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Zhang YL, Frangos JA, Chachisvilis M. Mechanical stimulus
alters conformation of type 1 parathyroid hormone receptor in bone
cells. Am J Physiol Cell Physiol 296: C1391–C1399, 2009. First
published April 15, 2009; doi:10.1152/ajpcell.00549.2008.—The mo-
lecular mechanisms by which bone cells transduce mechanical stimuli
into intracellular biochemical responses have yet to be established.
There is evidence that mechanical stimulation acts synergistically
with parathyroid hormone PTH(1-34) in mediating bone growth.
Using picosecond time-resolved fluorescence microscopy and G pro-
tein-coupled receptor conformation-sensitive fluorescence resonance
energy transfer (FRET), we investigated conformational transitions in
parathyroid hormone type 1 receptor (PTH1R). 1) A genetically
engineered PTH1R sensor containing an intramolecular FRET pair
was constructed that enabled detection of conformational activity of
PTH1R in single cells. 2) The nature of ligand-dependent conforma-
tional change of PTH1R depends on the type of ligand: stimulation
with the PTH(1-34) leads to conformational transitions characterized
by decrease in FRET efficiency while NH2-terminal truncated ligand
PTH(3-34) stimulates conformational transitions characterized by
higher FRET efficiencies. 3) Stimulation of murine preosteoblastic
cells (MC3T3-E1) with fluid shear stress (FSS) leads to significant
changes in conformational equilibrium of the PTH1R in MC3T3-E1
cells, suggesting that mechanical perturbation of the plasma mem-
brane leads to ligand-independent response of the PTH1R. Confor-
mational transitions induced by mechanical stress were characterized
by an increase in FRET efficiency, similar to those induced by the
NH2-terminal truncated ligand PTH(3-34). The response to the FSS
stimulation was inhibited in the presence of PTH(1-34) in the flow
medium. These results indicate that the FSS can modulate the action
of the PTH(1-34) ligand. 4) Plasma membrane fluidization using
benzyl alcohol or cholesterol extraction also leads to conformational
transitions characterized by increased FRET levels. We therefore
suggest that PTH1R is involved in mediating primary mechanochem-
ical signal transduction in MC3T3-E1 cells.

mechanosensor; fluorescence resonance energy transfer; fluid shear
stress; G protein-coupled receptor; mechanotransduction

MECHANICAL LOADING SUCH AS physical exercise and hormones
such as parathyroid hormone (PTH) play important roles in
regulating bone mass (63). Depending on dosage and mechan-
ical loading or disuse, PTH can either induce bone growth or
loss. Intermittent PTH administration has been proposed as a
treatment to enhance bone density for osteoporosis patients
while continuous high PTH dosage induces bone loss (40, 60,
75). Increased bone mass can be a result of bone adaptation to
mechanical loading while bone loss could be the consequence
of mechanical disuse (65, 70, 71). Studies have also shown that
mechanical loading and PTH treatment act synergistically, i.e.,
mechanical loading enhances the effect of intermittent PTH

treatment in bone formation and PTH prevents osteoporosis
caused by mechanical disuse (5, 18, 19, 30, 39, 41, 46, 47, 65,
67, 71). However, the cellular and molecular mechanisms
underlining the interaction between the mechanical loading and
PTH treatment is poorly understood (5, 20, 58, 69).

It has been reported that osteoblasts and osteocytes are the
cells that mediate mechanotransduction in bone by responding
to mechanical loading in the form of interstitial fluid shear
stress (FSS) (4, 15, 36, 56, 57, 66). Type 1 PTH receptor
(PTH1R) is highly expressed in bone and kidney and is vitally
important for extracellular calcium homeostasis. PTH1R is a G
protein-coupled receptor (GPCR) that conducts signal trans-
duction via Gs-cAMP-PKA (6), Gq/11-PLC-PKC (50) and Gi/o

pathways (49). Interaction of the PTH1R with its ligands is
complex (54). Recently, multiple studies based on biophysical
(14, 51), biological (79), and biochemical (76) methods sug-
gested that certain GPCRs [e.g., bradykinin receptor in endo-
thelial cells (14), angiotensin II type 1 receptor in cardiomyo-
cytes (76, 79), and formyl peptide receptor in neutrophils (51)]
can act as mechanosensors.

The structure and function of membrane proteins such as
mechanochannels and GPCRs have been shown to be modu-
lated by small changes in physicochemical properties of mem-
brane bilayers (1, 2, 14, 23, 28, 31, 33, 34, 43, 53, 55). It has
also been suggested that mechanical forces may initiate mech-
anochemical signal transduction by altering physical properties
of the cell membrane (9, 14, 28, 78), which in turn leads to
activation of membrane proteins.

In the present study, we test the hypothesis that PTH1R
serves as a mechanosensor in osteoblasts. We show that stim-
ulation by the PTH ligand and mechanical signaling converge
and interact at the PTH1 receptor.

MATERIALS AND METHODS

Chemicals and reagents. Human PTH(1-34) and bovine PTH(3-34)
were obtained from Bachem Americas (Torrance, CA). Human
Nle8,18Tyr34PTH(3-34) was from American Peptide (Sunnyvale,
CA). Benzyl alcohol and methyl-�-cyclodextrin were obtained from
Sigma (St. Louis, MO).

Cell culture, transfection, and shear stress experiments.
MC3T3-E1 cells (from American Type Tissue Collection, passages
2–6) were grown in �-MEM media (Invitrogen, Carlsbad, CA) con-
taining 10% fetal bovine serum, penicillin (100 U/ml), streptomycin
(100 �g/ml), and without vitamin C. Cell cultures were maintained in
a humidified 5% CO2-95% air incubator at 37°C. Transfection of
MC3T3-E1 cell line was carried out using Targefect-2 and Virofect
enhancer (Targeting Systems, Santee, CA) when confluency was
between 70% and 90%.

Human embryonic kidney (HEK)-293 cells (American Type Tissue
Collection, passages 2–10) were grown in DMEM media (Invitrogen)
containing 4.5 g/l D-glucose and were transfected using Targefect-293.

The FSS experiments were performed by using a parallel plate flow
microchamber that allows exposure of MC3T3-E1 cells to variable
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FSS in a flow channel (2 mm wide) that is optically accessible through
a coverslip-based window; cells were imaged through a high numer-
ical aperture (NA) water immersion objective (C-Apochromat �40/
1.2). The temperature of the microchamber and that of the flow media
delivered into the chamber by a syringe pump were maintained at
37°C. The design of the microchamber ensured that there was no
deformation of glass coverslip (axial displacement was �0.05 �m)
caused by flow-induced hydrostatic pressure (14).

Construction of PTH1R FRET sensor (PTH-CC). Primers for PCR
amplifications were obtained from Sigma. The cDNA templates of
Cerulean (61) and Citrine (27) were kindly provided by Dr. David W.
Piston (Vanderbilt University, Nashville, TN) and Dr. Roger R. Tsien
(University of California, San Diego), respectively. cDNA template
for human PTH1R was obtained from the University of Missouri
cDNA Resource Center (Rolla, MO). Expression vector pECFP-N1
was obtained from Clontech of Takara Bio, which was modified by
replacing the sequence of enhanced cyan fluorescent protein (ECFP)
with Cerulean. Cerulean was amplified by primers 5�-agaccggtgag-
caagggcgaggag-3� and 5�-tagcggccgcttacttgtacagctcgtccat-3� such that
the DNA fragment was flanked by Age1 and Not1. The digested
fragment was cloned into pECFP-N1 Age1 and Not1 sites, replacing
ECFP and resulting in pCerulean-N1.

The locations for insertion of Citrine into the third intracellular loop
and for fusion of Cerulean to the COOH-terminal tail of PTH1R were
similar to those in Ref. 72 (see Fig. 1A). DNA fragment encoding Citrine
flanked by 5�-Hind3(Sac2) and 3�-EcoR1 was amplified by PCR using
primers 5�-ctcggcatggacgagctgtggaattcgt-3� and 5�-acgaattccacagctcgtc-
catgccgag-3�; DNA fragment encoding PTH1R from Arg396 to Ser495
flanked by 5�-EcoR1 and 3�-Age1 was amplified by PCR using primers
5�-gtggaattcgtgtgacacacggcagcag-3� and 5�-caccggtgaatagctgctgctcccgct-
gcg-3�. The two DNA fragments were restriction enzyme digested and
cloned into pCerulean-N1 Hind3 and Age1 sites in a one-step ligation
reaction. The identified clone was then used to clone DNA fragment
flanked by 5�-Hind3 and 3�-Sac2 encoding PTH1R from Met1to Gly395,
which was amplified by PCR using primers 5�-gctagcgtttaaacttaagctt-
ggt-3� (that anneals to pcDNA3.1 sequence upstream of Kozac and start
codon of PTH1R) and 5�-taccgcggcgttggtctcccgcag-3�. In the resultant
construct of PTH1R FRET sensor (PTH-CC), the third intracellular loop
has the sequence of ATKLRETNAA-Citrine-SCDTRQQYRKLLKST
(underlined residues are altered ones to encode restriction sites in the DNA
sequences), replacing PTH1R’s ATKLRETNAGRCDTRQQYRKLLKST
(underlined are the 2 residues where Citrine is inserted in between),
and has cytoplasmic COOH terminus fused to Cerulean at residue
Ser495 of PTH1R (see Fig. 1A) with insertion of two extra residues
encoding Pro-Val to accommodate an Age1 restriction site. The
sequences of all constructs were confirmed by sequencing service.

Construction of plasma membrane-localized FRET sensor control
(PM-CC). We constructed a control FRET sensor that is localized to the
plasma membrane of cells (see Fig. 1D). The final construct PM-CC
encodes a protein that is Citrine and Cerulean linked together with a short
and flexible GGGGPV (Pro-Val to encode Age1 restriction site) linker
peptide to ensure Förster fluorescence energy transfer between the two
fluorescent proteins, and is with a 10-residue leader peptide MGCIN
SKRKD to direct its translocation to plasma membrane (77). Mammalian
expression vector used to clone the molecule is pCerulean-N1. The
sequences of PCR primers to amplify Citrine are 5�-gaagcttaccatgggatg-
tatcaacagtaaacgaaaggatgtgagcaagggcgaggagct-3� and 5�-gaccggtccaccgc-
ctcccttgtacagctcgtccat-3�. The PCR product was digested with Hind3 and
Age1, yielding Citrine DNA fragment flanked by the 10-residue signal
peptide sequence at the 5�-end and GGGGPV linker peptide sequence at
the 3�-end, and cloned into pCerulean-N1 Hind3 and Age1 sites.

FRET measurements. FRET measurement in living cells was per-
formed as previously described (14). Briefly, fluorescence emission
kinetics and spectra were measured by using a multichannel, time-
correlated single photon counting spectrograph (PML-16/SPC630;
Becker and Hickl, Berlin, Germany) coupled to an inverted micro-
scope (Axiovert 200 M; Zeiss, Thornwood, NY) via fiber optic link.

A femtosecond Ti:Sapphire oscillator (Spectra-Physics, Irvine, CA)
was used as the excitation source. The repetition frequency of the light
pulses from the oscillator was reduced to 8 MHz, and the light
wavelength was doubled to 435 nm and coupled into the microscope.
The excitation light (�0.1 �W) was defocused to a spot size of 20–50
�m to enable spatially homogenous excitation of a single cell. A
dichroic beamsplitter (455dclp; Chroma, Rockingham, VT) was used
to separate excitation from emission light. Our experimental setup
enabled detection of fluorescent decays from single cells with 16
independent wavelength channels and �20-ps time resolution. The
photobleaching was �10% after 60-min illumination; it did not result
in any noticeable changes of fluorescence spectra and kinetics on the
timescale of our experiments. Fluorescence spectra were obtained by
integrating time-resolved fluorescence data. The polarization of the
detected fluorescence emission was selected by using a polarizer.
Presented data were measured by detecting fluorescence emission
polarized at 90° to the polarization of the excitation light at 435 nm,
which enabled higher sensitivity of our measurements because Citrine
emission is depolarized by the FRET process, whereas directly excited
Cerulean and Citrine emissions are polarized, resulting in lower
overall background signal.

Cell imaging. Fluorescence imaging of HEK-293 cells was performed
using an inverted fluorescence microscope Axiovert 200M (Zeiss) using
the �40 water immersion objective (NA 1.2), CFP (Cerulean) cube
(Omega Optical, XF114-2-440AF21, 455DRLD, 480AF30), and yellow
fluorescent protein (YFP; Citrine) cube (Omega Optical, XF104-2-
500AF25, 525DRLP, 545AF35). MC3T3-E1 cells were imaged using
confocal fluorescence microscope LSM 5 Pascal (Zeiss). Confocal im-
ages were recorded using 514 nm excitation and BP530–600 nm emis-
sion filter with �40 oil emersion objective (NA 1.3).

RESULTS

Expression and localization of PTH-CC and PM-CC. To
monitor conformational changes of the PTH1R, we constructed
a PTH1R sensor (PTH-CC) containing an intramolecular
FRET pair that enables detection of conformational activity of
PTH1R in single cells under mechanical stress or ligand
stimulation (Fig. 1A). For control experiments we constructed
a membrane-targeted FRET pair with no expected conforma-
tional activity (Fig. 1D). Expression and translocation of the two
constructs, the FRET control (PM-CC), and the PTH1R activity
FRET sensor (PTH-CC) were examined both in HEK-293 and in
MC3T3-E1 cells. Expressed PTH-CC localizes predominantly on
plasma membranes of HEK-293 cells (Fig. 1B) and MC3T3-E1
cells (Fig. 1C). Figure 1, E and F, shows that 24 h after transfec-
tion of HEK-293 and MC3T3-E1 cells, respectively, the ex-
pressed PM-CC is mostly localized on the plasma membranes.
The images for both constructs appeared identical when viewed
through CFP and YFP channels in the microscopes.

Response of PTH-CC to stimulation by ligands. Figure 2A
shows that FRET signal from PTH1R fret sensor decreases
when MC3T3-E1 cells are treated with 1 �M PTH(1-34),
suggesting that the agonist induces a conformational change in
the receptor. We have determined that FRET signal does come
back to baseline after the ligand is washed off on the timescale
practically feasible in our single cell experiments (�45 min).
This suggests that the dissociation rate constant koff is very
small and is also consistent with the earlier study on the green
fluorescent protein-PTH1R construct where almost no ligand
dissociation was observed upon washing (13) or with another
recent study that showed that the majority of PTH(1-34)
ligands dissociate very slowly, with half-time (t1⁄2) 	 4 h (17).
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Figure 2B shows the dose-response curve of PTH-CC to
PTH(1-34) in HEK-293 cells. To ensure that ligand binding to
the receptor at the lowest concentrations reached equilibrium,
long incubation times (5–10 min) were used. The EC50 value
(40 
 6 nM) for PTH(1-34) stimulation of PTH-CC is signif-
icantly larger than the binding constant of the native receptor
(�2 nM) and is somewhat larger than the binding constant
(�15.5 nM) reported earlier for a similar PTH sensor (72). The
EC50 value of the conformational change may generally be
larger than the binding constant since the latter only charac-
terizes the binding process but not the conformational change
itself; the difference between the two sensors is also potentially
due to slight variation (2 mutations in the flanking regions of
Citrine insertion point and 2 mutations at the fusion point of
Cerulean) in the sequences of the two sensors. Note that GPCR
constructs of this type typically have significantly increased
binding constants due to the insertion of the fluorescing pro-
teins into the native receptor structure (14, 72).

Figure 2C shows that pretreatment of cells with a full
antagonist Nle8,18Tyr34PTH(3-34) completely blocked the
response to stimulation by PTH(1-34). Importantly these data
also show that Nle8,18Tyr34PTH(3-34) has no effect on FRET

efficiency, which is consistent with the fact that this ligand has
no agonist activity (64).

In contrast to the effect of PTH(1-34), treatment of cells with
the antagonist PTH(3-34) caused an opposite change (increase)
in FRET signal at a concentration of 20 �M, indicating that
this antagonist induced a different conformational change in
PTH1R (Fig. 2D). Note that PTH(3-34) is a PTH1R antagonist
only in the sense that it blocks cAMP signaling due to stimu-
lation by PTH(1-34) (37).

Fluorescence anisotropy data (Fig. 3) show that stimulation
with PTH(1-34) leads to relatively similar increases in fluores-
cence anisotropy at emission wavelengths of Cerulean and
Citrine; this can be explained by the fact that PTH(1-34)
stimulation leads to lower FRET efficiency, resulting in stron-
ger emission from Cerulean, which is more polarized than
Citrine emission. Thus the observed FRET signal change is
mainly due to relative translational rather than rotational move-
ment between the transition dipoles of the two fluorescent
proteins; this is similar to the earlier report on �2A-adrenergic
receptor (73) but different from both translational and rota-
tional movement reported for bradykinin receptor (14).

Fig. 1. Plasma membrane (PM) localization of
expressed fluorescent proteins 24 h after trans-
fection. Expression and localization of parathy-
roid hormone type 1 receptor (PTH1R) fluores-
cence resonance energy transfer (FRET) sensor
PTH-CC (A) is shown in human embryonic
kidney (HEK)-293 cells (B) and MC3T3-E1
cells (C). Fluorescence images in E and F show
expression and localization of FRET sensor con-
trol PM-CC (D) in HEK-293 and MC3T3-E1
cells, respectively.
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FSS induces conformational changes in PTH1R. To test our
hypothesis that mechanical perturbation of plasma membrane
by the FSS could lead to modulation of PTH1R conformational
states and possibly to activation of the PTH1R receptor, we
have studied the effect of the FSS on conformational dynamics
of the PTH-CC in bone cells. A monolayer of MC3T3-E1 cells
transfected with the PTH1R fret sensor expression vector was
subjected to the FSS of 16 dyn/cm2. As shown in Fig. 4A, the
FSS leads to increase in the FRET ratio, whereas in MC3T3-E1
cells expressing the control FRET sensor (PM-CC), the FRET
ratio was not affected by the FSS. The dependence of the
relative FRET ratio change on the FSS magnitude is shown in
Fig. 4B.

Figure 4C shows that the FRET ratio change of PTH1R
FRET sensor can be repeatedly stimulated by the shear stress
once the conformation of the PTH-CC relaxes to the initial
state after the flow has been stopped.

The FSS effect can be partially inhibited by the presence of
PTH(1-34) in the shearing medium; Fig. 4D shows that PTH(1-
34) at 1 �M reduces the FSS response by �50%.

The FRET ratio increase due to the FSS was also confirmed
by spectral data presented in Fig. 5A that clearly show an
increase in fluorescence intensity at 530 nm and a decrease at
480 nm. Moreover, Fig. 5B shows time-resolved fluorescence
decay kinetics of the fluorescence donor (Cerulean) before and
during application of the FSS; a significant decrease in the
fluorescence lifetime (from 2.1 
 0.08 ns to 1.9 
 0.08 ns) is
observed, indicating that the FRET efficiency is increased by
the action of the FSS.

A change in membrane fluidity induces conformational
changes in PTH1R. Plasma membrane fluidity in MC3T3-E1
expressing PTH1R FRET sensor was modulated by treating the
cells either with 15 mM benzyl alcohol, a membrane fluidity
enhancer, or with 10 mM methyl-�-cyclodextrin, which re-
moves cholesterol from the cell membrane. The data in Figs. 6
and 7 indicate that both treatments caused FRET signal to
increase, indicating conformational change that is possibly
similar to that caused by the FSS.

DISCUSSION

PTH1R conformation is modulated by mechanical forces
and membrane physical properties. It has been suggested that
certain key amino acid residues in transmembrane helices of a
GPCR, interacting with each other, keep receptors preferen-
tially locked in an inactive state. Ligand binding (or isomer-
ization of the preloaded ligand retinal in case of rhodopsin)
changes the helix-helix interactions in the GPCR and causes/
enables movement of helixes 5, 6, and 7, translating into
conformational change in the third cytoplasmic loop that sub-

Fig. 2. A: conformational response of the PTH-CC to
stimulation by PTH(1-34). B: corresponding dose re-
sponse. Experiments were done 24 h after transfection
of MC3T3-E1 cells in chambered coverglass at 37°C.
C: antagonist Nle8,18Tyr34PTH(3-34) blocks the re-
sponse of the PTH-CC to stimulation by PTH(1-34).
D: conformational response of the PTH-CC to stimu-
lation by the PTH(3-34). FRET ratio was defined as
ratio of Citrine emission intensity at �525 nm to
Cerulean emission intensity at 475 nm.

Fig. 3. Response of fluorescence anisotropy of PTH-CC to stimulation by
PTH(1-34).
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sequently interacts with and activates G proteins (24, 74). It has
also been shown that GPCR structure is rather “plastic,” i.e.,
the GPCR can assume a number of different conformations
depending on the specific ligand (24, 25, 59, 73); many GPCRs
also exhibit agonist-independent constitutive activity, suggest-
ing that GPCRs can adopt an active conformation spontane-
ously (24, 44, 45). The inherent plasticity of GPCRs (59)
makes it likely that changes in membrane thickness, polarity,
transmembrane lateral force profile, level of hydration, and
membrane fluidity due to external mechanical force could also
lead to GPCR conformational change required for activation.
We have hypothesized that modulation of the physical prop-
erties of the plasma membrane by the FSS can lead to changes
in conformational equilibrium of GPCRs (14). According to a
simplified model, a GPCR isomerizes between two different
states corresponding to inactive (R) and active conformations
(R*); because of the structural constraints and in the absence of
any perturbation, the equilibrium lies toward the R state (42).
Our observation that the FSS leads to a change in transient
FRET efficiency of the PTH-CC (see Fig. 4) can be tentatively
attributed to mechanical perturbation of the plasma membrane
as similarly shown earlier for the bradykinin B2 receptor (14).
In contrast to the B2 receptor, the FSS-induced change in
FRET efficiency in PTH-CC is of the opposite sign. However,
the FSS-induced change in the PTH-CC is of the same sign as
that induced by benzyl alcohol (Fig. 6) or by the extraction of
cholesterol through cyclodextrin treatment (Fig. 7), both of
which are known to increase membrane fluidity; thus, the FSS
stimulation and changes in membrane fluidity seem to be
correlated in the PTH1 and B2 receptors, although the sign of
FRET change is different between the two receptors. The

activity of integral membrane proteins is strongly modulated
by their interactions with lipid molecules (43). Indeed, it has
been recognized that mechanical perturbation of the lipid
bilayer membrane may lead to changes in static and dy-
namic properties of the membrane such as membrane thick-
ness (34, 52), polarity (78), structural order (8, 11, 29), and
fluidity (10, 32). Specifically, it has been shown that the FSS
in the lipid bilayer membrane can lead to increased mem-
brane fluidity (10, 31).

A movement of “gating” charge was recently reported in a
GPCR (7). This study suggested that the external field (due to
transmembrane potential) causes a conformational change in
the third intracellular loop of GPCR, which results in changed
affinity of the receptor to the agonist ligand, and consequently
changes the activity of the GPCR; this observation and other
findings that activity of some GPCRs can be modulated by
transmembrane potential (48) imply a potential sensitivity of
GPCR-mediated signaling pathways to changes in electrical
properties of the lipid bilayer membrane. Therefore the earlier
reported sensitivity of the polarity of lipid bilayer to mechan-
ical stress (78) provides yet another potential mechanism on
how the conformational transitions of the PTH-CC could be
coupled to mechanical perturbation of the membrane.

Although mechanically induced changes in physicochemical
properties of the lipid bilayer membrane are not expected to be
large, it is important to note that receptor-mediated signaling
pathways operate as signal amplification cascades. Typically,
an activated GPCR can activate hundreds of G proteins, caus-
ing a strong signal amplification (26, 35, 62), so that even a
small change in the rate of one of the primary amplification

Fig. 4. A: conformational change in PTH1R induced
by fluid shear stress (FSS) (F, PTH-CC; E, PM-CC).
B: FSS induced change in FRET ratio of PTH-CC as
a function of shear stress magnitude. C: reversible
conformational changes in PTH1R induced by the
FSS. The experiment was performed similarly as in A,
except that cells were subjected to the 16 dyn/cm2

shear stress twice. D: FSS induced FRET change of
PTH-CC in the presence of stimulation by the PTH(1-
34). A monolayer of MC3T3-E1 cells, 24 h after being
seeded and transfected either with PTH-CC or with
PM-CC expression vectors on no. 1.5 coverglass, was
placed on a flow chamber and equilibrated at 37°C on
the microscope stage for 30 min under a flow with the
FSS lower than 0.1 dyn/cm2 for the system to become
stable. The cells were then subjected to shear stress at
16 dyn/cm2 for a duration of 4 min.
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steps due to the action of the FSS could cause a significant
physiological response.

Insertion of fluorescent proteins into the GPCR structure
strongly reduces both its ligand-binding affinity and coupling
to G proteins (72) and may inhibit its interactions with other
regulatory proteins; this makes it less likely that the observed
effect of the FSS on the PTH-CC could be caused by interac-

tions of the PTH-CC with some other putative mechanosensors
or by intracrine or autocrine ligand activation, supporting our
hypothesis that PTH1R is one of the primary mechanosensors.

PTH1R conformation is differently modulated by PTH(1-
34), PTH(3-34), and shear stress. The anabolic effect of PTH
is achieved by intermittent PTH administration through acti-
vation of PKA pathway (40, 75). The activation of the Gs/
adenylyl cyclase/PKA as well as Gq/PLC/PKC� pathways by
the PTH(1-34) and its analogs is ligand and cell specific (21,
68). The PTH1R interaction with its ligands is believed to
proceed through a “two-site” model where the ligand initially
binds to the NH2 terminus of the receptor followed by the
binding to the juxtamembrane region of the receptor (J do-
main), the latter binding event causing the actual receptor
activation (16, 37). In contrast, the NH2-terminal truncated
ligand, PTH(3-34), not only has a much lower affinity to the
receptor, but also quite different specificity in activation of the
signal transduction pathways (3, 22, 37, 38), indicating that
PTH(3-34) can trigger a different conformation in PTH1R
from that triggered by PTH(1-34). This reflects the fact that
PTH1R can adopt multiple conformations and the conforma-
tions can be modulated by other proteins, e.g., Na�/H� ex-
changer regulatory factor (NHERF) 1/2 (50) and G proteins in
a cell-specific manner. It has been shown that natural ligand
[PTH(1-34)] stimulation of similar GPCR construct containing
intermolecular FRET pair leads to decrease of FRET efficiency
(72), as is also observed for our PTH1R construct (Fig. 2A).
However, as Fig. 2D shows, stimulation with PTH(3-34) leads
to the increase of FRET efficiency, suggesting that a different
type of conformational transition takes place. Such a striking
difference in the nature of conformational change is not unex-
pected since NH2-terminal truncated ligand PTH(3-34) prefer-
entially binds to the NH2 terminus of the receptor while
binding to the J domain of the receptor is inhibited (37); this is
certainly consistent with the widely accepted notion that
GPCRs may adopt different conformational states (59). Our
present data directly indicate that the experimentally observed
different activation of the PKA and PKC pathways by PTH(1-
34) and PTH(3-34) (3, 21, 68) is indeed preceded by a different
conformational change in the receptor. The ability of PTH1R
to selectively couple to different signal transduction pathways
in response to the PTH and the PTH-related peptide is known
and was recently attributed to different affinities of these two
ligands to the G protein-uncoupled and coupled conforma-

Fig. 5. A: response of the fluorescence spectra of the PTH-CC FRET sensor to
stimulation by the FSS. The experiment was performed under the same conditions
as in Fig. 4. The fluorescence spectra of the PTH1R FRET sensor were extracted
from the time-resolved measurements in the presence and absence of the FSS at 16
dyn/cm2. Increased intensity at �525 nm and decreased intensity at 475 nm in the
presence of shear stress are noticeable and indicate increase in FRET efficiency
due to the FSS-induced conformational change (■ , under shear stress; F, without
shear stress). B: donor (Cerulean) fluorescence lifetime decreases under stimula-
tion by the FSS. The fluorescence decay kinetics of the fluorescence donor
(Cerulean) were recorded in the presence and absence of the FSS at 16 dyn/cm2.
Shortened life time in the presence of the FSS (thick line), relative to the absence
of the FSS (thin line), indicates increased FRET efficiency.

Fig. 6. Benzyl alcohol induces increase in the FRET efficiency of the PTH-CC
FRET sensor but has no effect on the FRET ratio of the control sensor PM-CC.
Experimental configuration was the same as in Fig. 2.

Fig. 7. Methyl-�-cyclodextrin induces increase in FRET efficiency of the
PTH-CC FRET sensor but has no effect on the FRET ratio of the control sensor
PM-CC. Experimental configuration was the same as in Fig. 2.
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tions(17). Note that, in general, an increase in FRET level of
the PTH-CC could also be interpreted as shift of the confor-
mational equilibrium from a constitutive (basal) activity level
toward the inactive state. However, the basal activity of
PTH1R receptors is low (12) and treatment with the antagonist
Nle8,18Tyr34PTH(3-34) did not cause any FRET changes (see
Fig. 2C). An increase in FRET efficiency due to stimulation by
an inverse agonist was earlier observed for �2A-adrenergic
receptor (73) and interpreted as being due to a distinct confor-
mational state. The evidence that PTH(1-34) stimulates both
Gq and Gs pathways while PTH(3-34) stimulates only Gq

(PLC/PKC) pathway (3, 22) suggests that any PTH receptor
model has to include at least one more conformational state in
addition to the inactive and active [stimulated by PTH(1-34)]
conformational states to explain the present results.

Our finding that an agonist can inhibit the FSS response
(Fig. 4D) provides a direct link between PTH1R activation and
mechanical stimulation.

The existence of the two different active conformational
states of the PTH1R is consistent with the synergistic effects of
the mechanical loading and anabolic effect of intermittent PTH
administration. According to the prevailing theories of GPCR
activation mechanisms, the agonist ligand has higher affinity to
GPCR in active conformation and therefore preferentially
binds to it; inverse agonists preferentially stabilize the receptor
in inactive conformation. The fact that the conformational state
induced by the FSS is different from the one induced by the
binding of the PTH(1-34) suggests that the binding affinity and
the effect of the PTH(1-34) are reduced under the effect of the
FSS. Our finding that PTH(1-34) inhibits the FSS response
(Fig. 4D) further confirms that interaction of the PTH(1-34)
ligand with the FSS-induced state of the PTH-CC is energeti-
cally less favorable and therefore of lower affinity. This im-
plies that the intermittent mechanical loading can lead to
modulation of the PTH(1-34) stimulation even under condi-
tions of constant ligand concentration. The action of PTH(1-
34) has the anabolic effect only when its concentration varies
in time, e.g., due to natural day-night cycle or due to intermit-
tent administration. The key for the synergism is the ability of
the FSS to modulate the action of the ligand; this can happen
either through inhibition or through enhancement of PTH(1-
34) binding to PTH1R. Such a coupling of biochemical reac-
tion and mechanical loading constitutes a new molecular mech-
anism that can form the basis for explaining the synergism
between the action of the PTH and mechanical loading.

Conclusions. We have shown that stimulation of the
MC3T3-E1 cells with the FSS leads to ligand-independent
conformational changes in the PTH1R characterized by higher
FRET efficiencies. Furthermore, we demonstrated that the
nature of ligand-dependent conformational change of PTH1R
GPCR depends on the type of ligand: stimulation with the
natural ligand [PTH(1-34)] leads to conformational transitions
characterized by decrease in FRET efficiency while stimulation
with a NH2-terminal truncated ligand [PTH(3-34)] is charac-
terized by higher FRET efficiencies. Our observation that
PTH(1-34) and the FSS stimulate different conformations of
the PTH1R suggests that the action of the FSS is to intermit-
tently modulate (inhibit) the pathway stimulated by PTH(1-
34), thus providing a molecular basis for the experimentally
observed anabolic effect of the mechanical loading.
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