactors, and possible natural
substrates in whole semen, as well as their associations
with different seminal fractions of C. d. terrificus.
puromycin-insensitive neutral (APN-PI), puromycin-sensitive neutral
(APN-PS), dipeptidyl peptidase-IV (DPPIV), pyroglutamyl-I (PAP-I),
prolyl-imino (PIP); and prolyl oligopeptidase (POP) in soluble (SF) and
solubilized membrane-bound (MF) fractions of whole semen of
Crotalus durissus terrificus.

Activities (U/mg protein)

Aminopeptidase SF MF

APA 691G180a (16) 838G229a (16)
APB 18 549G3227b,* (15) Absent
APN-PI 30 372G3107c (13) 23 866G1938b (13)
APN-PS 9019G1133d,* (10) 12 637G1290c (11)
CAP 31G14a (14) 30G13a (15)
DPPIV 234G57a,* (13) 560G153a (11)
PAP-I 261G34a (14) 231G71a (16)
PIP 257G66a,* (15) Absent
POP 1777G252a,d,* (14) Absent

Values are meansGS.E.M. Number of animals is given in parentheses.
UZpicomoles of hydrolyzed substrate per minute. Different letters
indicate different peptidase activity levels in the same fraction (One-
way ANOVA P!0.0001, Bonferroni P!0.05). *P!0.05 in comparison
to MF (unpaired, two-side Student’s t-test).
Results

Figure 1 shows that lactate dehydrogenase (LDH) activity
in SF was threefold higher than in MF of whole semen.
Similar proportion was obtained in spermatozoa sub-
cellular SF and MF (data not shown).

Table 1 shows values of peptidase activity in SF and
MF of whole semen. APB, PIP, and POP activities were
detected only in SF, while the others were detected in SF
and MF.

Table 2 shows that APB activity was markedly
inhibited by amastatin and bestatin, APA and APN by
amastatin, and diprotin A had a stronger effect on DPPIV
activity in SF and MF. CAP and PIP activity decreased in
the presence of majority of examined inhibitors. Bestatin
and puromycin were more efficient to inhibit PAP. POP
activity was not evaluated by classical AP inhibitors,
since it is an endooligopeptidase (the only one under
study here), and this activity was shown to be increased
Reproduction (2008) 136 767–776
or indifferent with the adopted agents (Olivo et al. 2008).
CAPactivity in SF, PAP-I, and PIP had a common pattern of
decrease with BK, TRH, and FPP (with or without Ca2C).
Ang II and BK diminished APA activity in SFand MF. Ang II
and arginine vasotocin (AVT) decreased CAPactivity in SF
and PIP activity. AVT also decreased CAP activity in MF.
DL-dithiothreitol (DTT) improved CAP activity in SF and
MF and PIP activity, and decreased APB activity. EDTA
diminished the activities of APB and APN SF and MF.
MnCl2 decreased the activities of CAP in MF, PAP, and
DPPIV SF and MF, and increased APA activity.

As showninFig.2,apeakcoincidedwith thedeadvolume
(Vo) of seminal fraction from gel filtration in Sephadex
G-200. This peak was analyzed by transmission electron
microscopy and had numerous rounded or oval mem-
branous vesicles of the size 50–200 nm, shown in Fig. 3.

Figure 4 shows AP activities in seminal fractions: SP,
PR, and spermatozoa subcellular SF and MF. In SP, the
higher activities were APN-PI and APB relative to other
examined peptidases. In PR, APN-PI activity also had the
higher level, followed by APB and APN-PS. In sperma-
tozoa subcellular SF, APN-PS activity was higher, while
in spermatozoa subcellular MF, APN-PS and APN-PI
www.reproduction-online.org
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activities were higher than other examined peptidase
activities. Considering activity levels of each peptidase
among different seminal fractions, APB, PIP, and POP
were higher in SP; APB, APN-PI, DPPIV, and PAP-I in PR;
APN-PS in spermatozoa subcellular SF; and PAP-I and
CAP in spermatozoa subcellular MF. APA was equally
distributed among all seminal fractions. It was note-
worthy that APN-PS activity was absent in SP.
Discussion

The efficiency of the employed procedure to separate SF
and MF was confirmed by the pronounced LDH activity
(cytosolic marker) in SF of all samples, which allowed
the characterization of the activity of each peptidase in
different fractions, and consequently the association of
intra- and extracellular peptides with the peptidase
activities under study. Overall, peptides involved in
intracellular signaling are primarily hydrolyzed outside
the cell, mainly by membrane-bound peptidases which
have, in general, the active sites in the extracellular side,
which interact with released peptides (O’Cuinn 1998).
Soluble peptidases act mainly in intracellular processes,
but can also be exocytosed or act in recaptured peptides,
which are internalized as a part of the peptide-receptor
complex, as occurs with peptide hormones (Gibson et al.
1989). Under stimulation, cytosolic enzymes can be
translocated to the cell surface and efficiently process
extracellular substances (Albiston et al. 2004). In the
present study, APB, PIP, and POPactivities were detected
only in SF and the other activities were detected in SF and
MF, following the same pattern found in tissues and
semen of mammals (Irazusta et al. 2001, 2004, Silveira
et al. 2001, Varona et al. 2003).

The use of substances derived from naphthylamide has
been the initial step to detect or confirm the involvement
of APs and POP in physiological mechanisms. Variables
that could not be controlled might have influenced
peptidase activities in the present study, e.g. intra-season
and geographical and circadian variations. This is
possible considering the seasonality, since samples
were obtained in different days of the same season
(austral autumn – the mating season for C. d. terrificus).
However, the fertility potential of semen can be
presumed effective and homogeneous along this season,
based on the existence of a high quality of seminal
dynamic parameters of Boa constrictor occidentalis
(Tourmente et al. 2007), the peak of testosterone
(Zacariotti et al. 2005) and the decrease of spermatozoa
defects (Zacariotti 2004) in C. d. terrificus. Geographical
variation was not a factor as snakes were captured
from locations with similar fauna and environmental
conditions. Moreover, we can also exclude circadian
variations, because the material was obtained in the
same period of the day, with a maximum difference
of 90 min.
Reproduction (2008) 136 767–776
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Figure 2 Gel filtration chromatography on Sephadex G-200. The
column was equilibrated and washed with Tris–saline buffer (30 mM
Tris plus 130 mM NaCl), pH 7.4, flow rate 0.16 ml/min.
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The anatomy and morphology of the male reproduc-
tive tract could also influence the features of the
peptidase activities and their distribution in seminal
fractions of C. d. terrificus. In reptiles, the ductus
deferens are recognized as the site of spermatozoa
storage in males and, differently from mammals, the
epididymis does not participate in sperm maturation and
storage (Sever et al. 2002). The ductus deferens of C. d.
terrificus are convoluted and enter the cloaca indepen-
dently of the ureters. As previously described by
Almeida-Santos et al. (2004), the ductus deferens occupy
about one-third of the body length and when freed from
0.2µm

Figure 3 Electron microphotography of prostasome-like structures
from semen collected from the ductus deferens of C. d. terrificus in
austral autumn.
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the peritoneal membrane and manually distended, its
length is about six times the total body length, although
the right duct is always slightly longer than the left. Three
regions can be distinguished: proximal (testicular),
median, and distal (cloacal). In this snake, spermatozoa
become increasingly more motile from the proximal to
the distal region (Almeida-Santos et al. 2004). Regarding
the presence of examined peptidase activities in the
spermatozoa, the identification of their anatomical
sources need to be investigated; for example, in the
acrosomal complex, which is known in all vertebrate
taxa as an enzyme-rich organelle that facilitates
spermatozoal penetration into the ovum (Subirán et al.
2008). In squamates, the acrosomal complex is highly
compartimentalized (Gribbins et al. 2007), and this
compartimentalization has been suggested as an aid to
the sequential release of acrosomal enzymes (Talbot
1991). Since the scope of the present study was not to
compare the seminal fractions and peptidase compo-
sition from different areas of the ductus deferens, semen
from the entire ductus deferens of C. d. terrificus was
taken systematically to assure similar seminal fluid
components for each analysis.

The APs under study are known to be sensitive to
amastatin, bestatin, diprotin A, and puromycin (Cadel
et al. 1995, Ronai et al. 1999, Sato 2003). POP is inhi-
bited by Z-Pro-prolinal (Garcı́a-Horsman et al. 2007)
and belonging to a distinct class of enzymes, it was not
included in the inhibition assay.

In the present study, APB susceptibility to bestatin
distinguished this enzyme from APA and APN. By the
susceptibility of DPPIV to diprotin A, and PAP-I, CAP,
and PIP to puromycin, it was possible to differentiate
them from APA and APB. The inhibition of DPPIV by
diprotin A is a known feature of this enzyme (CD26) in
mammals (Minelli et al. 1999). As distinguishing
features, APB and APN are metallo-peptidases, because
of their inhibition by EDTA (Kawata et al. 1980). APA was
marked as activated by MnCl2, which is a known
characteristic of this enzyme in mammals (Ramı́rez
et al. 1990). CAP and PAP-I were activated by DTT, a
thiol-reducing agent, characterizing them as sulphydryl-
dependent peptidases. DTT is an activator of the type I
PAP and an inhibitor of the type II (O’Cuinn et al. 1990),
and the degradation of FPP (possible substrate of PAP-I) is
also increased by the presence of DTT (Cockle et al.
1994), which confirms that PAP-I is among the enzymes
studied in the present work and FPP is one of its
substrates. Overall, the present results show that seminal
peptidase activities of C. d. terrificus have distinct
biochemical properties, and therefore it is possible to
attribute them to different proteins. It was notable that
enzyme activities were affected by the evaluated
peptides, which are their possible substrates (e.g. Ang
II on APA, AVT on CAP, and PIP, and particularly TRH
and FPP with or without Ca[2C] on CAP, PIP, and PAP-I).
These results indicate the competition among these
www.reproduction-online.org
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Figure 4 Distribution of activity levels of aminopeptidases: acid (APA), basic (APB), puromycin-insensitive neutral (APN-PI), puromycin-sensitive
neutral (APN-PS), cystyl (CAP), dipeptidyl peptidase-IV (DPPIV), pyroglutamyl-I (PAP-I), prolyl-imino (PIP); and prolyl oligopeptidase (POP) in
seminal plasma, prostasome-like and spermatozoa subcellular soluble (SF) and solubilized membrane-bound (MF) fractions of C. d. terrificus. Values
are meansGS.E.M. from triplicates of samples (see Materials and Methods). UZ picomoles of hydrolyzed substrate per min. Different letters indicate
different peptidase activity levels in the same fraction (one-way ANOVA, P!0.0001, Bonferroni P!0.001). Asterisks indicate the higher activity of
each peptidase when comparisons were made among all seminal fractions (one-way ANOVA, P!0.0003, Bonferroni P!0.05).
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peptides and the synthetic substrates, strongly suggesting
that those peptides are natural substrates of seminal
peptidases of C. d. terrificus.

The semen of the rattlesnake contains SP and sperma-
tozoa, as well as vesicles resembling mammalian PRs.
Although ulterior ultrastructural analyses are needed to
determine peculiarities of these vesicles seen in C. d.
terrificus, compared with PRs of mammals, they could
be considered as PR structures since they were obtained
by the same purification procedure employed to obtain
human PRs (Fernández et al. 2002, Vivacqua et al. 2004)
and had peptidase activities (Fernández et al. 2002),
shape (Fernández et al. 1997, Vivacqua et al. 2004), and
size (Olsson & Ronquist 1990, Vivacqua et al. 2004)
similar to human PRs. Mammalian PRs are membranous
vesicles (50–550 nm; 150–200 nm are the most fre-
quent), which contain large amounts of cholesterol,
sphingomyelin, calcium, and several enzymes (Kravets
et al. 2000). They are surrounded by a bilaminal or
multilaminar lipoprotein membrane with unusual lipid
composition due to quantitative predominance of
www.reproduction-online.org
cholesterol over phospholipids (Kravets et al. 2000).
PRs have been related to sperm motility, liquefaction,
and immunosuppression (Kravets et al. 2000). Since PRs
can be identified only after purification procedures it is
difficult to infer how frequent they are in C. d. terrificus.
Another important question that remains to be investi-
gated is the origin of these vesicles in C. d. terrificus. In
humans, PRs are secreted by the prostate gland (Kravets
et al. 2000). In bovines, PRs are originated in the seminal
vesicles (Agrawal & Vanha-Perttulla 1987). Seminal
vesicles secrete proteins, vitamin C, fructose, prosta-
glandin, and fibrinogen, while the prostate gland
secretes a whitish liquid with low viscosity which
contains citrate and Ca2C (Minelli et al. 1998). It is
noteworthy that C. d. terrificus possesses PR structures,
since squamates do not possess a prostate gland, seminal
vesicles, and bulbo-urethral and urethral glands (Sever
2004). The renal sexual segment is known to act as an
accessory sex organ (Sever et al. 2002), from which
those structures could have originated. This renal sexual
segment of snakes secretes a complex of glycogen,
Reproduction (2008) 136 767–776
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mucopolysaccharides, lipids, mucoproteins, and phos-
phatases (Kühnel & Krisch 1974) in a pattern that can be
related to spermatogenic cycle and mating activity
(Sever et al. 2002). However, since in the present study
the semen was collected from the ductus deferens, it
would not have mixed with fluids from the renal sexual
segment but probably from other areas of major
secretory activity in the snake urogenital system, e.g.
the ampulla ductus deferentis and the ductuli epididy-
mides of the epididymis (Volsoe 1944), from which the
PR structures could have originated. The ductuli
epididymides or ductuli efferents have been observed
in the snake Seminatrix pygaea as efferent ducts from
seminiferous tubules of the testis that lead into the
epididymis, from which sperm pass into the ductus
deferens (Sever 2004). In several mammals, the terminal
portion of the ductus deferens is differentiated into an
ampulla, which is considered a multifaceted organ,
morphologically similar to the seminal vesicles (Riva
et al. 1982). Among reptiles, the ampulla has been
reported only in squamates, being more prominent in
lizards than in snakes (Akbarsha et al. 2005). The
ampulla of squamates and mammals shares the irregular
narrow folded epithelium (Sever 2004).

The higher levels of the majority of the examined
peptidase activities were found in SP and PR fractions.
APN and APB activities were more expressive in all
seminal fractions. The conversion of kallidin to BK
(Mizutani et al. 1993) and inactivation of BK (Barret et al.
1998) are, respectively, actions of APN and APB,
indicating the importance of the regulation of these
peptides to seminal function in C. d. terrificus. However,
considering our results and the large range of peptides
that are susceptible to these peptidases, it is not possible
to assure that the high levels of peptidases are restricted
only to the kinin system. In other words, the relevance
of other evaluated peptidases cannot be ignored. For
instance, DPPIV and POP activities were also highly
expressed in PR and SP of C. d. terrificus respectively.
Considering their known hydrolytic effects over endor-
phin-2 and enkephalin, respectively (Barret et al.
1998), and the fact that endogenous opioid peptides
seem to have a marked role in seminal physiology
(O’Hara et al. 1994, Agirregoitia et al. 2006), DPPIV and
POP activities may have a relevant role in seminal
physiology of C. d. terrificus.

In conclusion, this is the first report of fractionation
and peptidase composition of semen of reptiles, and
demonstrated the presence of acid, basic, neutral
(puromycin-sensitive and -insensitive), cystyl, dipepti-
dyl-IV, type I pyroglutamyl, and prolyl-imino APs, as well
as POP activities in SP, spermatozoa, PR structures, and
whole semen from ductus deferens of C. d. terrificus.
Metallo-dependent APs inhibited by amastatin and
bestatin (mainly those that act on neutral or basic
amino acids) had marked levels in whole semen and in
all seminal fractions, indicating a high physiological
Reproduction (2008) 136 767–776
importance. Ang II, AVT, BK, FPP, and TRH altered the
majority of the peptidase activities under study,
suggesting them as possible substrates and/or modulators
of these peptidases.
Materials and Methods

Animals

Adult male snakes (C. d. terrificus, Serpentes, Viperidae,
Crotalinae; nZ26) were captured from their natural environ-
ment in the states of São Paulo and Minas Gerais (Brazil) during
austral autumn, when testosterone is at its peak (Zacariotti et al.
2005) and mating occurs (Almeida-Santos & Salomão 1997).
The animals were identified by the Laboratory of Herpetology
of the Instituto Butantan and housed individually in wooden
cages (inside length!width!height of 35!26!22 cm) and
acclimated to controlled conditions of temperature (25 8C),
humidity (65.3G0.9%), and photoperiod (12 h light:12 h
dark–lights on at 0600 h) in a restricted-access room for a
period of 10 days.

After anesthesia with CO2 exposure for 3 h, the ductus
deferens of the reproductive tract were removed by laparotomy
(Langlada et al. 1994), and semen was obtained from these
ducts. The animals were then destined for other studies after
euthanizing by decapitation.

The animal and research protocols used in this study are in
agreement with the Brazilian Council Directive (COBEA-
BRAZIL) and were approved by the Ethics Committee of the
Instituto Butantan (193/04).
Collection of C. d. terrificus semen

As previously described by Almeida-Santos et al. (2004), the
ductus deferens were stretched out on polystyrene plates for
semen extraction. Pressure with a cell scraper (TPP – Techno
Plastic Products AG, Trasadingen, Switzerland) along the whole
extension of the two ducts was applied. The total amount
of semen obtained was used for the following procedures.
Preparation of soluble and solubilized membrane-
bound fractions from whole semen of C. d. terrificus

In order to obtain SF and MF, individual samples of whole
semen were resuspended in 1 ml of 10 mM Tris–HCl buffer (pH
7.4), homogenized with a Teflon pestle in a glass potter (2 min
at 800 r.p.m.) and ultracentrifuged (100 000 g for 35 min;
Hitachi model HIMAC CP56GII). The resulting supernatants
correspond to the SF of whole semen. To avoid contamination
with the SF, the resulting pellet was washed three times with the
same buffer and was then homogenized (2 min at 800 r.p.m.) in
1 ml of 10 mM Tris–HCl buffer plus 0.1% (v/v) Triton X-100
(Calbiochem, San Diego, CA, USA), and then ultracentrifuged
(100 000 g for 35 min). The resulting supernatants correspond
to the MF of whole semen. All steps were carried out at 4 8C. SF
and MF were stored in polystyrene tubes at K80 8C until their
use in LDH, protein, and peptidase activities assays.
www.reproduction-online.org
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Fractionation of semen of C. d. terrificus

In order to obtain SP, PR, and spermatozoa subcellular SF and
MF of C. d. terrificus semen, the methodology described
by Fernández et al. (2002) for human semen was adapted
as follows. The pool of whole semen of five animals was
homogenized in 1 ml Tris–saline buffer (30 mM Trizma (Sigma)
plus 130 mM NaCl (Merck), pH 7.4) and centrifuged (600 g
for 20 min; Hitachi HIMAC CP56GII). The supernatant contained
SP and PR and was reserved for later use, while the pellet
contained spermatozoa. To avoid contamination with SPand PR,
the pellet was washed with 1 ml Tris–saline buffer and
subsequently resuspended in 2.5 ml of the same buffer and
centrifuged (600 g for 10 min). The resulting supernatant was
discarded and the pellet was washed with 2.5 ml Tris–saline
buffer and subsequently resuspended in 2.5 ml of the same buffer
and centrifuged (1000 g for 15 min). The supernatant was
discarded, and the resulting pellet contained only spermatozoa.
This pellet was homogenized in 2.5 ml 10 mM Tris–HCl buffer
(pH 7.4; 2 min at 800 r.p.m.) and stored at K80 8C, until use for
separation of subcellular SF and MF. Then, the homogenate was
sonicated (6 pulses of 30 s, with intervals of 15 s) and
ultracentrifuged (100 000 g for 35 min). The pellet was reserved
and the supernatant was ultracentrifuged (100 000 g for 35 min),
and the resulting pellet was discarded while the supernatant was
considered the spermatozoa subcellular SF. The reserved pellet
from the penultimateultracentrifugationwas, then,homogenized
at 800 r.p.m. (2 min, in 1 ml 10 mM Tris–HCl buffer) and
ultracentrifuged (100 000 g for 35 min). After discarding the
resulting supernatant, the pellet was homogenized at 800 r.p.m.
(2 min, in 1 ml 10 mM Tris–HCl buffer), and was considered as
the spermatozoa subcellular MF.

The resulting supernatant from the first centrifugation (SP and
PR) was centrifuged (1000 g for 20 min) in order to eliminate
debris and residual spermatozoa. The resulting pellet was
discarded and the supernatant was stored at K80 8C. After
defrost, this supernatant was ultracentrifuged (100 000 g for
120 min). The obtained pellet was reserved and the supernatant
was ultracentrifuged at the same conditions. The resulting pellet
was discarded and the resulting supernatant contained SP. The
reserved pellet from the penultimate ultracentrifugation was
washed with 0.6 ml Tris–saline buffer and subsequently resus-
pended in the same volume. To obtain 0.6 ml more of this
resuspension, all needful procedures were repeated with another
pool of whole semen offive animals. Both the resuspensionswere
mixed (1.2 ml), filtered in a membrane filter with a pore size
0.22 mm (Millipore, Bedford, MA, USA), and then submitted to
gel filtration in Sephadex G-200 (Sigma; 1.5!30 cm), at a flow
rate of 0.16 ml/min, in a column pre-equilibrated with Tris–saline
buffer. The dead volume (Vo) was determined by injecting a
solution of Blue dextran (Sigma). PR was not retained by the
column (Fernández et al. 2002) and, then, was collected in the Vo
(fractions 60–120 min or 9.6–19.2 ml), in a volume of about
9.6 ml. The eluate with PR was ultracentrifuged (100 000 g for
120 min) and the resultant pellet (PR fraction) was homogenized
in 1 ml Tris–saline buffer. All procedures were performed at 4 8C.
After obtaining SP, PR, SF, and MF of spermatozoa, samples were
transferred to polystyrene tubes and maintained at K80 8C until
the measurements of protein and peptidase activities. Part of PR
fraction was destined to the electron microscopy.
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Electron microscopy of PR fraction

The PR pellet was fixed for 2 h in a solution of 1.5%
glutaraldehyde (Electron Microscopy Sciences-EMS, Hatfield,
PA, USA) and 1% paraformaldehyde (Sigma) in 0.1 M cacodylate
buffer, pH 7.3, and post-fixed in 1% osmium tetroxide in the same
buffer. After dehydration in ethanol graded series, the pellet was
embedded in Embed-812 resin (Electron Microscopy Sciences-
EMS). Silver ultrathin sections were stained with uranyl acetate
and lead citrate, examined and microphotographed (LEO 906E
Transmission Electron Microscope, Zeiss, Göttingen, Germany).
Protein

Protein content was measured at 630 nm in triplicates by the
method of Bradford (1976; Bio-Rad protein assay). Protein
contents were extrapolated by comparison with standard
curves of BSA (Sigma) in the same diluent.
LDH

As a marker for the fractionation procedure, LDH activity was
determined (Bergmeyer & Brent 1972) in samples of 3 ml of SFand
MF in triplicates incubated with 297 ml of NADH (b-NADH,
reduced form; Sigma), dissolved in 100 mM phosphate buffer, pH
7.4, containing 1.6 mM sodium pyruvate (Sigma) and 200 mM
NaCl. Absorbance was read in 96-well flat bottom microplates, at
0 and 10 min, in Bio-Tek PowerWave X spectrophotometer
absorbance reader at 340 nm. Values of LDH activity were
obtained by subtracting the absorbance reading at 10 min from
time zero of incubation at 37 8C, and extrapolated by comparison
with a standard curve of NADH dissolved in 100 mM phosphate
buffer, pH 7.4, containing 200 mM NaCl. LDH activity was
expressed as mmol NADH oxidized/min/mg protein.
Peptidase activity assays

Peptidase activities were quantified on the basis of the amount
of 4-methoxy-b-naphthylamine (Sigma; for DPPIV and CAP) or
b-naphthylamine (Sigma; for all other peptidases) released
(Irazusta et al. 2001, Silveira et al. 2001, Gasparello-Clemente
& Silveira 2002, Gasparello-Clemente et al. 2003, Varona et al.
2003), which is the result of the enzyme activity of 20–50 ml
samples incubated with prewarmed substrate solution at
concentrations of 0.125 mM (APA, APN-PS, APN-PI, CAP,
PAP, PIP, and POP), 0.2 mM (DPPIV), and 0.5 mM (APB) in
respective 0.05 M buffers containing BSA 0.1 mg/ml in 96-well
flat bottom microplates for 30 min at 37 8C in a total volume of
300 ml. The content of naphthylamine was estimated fluor-
ometrically (microplate fluorescence reader Bio-Tek FL600FA)
at 460/40 nm emission wavelength and 360/40 nm excitation
wavelength. The fluorescence value obtained at time zero was
subtracted from values at time 30 min and the relative
fluorescence was then converted to picomoles of
b-naphthylamine (Sigma) or 4-methoxy-b-naphthylamine
(Sigma) by comparison with a correspondent standard curve,
which was dissolved in the same diluent as the incubation.

Peptidase activities were expressed as picomoles of hydro-
lyzed substrate per min (U) per milligram of protein, in which
Reproduction (2008) 136 767–776
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the existence of a linear relationship between time of hydrolysis
and protein content in the fluorometric assay was a previous
condition. Considering enzyme activity measures as a
comparative tool, the possible unspecific degradation during
homogenization was not considered.

The following substrates and conditions were used:

– APA, L-aspartic acida-(b-naphthylamide; Sigma; solubilized in
0.012 M NaOH) in Tris–HCl buffer, pH 7.4, with 1 mM MnCl2;

– APB, L-arginine b-naphthylamide (Sigma; solubilized in H2O)
in phosphate buffer, pH 6.5, with 150 mM NaCl, and 0.02 mM
puromycin (Sigma);

– APN, L-alanine-b-naphthylamide (Sigma; solubilized in
0.012 M HCl) in phosphate buffer, pH 7.4, with 1 mM DTT
(Sigma), with or without puromycin – APN-PI activity is the
result of the incubation with puromycin, while APN-PS is the
result of values of incubates without puromycin minus those
with puromycin;

– CAP, H-Cys-4-methoxy-b-naphthylamide (Bachem Bioscience
Inc., Torrance, CA, USA; solubilized in 0.012 M HCl) Tris-
maleate, pH 5.9;

– DPPIV, Glycil-Proline-4-methoxy-b-naphthylamide (Bachem
Bioscience Inc.; solubilized in dimethyl sulfoxide, DMSO
(Sigma)) in Tris–HCl buffer, pH 8.3;

– PAP-I, L-pyroglutamic acid-b-naphthylamide (Sigma; solubil-
ized in DMSO) in phosphate buffer, pH 7.4, with 2 mM DTT
(DTTinhibits PAP-II and actives PAP-I (O’Cuinn et al. 1990)) and
2 mM EDTA (Merck);

– PIP, L-proline-b-naphthylamide (Sigma; solubilized in DMSO)
in phosphate buffer, pH 7.4;

– POP, Z-Gly-Pro-b-naphthylamide (Bachem Bioscience Inc.;
solubilized in DMSO) in phosphate buffer, pH 7.4, with
2 mM DTT.
Characterization of peptidase activities in SF and MF of
whole semen

The characteristics of peptidase activities with their classical
inhibitors

The susceptibilities of APA, APB, APN, CAP, DPPIV, PAP-I, and
PIP peptidase activities were comparatively evaluated in a SF
and/or MF pool of whole semen from 11 animals with: amastatin
([(2S,3R)-3-Amino-2- -5-methylhexanoyl]-Val-Val-Asp-OH.HCl;
Bachem Bioscience Inc.): 0.026 mM in acetic acid 8%; bestatin
([(2S,3R)-3-Amino-2-hydroxy-4- phenylbutanoyl]-L-leucine;
Bachem Bioscience Inc.): 0.026 mM in acetic acid 8%; diprotin
A (H-Lle-Pro-Lle-OH; Bachem Bioscience Inc.): 0.026 mM in
deionized water; puromycin (30-[a-Amino-p-methoxyhydrocin-
namamido]-3-deoxy-N,N-dimethyladenosine): 0.026 mM in
deionized water. The samples were incubated in the presence
or absence of those substances, for 30 min, at 25 8C, and
peptidase activities were quantified.

The characteristics of peptidase activities with peptide
hormones, DTT, EDTA, and MnCl2

The susceptibilities of APA, APB, APN, CAP, DPPIV, PAP-I, and
PIP peptidase activities were comparatively evaluated in a SF
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and/or MF pool of whole semen from 11 animals with:
0.315 mM Ang II (Sigma); 0.314 mM AVT (reptilian analog of
OXT and AVP; Sigma); 0.310 mM BK (Sigma); 0.94 mM FPP
(Sigma); 0.94 mM FPP C1.8 mM CaCl2; 0.911 mM TRH
(Sigma); 0.97 mM DTT; 2 mM EDTA; 1 mM MnCl2. The
samples were incubated in the presence or absence of these
substances, for 30 min, at 25 8C, and peptidase activities were
subsequently quantified.
Statistical analysis

Data were analyzed statistically using GraphPad Prism and
Instat softwares (GraphPad Software Inc., San Diego, CA, USA).
Regression analysis was performed to obtain standard curves.
ANOVA, followed by Bonferroni test, compared values among
all peptidase activities in the same seminal fraction. Student’s t-
test was performed to compare values of LDH between SF and
MF, and peptidase activities in different incubation conditions
relative to the respective controls. Differences were considered
statistically significant at a minimum level of P!0.05.
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Pyroglutamyl peptidase I and prolyl endopeptidase in human semen:
increased activity in necrozoospermia. Regulatory Peptides 122 79–84.

Varona A, Silveira PF, Irazusta A, Valdivia A & Gil J 2003 Effects of changes
in hydromineral balance on rat brain aspartyl, arginyl, and alanyl
aminopeptidase activities. Hormone and Metabolic Research 35 36–42.
Reproduction (2008) 136 767–776
Vivacqua A, Siciliano L, Sabato M, Palma A & Carpino A 2004 Prostasome
as zinc ligands in human seminal plasma. International Journal of
Andrology 27 27–31.

Volsoe H 1944 Structure and seasonal variation of the male reproductive
organs of Vipera berus (L.). Spolia Zoologica Musei Hauniensis V. Skrifter
5 1–157.

Zacariotti RL 2004 Estudo longitudinal do espermograma e dos nı́veis de
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