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Prediction of cellular response to multiple stimuli is central 
to evaluating patient-specific clinical status and to basic 
understanding of cell biology. Cross-talk between signaling 
pathways cannot be predicted by studying them in isolation 
and the combinatorial complexity of multiple agonists acting 
together prohibits an exhaustive exploration of the complete 
experimental space. Here we describe pairwise agonist scanning 
(PAS), a strategy that trains a neural network model based 
on measurements of cellular responses to individual and all 
pairwise combinations of input signals. We apply PAS to predict 
calcium signaling responses of human platelets in EDTA-treated 
plasma to six different agonists (ADP, convulxin, U46619, 
SFLLRN, AYPGKF and PGE2) at three concentrations (0.1, 1 
and 10 × EC50). The model predicted responses to sequentially 
added agonists, to ternary combinations of agonists and to 
45 different combinations of four to six agonists (R = 0.88). 
Furthermore, we use PAS to distinguish between the phenotypic 
responses of platelets from ten donors. Training neural networks 
with pairs of stimuli across the dose-response regime represents 
an efficient approach for predicting complex signal integration 
in a patient-specific disease milieu.

Because cells produce integrated responses to dose-dependent combi-
nations of numerous external signals, efficient methods are needed to 
survey such high-dimensional systems. Primary human tissues such as 
blood, marrow or biopsies provided a limited number of cells, gener-
ally allowing  only ~102 or fewer phenotypic tests. Evaluating the cel-
lular response to pairs of stimuli offers a direct and rapid sampling of 
a response space that can be built-up into a higher level predictive tool 
through the use of neural networks. Such methods are needed to better 
phenotype platelets to predict cardiovascular risk. Platelets are cells that 
respond in a donor-specific manner to multiple signals in vivo, and their 
activation in response to thrombotic signals is central to the thrombotic 
risks and events surrounding 1.74 million heart attacks and strokes,  
1.115 million angiograms and 0.652 million stent placements in 
the United States each year1. Moreover, platelets are ideal ‘reduced’  
cellular systems for quantifying the effects of multiple signaling pathways  
because they are anucleate, easily obtained from donors and amenable 
to automated liquid handling.

During clotting, platelets experience diverse signaling cues simul-
taneously. Collagen activates glycoprotein VI (GPVI)-dependent 
tyrosine kinase signaling. ADP is released from dense granules to acti-
vate the G protein–coupled receptors P2Y1 and P2Y12. Thromboxane A2  
(TxA2) is synthesized by platelet cyclooxygenase (COX)1 and 
binds thromboxane-prostanoid (TP) receptors. Tissue factor at the  
damaged vasculature leads to the production of thrombin, which 
cleaves the protease-activated receptors PAR1 and PAR4. These 
activating signals occur in the context of inhibitory signals from 
endothelial nitric oxide and prostacyclin (PGI2). Platelets receive 
these signaling events simultaneously in vivo, and platelet signaling 
varies spatially and temporally in growing thrombi2, but few experi-
mental or computational tools are available for building a global 
understanding of how the platelet integrates multiple stimuli present 
at varying levels.

To predict cellular responses to multiple stimuli, we developed 
PAS (Fig. 1). This strategy involves selecting stimuli molecules 
based on prior knowledge (Fig. 1a), measuring cellular responses 
to all pairwise combinations of stimuli in a high-throughput manner  
(Fig. 1b), and then training a two-layer, nonlinear, autoregressive 
neural network with the cellular responses to exogenous inputs  
(Fig. 1c). Neural networks are remarkable in learning patterns of 
inputs and predicting outputs by optimizing intermediate connec-
tion weights, akin to a platelet’s ability to respond to multiple throm-
botic signals through coupled biochemical reactions. Motivated by 
the notion that a living cell is essentially a neural network whose 
connection weights have been selectively adjusted during evolu-
tion3, we took a ‘top-down’ approach4 to model platelet signaling. 
The application of neural networks for predicting dynamic cellular 
signaling is beneficial because neural networks are ‘dense’ modeling 
structures—meaning that they do not require detailed knowledge 
of the kinetic structure of a system. By comparison, an ordinary 
differential equation model of ADP-stimulated calcium mobiliza-
tion through P2Y1 required almost 80 reactions and over 100 kinetic 
parameters to describe just this one single pathway5. We estimate that 
an ordinary differential equation model that describes the signaling 
mechanisms of the six agonists (Fig. 1a) in this study on a similar 
level of detail would require >500 parameters, many of which are 
currently unavailable.
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We selected six major agonists of human platelets—convulxin 
(CVX; GPVI activator), ADP, the thromboxane analog U46619, 
PAR1 agonist peptide (SFLLRN), PAR4 agonist peptide (AYPGKF) 
and prostaglandin E2 (PGE2) (activator of the prostacyclin receptor 
IP and the E series prostanoid receptors EP 1-4). These agonists 
activate platelet signaling pathways that converge on the release of 
intracellular calcium (Ca2+) (Fig. 1a), which we measured using a 
fluorescent calcium dye. Calcium mobilization is critical to physio
logically important platelet responses needed for aggregation and 
clotting, including granule release, exposure of phosphatidylser-
ine, actin polymerization, shape change and integrin activation6. 
To determine appropriate dynamic ranges and the effective con-
centration for half-maximum response (EC50) values for the six 
agonists, we first tested each compound individually to determine 
dose-response relationships (Supplementary Fig. 1). The inhibi-
tory response of PGE2 was studied by concomitantly stimulating 
the platelet with 60 μM SFLLRN.

To eliminate the sensitivity of cells to confounding autocrine 
effects of soluble mediators that are dependent on platelet concen-
trations and transport processes, we conducted all experiments in 
5 mM EDTA, which chelates extracellular calcium. The removal of 
external calcium does not affect the ability of the studied receptors 
to signal, as no appreciable difference in EC50s were noted with or 
without external calcium (Supplementary Fig. 1a,b). Although this 
experimental design does not capture the contribution of store-
operated calcium entry, it offers several operational advantages by  
(i) lowering background fluorescence without extensive platelet 
washing, (ii) preventing thrombin production, (iii) inhibiting granule  

release7,8 as well as TxA2 formation9 and 
(iv) inhibiting integrin-mediated signaling 
downstream of Ca2+ release10. The opera-
tional advantages of using EDTA, however, 
prevent prediction of important physiologic 
phenomena like granule release, integrin 
activation and outside-in signaling.

To test whether the intracellular Ca2+ signal 
detected was being influenced by endogenously 
released agonists, we studied the effects of  
2 units/ml apyrase (which hydrolyzes released 
ADP) or 15 μM indomethacin (which inhibits  
production of TxA2). Both of these inhibi-
tors had no effect on individual responses 
(Supplementary Fig. 2 and Supplementary 
Tables 1 and 2), suggesting that endogenous 
autocrine activators have no effect on the Ca2+ 
signal. This confirms that the resulting traces of 
Ca2+ are directly dependent only on receptor- 
mediated release from intracellular stores.

We applied the PAS method by first mea
suring platelet responses to all 135 pairwise 
combinations of low (0.1 × EC50), moder-
ate (1 × EC50) and high (10 × EC50) agonist 
concentrations (Fig. 2a). Then, we trained a 
neural network model on 154 time-course 
traces (135 pairwise responses, 18 single- 
agonist responses, 1 null control response). 
We defined a pairwise agonist synergy score 
(Sij) to be the scaled difference between the 
integrated transient (area under the curve) for 
the combined response and the integrated area 
for the individual responses (Fig. 2b) (Sij > 0,  

synergism; Sij = 0, additivity; Sij < 0, antagonism). The trained net-
work accurately reproduced the time-course behavior (R = 0.968 
for correlation between time points) and the pairwise agonist syn-
ergy (R = 0.884) for correlation between Sij scores (Fig. 2a,b and 
Supplementary Fig. 3).

As an initial test of the trained network, we predicted the response of 
platelets to all 64 ternary combinations of the agonists ADP, SFLLRN 
and CVX at 0, 0.1, 1 and 10 × EC50 concentrations and compared the 
predictions to experimentally measured responses (Fig. 3a). A CVX 
response requires GPVI multimerization11 and is characterized by a 
slow rise to a large peak signal followed by a slow decline. Gq-coupled 
responses (ADP or SFLLRN) produce rapid bursts that are quickly 
brought down to baseline. Increasing CVX for a fixed ADP level 
resulted in a steady increase in Ca2+ on longer timescales. In contrast,  
increasing ADP for a fixed CVX level bolstered early Ca2+ release.  
A moderate dose of both ADP and CVX (for 0 and low SFLLRN) 
produced a response that almost instantaneously plateaued at a steady 
level above baseline. Both the time-course behavior (R = 0.844) and 
ternary agonist synergy scores (R = 0.881) (Supplementary Fig. 4) 
were accurately reproduced for the 27 unique ternary conditions in 
this experiment that were not present in the training set.

To fully test and utilize the predictive power of the neural net-
work, we made in silico time-course and synergy predictions for the 
complete six-dimensional agonist space consisting of 4,077 unique 
agonist combinations of two to six agonists at 0.1, 1 or 10 × EC50 
concentrations (Supplementary Fig. 5). Based on these predictions, 
we selected 45 combinations of four, five or six agonists that dis-
played a range of predicted synergy scores from synergy to strong 
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Figure 1  Experimental and computational methods to study platelet signaling. (a) Signaling 
pathways in platelets converge on intracellular calcium release. (b) High-throughput experimental 
procedure. An agonist plate containing combinatorial agonist combinations and a platelet plate 
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layers integrate input values with feedback signals to predict [Ca2+]i at the next time point. 
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antagonism and tested them experimentally in addition to no ago-
nist and 18 single-agonist controls (Fig. 3b). To prevent any bias in 
the selection, we picked conditions that had maximal dissimilar-
ity in the types and concentrations of agonists. We found strong 
agreement between both predicted and measured transient shapes  
(R = 0.845) (Fig. 3b and Supplementary Fig. 6a), as well as between 
predicted and measured Sij scores (R = 0.883, slope = 1.08) (Fig. 3c). 
For comparison, the full distribution of synergy predictions for 
all 4,077 agonist combinations is shown as a vertical heat map in 
Figure 3c. To investigate whether smaller subsets of inputs, such 
as dominant pairs, could account for the network’s predictive accu-
racy, we retrained the neural network on different subsets of inputs. 
This typically, and almost always, reduced predictive accuracy 
(Supplementary Fig. 6b), suggesting that the neural network does 
not exclusively rely on smaller subsets of input.

Conditions containing high levels of all agonists showed especially 
low synergy due to saturation of Ca2+ release. The highest synergy was 
observed for agonist combinations that contained high levels of the 
thromboxane analog U46619 with no PGE2 present (Fig. 3c, orange 
bar). Given that only 8 of 45 conditions had maximal U46619/PGE2 
ratio, this ordering of the top three conditions was highly signifi-
cant (P < 0.004), considering there are 14,190 possible ways to order 
the first three conditions of which only 56 combinations would con-
tain high U46619 and low PGE2. Thus, the neural network model 
trained on pairwise data facilitated discovery of a high-dimensional 
synergy that occurs at a high U46619/PGE2 ratio (at low levels of 
ADP, SFLLRN and submaximal levels of AYPGKF) consistent with 
the known cardiovascular risks of COX2 inhibitors that prevent 
endothelial production of PGI2 without affecting platelet production 
of thromboxane12. This points to a ‘high-dimensional’ COX2 inhibi-
tion risk of high concentrations of thromboxane, in the absence of 
PGI2, potentiating the effects of other agonists.

We also explored the effect of adding the agonists ADP, 
SFLLRN and CVX in various sequential combinations (Fig. 3d). 
Several notable behaviors were accurately predicted by the neu-
ral network model despite the network being trained on purely 
synchronous interactions. For instance, the temporal sequence 
ADP-SFLLRN-CVX (Fig. 3d, panel 1) produced three distinct 
Ca2+ bursts, whereas the ADP response was completely abol-
ished in the sequence SFLLRN-ADP-CVX (Fig. 3d, panel 3).  
This behavior points to mechanisms of cross-downregulation 
of ADP signaling by component(s) of the PAR1 cascade. (See 
Supplementary Discussion and Supplementary Fig. 7 for tests 
with thrombin compared to SFLLRN+AYPGKF).

To investigate the reproducibility of the PAS procedure and to 
investigate the potential for using it to stratify individuals’ platelet  
responses, we performed PAS twice in a 2-week period for ten 
healthy male donors (Fig. 4). The 135 conditions containing pairs of  
agonists in a single PAS experiment make up the synergy map for each 
donor experiment (Supplementary Fig. 8) and individual columns 
of the synergy matrix (Fig. 4). The standard errors in synergy scores 
across all 135 conditions were uncorrelated with the magnitude of 

synergy and are measures of the experimental uncertainty and day-
to-day fluctuations in mean synergy values at these conditions. The 
mean uncertainty for a representative donor (donor A) was ±0.0523 
for Sij ranging from –1 to 1 (uncertainties across all 135 conditions 
are shown in Supplementary Fig. 9). The mean standard error in 
synergy scores for all ten donors ranged from ±0.0347 to ±0.0627 
(Supplementary Table 3).

We generated a hierarchical cluster tree using the Euclidean dis-
tances between donor experiments. Seven of the ten donor pair vectors  
(donor pairs D, C, A, H, E, F and I) self-clustered, demonstrating 
that despite variation between samples from the same donor, pro-
nounced inter-donor variations allow us to distinguish donors. This 
pattern of clustering was found to be highly significant (P < 8 × 10−7) 
by randomizing observed donor synergies (Supplementary Fig. 10).  
The observed pattern of self-clustering was platelet signaling  
dependent (and not related to donor plasma), as the PAS scans of an 
individual donor’s platelets with autologous or heterologous plasma 
self-clustered (Supplementary Fig. 11). In general, across all condi-
tions and donors, the highest probability of pairwise synergy was 
observed when moderate doses of both agonists were used. Low doses 
of both agonists produced additive responses, whereas high doses 
of both agonists skewed synergy distributions toward antagonism 
(Supplementary Fig. 12).

Donors separated into at least two major subgroups with the 
cluster of donor experiments D1, D2, J2, C1, C2, B1 and B2 
characterized by relative lack of synergy in comparison to other 
experiments. The cluster of experiments A1, A2, H1, H2, J1, 
E1, E2, F1, F2, G1, I1, I2 and G2 had marked synergy between 
moderate doses of SFLLRN and all doses of U46619 or ADP, as 
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well as marked synergy for moderate U46619 and high CVX. 
All donors showed some synergism between low and moderate 
doses of SFLLRN and U46619. We also typically observed synergy 
between AYPGKF and U46619. Moreover, synergistic or additive 
interactions were noted also between low and moderate doses of 
SFLLRN and AYPGKF. These results suggested a mechanism of 

synergy between thrombin and thromboxane. To test this, binary 
synergy maps of the physiological agonist thrombin and U46619 
were constructed for donors A and E (Supplementary Fig. 13) 
over seven doses spanning the active concentration ranges. To our 
knowledge, this is the first report of conserved synergy between 
thrombin and thromboxane mimetics.
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Studying the combinatorial effects of pairs of agonists in low, 
moderate and high concentrations allowed a rapid, donor-specific 
phenotypic scan that was predictive of responses to multiple agonists. 
Importantly, a single 384-well plate of data was sufficient to train a 
neural network model (Fig. 2) capable of making accurate predictions 
of the global six-dimensional agonist reaction space (Fig. 3), which 
is difficult to probe experimentally but fundamental to the processes 
of thrombosis. Synergies between platelet agonists are dependent not 
just on agonist pairs and doses, but also vary from donor to donor 
(Fig. 4). In contrast to PAS, current measurements of platelet pheno-
type can only coarsely stratify healthy donors. For instance, platelet 
aggregometry has been used13 to classify 359 individuals as “hypo- or 
hyper-” reactive to platelet agonists; and flow cytometry was used14 to 
classify 26 individuals as high, medium or low responders. Previous 
studies have reported synergistic aggregation responses of platelets 
to combinations of multiple agonists15–17. Such unique patterns of 
synergisms could be used to distinguish donors and be correlated 
with certain risk factors. Clinically, we anticipate that PAS profiles 
will depend on variables such as ancestry, age, sex, pharmacology and 
cardiovascular state—all of which require further testing—although 
linking genotype (1,327 single nucleotide polymorphisms) to pheno
type (flow cytometric measurement of P-selectin exposure and  
fibrinogen binding) in 500 individuals18 demonstrated only weak 
association probabilities.

The PAS approach works because individual and binary interactions 
dominate, and they are sampled across the full dose range of inputs. 
We expect the method to break down when ternary interactions in 
excess of summing binary interactions become strong. We show that 
the residual ternary synergy (Δ(ABC) = SABC – SAB – SBC – SAC) was ~0 
in each of 27 responses of platelets to different ternary combinations 
of CVX, ADP and SFLLRN and was minimized in the neural network 

model training (Supplementary Fig. 14 and 
Supplementary Discussion). In general, 
knowledge of pairwise interactions alone  
cannot be expected to predict response to 
several simultaneously present stimuli (>2). 
However, certain characteristics of platelets 
and the conditions under which they were 
studied made such an approach feasible in 
this instance. These include (i) the relative 
abundance of binary interactions in signaling 
systems with minimized ternary interactions 
(Supplementary Fig. 14)19; (ii) the efficient 
utilization of system history (Supplementary 
Fig. 15); (iii) the dense sampling of inter
actions across a full dose-response range; 
(iv) known intracellular wiring that rapidly 
converges on Ca2+, without the possibility of 
higher order effects from genetic regulation 
or other interactions on long time scales; and 
(v) choice of well-characterized extracellular 
ligands and careful design to avoid autocata-
lytic feedback.

Further, application of PAS to stimuli 
including epinephrine, soluble CD40L, sero-
tonin and nitric oxide would map a major 
portion of the entire platelet response space. 
The use of PAS with orthogonal pharmaco-
logical agents (indomethacin, P2Y12 inhibi-
tors, selective PAR antagonists, quanylate 
cyclase or adenylate cyclase inhibitors) 

would allow further assessment of individual clinical risk or sensi-
tivity to therapy. The PAS method demonstrates that sampling all 
dual orthogonal ‘axes’ (every agonist pair) can successfully predict 
the dynamic responses and cross-talk of a system receiving complex 
combinations of inputs.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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response to all pairwise agonist combinations. Repeat experiments were conducted within 2 weeks. 
Donors (ages, 22–30 years) spanned several ethnic groups (three Western Europeans, two Asians, 
two Indians, one Caribbean, one African American and one African). The magnitudes of synergy in 
each of the 20 donor-specific synergy maps were arranged as columns of the synergy matrix. These 
vectors were clustered according to similarity using a distance-based clustering algorithm.
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ONLINE METHODS
Materials. PAR1-agonist peptide SFLLRN (thrombin receptor agonist peptide, 
TRAP) and the PAR4-agonist peptide AYPGKF were obtained from Bachem. 
Convulxin (CVX) was obtained from Centerchem. Thrombin and GGACK 
were obtained from Haematologic Technologies. Clear, flat-bottom, black 384-
well plates were obtained from Corning. ADP, U46619, PGE2, EDTA, HEPES, 
the fibrin polymerization inhibitor Gly-Pro-Arg-Pro (GPRP), NaCl, NaOH, 
apyrase, indomethacin and sodium citrate were all from Sigma. Fluo-4 NW 
Calcium assay kits were obtained from Invitrogen. The buffer used for all 
dilutions was HEPES buffered saline (HBS, sterile filtered 20 mM HEPES and  
140 mM NaCl in deionized water adjusted to pH 7.4 with NaOH).

Platelet preparation. Whole blood was drawn from healthy male volun-
teers according to the University of Pennsylvania Institutional Review Board 
guidelines, into citrate anticoagulant (1 part sodium citrate to 9 parts blood). 
All donors affirmed to not taking any medications for the past 10 d and not 
consuming alcohol for the past 3 d before phlebotomy. After centrifugation 
at 120g for 12 min to obtain platelet-rich plasma, 2 ml of platelet-rich plasma 
was incubated with each vial of Fluo4-NW dye mixture reconstituted into  
8 ml of buffer for 30 min.

High-throughput experimentation. An ‘agonist plate’ containing vary-
ing combinatorial concentrations of platelet agonists was prepared on a 
PerkinElmer Janus (PerkinElmer Life and Analytical Sciences) using 10× 
stock solutions of ADP, CVX, SFLLRN, AYPGKF and U46619. A separate 
‘platelet plate’ containing dye-loaded platelets was prepared on a PerkinElmer 
Evolution. Final platelet rich plasma (PRP) concentrations were 12% by vol-
ume (6 μl/well) after agonist addition, and 5 mM EDTA was included in every 
well. Agonists (10 μl/well) were dispensed after a 20-s baseline read from 
columns of the ‘agonist plate’ onto the corresponding columns of the ‘platelet 
plate’ on a Molecular Devices FlexStation III. Fluo4 fluorescence was measured 
at excitation 485 nm and emission 535 nm for 4 min in every column of the 
plate. The fluorescence F(t) was scaled to the mean baseline value for each 
well F0(t) and relative calcium concentrations were quantified as F(t)/F0(t). 
An entire 384-well plate was read in ~90 min.

Agonist selection. The number of agonists tested in a PAS experiment is 
limited to six by the need of testing all the 154 conditions in duplicate in 
a single 384-well plate. Agonists were chosen to be representative of physi-
ological signaling cascades. Convulxin is a selective GPVI activator11 and 
under static conditions this receptor is the predominant determinant of  
collagen-induced signal strength20 . In contrast, the soluble monomeric form 
of collagen interacts only with α2β1, which regulates platelet adhesion but has 
little direct effect in mediating signaling21,22. ‘Horm’ collagen preparations are 
insoluble, making them poorly suited for automated liquid handling. Although 
ADP stimulates both P2Y1 and P2Y12, the latter receptor has a minor effect 
on calcium mobilization23, allowing us to use the physiological agonist ADP  
instead of specific P2Y1 ligands. Thrombin signals through two separate  
Gq-coupled receptors PAR1 and PAR4, both of which produce temporally separate  
calcium signals24,25. This prompted us to use selective PAR agonist peptides 
(SFLLRN and AYPGKF) to distinguish the separate signal contribution of 
both these receptor pathways. Moreover, thrombin stimulation of unwashed 
PRP requires inhibition of fibrin and coagulation factor Xa (FXa) formation 
(Supplementary Fig. 13). Washing or gel-filtering platelets are processing 
steps that decrease throughput in a large-scale experiment and often cause 
residual platelet activation in the absence of PGE2 or other PGI2 analogs. The 
use of a short-lived prostaglandin like PGI2 (ref. 26) is unsuitable for assembly 
of agonist plates (requiring ~120 min) and plate reading (requiring ~90 min). 
In contrast, prostaglandins of the E series are chemically stable, prompting us 
to use PGE2 as an agonist causing elevation in intracellular cAMP. Similarly, 
for reasons of stability during the course of the experiment, the thromboxane  
analog U46619 was used instead of its physiological equivalent TxA2 (ref. 27).

Definition of synergy score. To quantify cross-talk between agonist combina-
tions, we defined the ‘synergy score’ as the difference between the observed 

and the predicted additive response. For ease of visualization, this difference 
was scaled to the maximum synergy score observed in an experiment (or 
simulation), giving a metric that ranges from −1 (antagonism) to +1 (posi-
tive synergy). A similar synergy metric was previously defined as the ratio of 
the observed and the predicted additive response to demonstrate synergistic  
calcium signaling between C5a and UDP in RAW264.7 cells and bone marrow– 
derived macrophages28. The use of a ratio rather than a difference is prone to 
numerical errors for small values of the predicted additive response.

Neural network model construction, training and simulation. Neural net-
work modeling and analysis was performed using the Neural Network Toolbox 
for MATLAB (The MathWorks). Training data consisted of (i) the dynamic 
inputs, which represent the combination of agonist concentrations present 
at each time point for a particular experiment (because the concentration 
of agonists remains essentially constant throughout each experiment, these 
values were generally a constant vector of concentration values repeated at 1-s 
intervals) and (ii) the dynamic outputs, which represent the experimentally 
measured calcium concentrations, also interpolated at 1-s intervals. To nor-
malize the input data, agonist concentrations of 0, 0.1, 1 and 10 × EC50 were 
mapped to the values (−1, −0.333, +0.333, +1) before introducing them to the 
network, so as to fall within the working range of the hyperbolic tangent sig-
moid transfer function, which was used for all processing nodes. Output values 
(fluorescence measurements) were normalized between −1 and +1, so that the 
basal concentration of calcium at t = 0 was defined to be 0. After training all 
420 possible one- and two-layer neural networks with between 1 and 20 nodes 
in each processing, or ‘hidden’, layer and testing each network for accuracy, a 
final neural network topology with a six-node input layer (representing the six 
agonists), two processing layers (eight nodes/four nodes) and a single-node 
output layer (representing the intracellular calcium concentration)29 was most 
optimal (best predicted the ‘net’ output response [Ca2+]I for a given multivari-
ate input using the fewest neurons) and thus selected to predict successive 
time points from all 154 Ca2+ release curves gathered experimentally (Fig. 2). 
For the sake of simplicity and because we already obtain reasonably accurate 
time series predictions of [Ca2+]i, more processing layers or >20 neurons in 
each layer were not tested. From a purely biological perspective, the model 
architecture is arbitrary and no particular meaning should be inferred from the 
narrowing of eight nodes in the first layer to four nodes in the second process-
ing layer. Moreover, this neural network model (Fig. 1c) does not correspond  
to an actual signaling network (Fig. 1a) but does provide a highly efficient 
framework for use as an independent signaling module in multiscale models of 
thrombosis under flow. From a mathematical perspective, this architecture repre
sents a multivariate regression to obtain optimal good fits of high-dimensional  
data and allow extrapolation onto experimentally unexplored spaces.

NARX (nonlinear autoregressive network with exogenous inputs) models 
are recurrent dynamic networks with feedback connections enclosing multiple  
layers of the network and are well-suited for predicting time series data30 
because they process inputs sequentially, that is, at successive time points. 
Calcium outputs before the current instant were fed back to hidden layers 
using a delay line spanning 128 s. Initial states of the delay line were set to 0, 
corresponding to the steady state of the platelet before agonist stimulation. 
Such a structure allows the network output to progress over time, using the 
‘memory’ of the previous 128 s in calculating the current output. Training was 
performed using Levenberg-Marquardt back-propagation until the perform-
ance of the model (mean squared error between the simulated and experimen-
tally measured PAS responses) did not become better than >1 × 10−5. During 
training, the pairwise agonist data (154 time-course traces) was divided into 
training, validation and testing vectors. Validation and testing vectors were 
each generated by randomly selecting 23 (15%) of the 154 pairwise time-
course traces. The training vectors were used to directly optimize network 
edge weights and bias values to match the target output. The validation set was 
used to ensure that there is no overfitting in the final result. The test vectors 
provide an independent measure of how well the network can be expected to 
perform on data not used to train it

Mathematically, the output y at an instant t, for an input vector Ī of the 
concentrations of the six inputs species can be compactly described by
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where IW  is the matrix of input weights, L2 and L3 are the weight matrices 
that operate on the ‘inputs’ coming from the first and second processing lay-
ers respectively. H1 and H2 are matrices that contain history coefficients that 
weigh the history vector yh  (containing the output of the system 1, 2, 4, 8, 16, 
32, 64 and 128 s prior to the current instant). b b1 2,  and b3 are bias vectors 
that add constant biases to each weighted input and weighted histories to 
produce the ‘net input’ to each transfer function. f is the hyperbolic tangent 
function that operates on a vector of ‘net inputs’ to yield the correspond-
ing transformed output. Numbers in parentheses show the sizes of relevant 
matrices or vectors. The NARX model presented here represents a nonlinear 
regression model with input stimuli and system history. The use of simple 1st  
and 2nd order polynomial terms (with lower number of optimizable para
meters) did not produce acceptable fits (not shown), necessitating the use 
of the NARX architecture. A 3rd order polynomial was not attempted since it 
requires 316 fitting parameters, far exceeding the number of parameters in 
the neural network model.

It should be noted that each trained neural network model produces a deter-
ministic prediction of platelet activation. Experimental variations are inherent 
in replicates of donor-specific training data (Supplementary Fig. 9), and the 
tightness of the measured mean will determine the predictive quality of such 
a donor-specific neural network model.

The fold-expression kinetics of nine ‘top-ranked’ genes involved in 
the sustained migration of keratinocytes after hepatocyte growth factor  
(HGF) treatment has been described by means of a continuous-time 
recurrent neural network, and the neural network weights were used to 
define the modulation and control elements of the response31. Also, pre
vious studies have used partial least-squares regression analysis (PLSR) to 
understand the interplay of molecular mechanisms during signaling32,33. 
PLSR measures multiple intermediate signaling molecules at various time 
points for a relatively small number of inputs, and identifies principal 
components that capture the phenotype of the system. In comparison, 
the PAS approach offers less mechanistic dissection but provides rapid  

(a 2-h experiment) and efficient prediction of dynamic input-output  
relationships at numerous (~102) physiologically relevant conditions.
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