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Cell-penetrating peptides (CPP), which are short peptides that are capable of crossing the plasma membrane of a living cell,
are under development as delivery vehicles for therapeutic agents that cannot themselves enter the cell. One well-studied CPP is
the 10-amino acid peptide derived from the human immunodeficiency virus type 1 (HIV-1) Tat protein. In experiments to test
the hypothesis that multiple cationic amino acids within Tat peptide confer antiviral activity against HIV-1, introduction of Tat
peptide resulted in concentration-dependent inhibition of HIV-1 IIIB infection. Using Tat peptide variants containing arginine
substitutions for two nonionic residues and two lysine residues, HIV-1 inhibition experiments demonstrated a direct relationship
between cationic charge and antiviral potency. These studies of Tat peptide as an antiviral agent raise new questions about the role

of Tat in HIV-1 replication and provide a starting point for the development of CPPs as novel HIV-1 inhibitors.

1. Introduction

Cell penetrating peptides (CPP) are short peptides that can
efficiently cross the plasma membrane, which is otherwise
a formidable barrier to many extracellular molecules [1-3].
CPPs are capable of not only traversing the cell membrane,
but also serving as a vehicle for transporting a variety of
cargos, including nucleic acids, polymers, nanoparticles, and
drugs that cannot otherwise gain entry to the cell [3].
Although the functions of various CPPs have been repeatedly
verified in a variety of cells and conditions, the mechanism
of CPP uptake is not yet fully understood and may involve
energy-dependent and -independent mechanisms [4].

Of the numerous peptides shown to have cell penetrating
properties, a 10-amino acid (aa) peptide derived from the
human immunodeficiency virus type 1 (HIV-1) Tat protein
has been well studied as an effective CPP and an attractive
drug delivery agent [5]. The Tat peptide has received
particular emphasis as a CPP due to its simplicity and
capacity for modification to suit the delivery context or cargo

[5, 6]. The core peptide is a 10-aa sequence comprised of six
arginine and two lysine residues, as well as two non-ionic
amino acids (Table 1). However, numerous Tat peptides of
varied lengths and terminal sequences have been investigated
with the goals of modifying activity or attaching different
cargo [6]. A multitude of studies have determined that the
activity of the Tat peptide as a CPP involves interactions
with the cellular membrane and cytoskeleton [7], and is
influenced by numerous variables related to the peptide, the
cargo, and extracellular conditions [4].

CPPs such as the Tat peptide, the 16-aa penetratin
peptide derived from the Drosophila melanogaster Anten-
napedia homeodomain protein, and nona-arginine contain
numerous cationic arginine (R) and lysine (K) residues [2].
Interestingly, cationic charge is a feature also shared by
molecules identified as inhibitors of HIV-1 infection. Mul-
tiple cationic charges are prominent features of molecules
shown to have activity against HIV-1, including ALX40-
4C [8], NeoR6 (an aminoglycoside-arginine conjugate) [9],
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TaBLE 1: Sequences of peptides examined. Peptide sequences are shown relative to the primary amino acid sequence of the Tat peptide.
Position numbers are derived from the full-length Tat protein amino acid sequence (HIV-1 strain SF2) [21].

Peptide Sequence Charge
Tat peptide G R K K R R Q R R R +8
TPvarl R — — — — — — — — — +9
TPvar2 — — — — — — R — — — +9
TPvar3 R — — — — — R — — — +10
R-10 R — R R — — R — — — +10
aa position 48 49 50 51 52 53 54 55 56 57

the lysozyme-derived HL9 peptide [10], the cathelicidin LL-
37 [11], the biguanide-based molecule NB325 [12-16], and
compounds that incorporate multiple guanide groups [17].
Cationic peptides found in both semen and cervicovaginal
fluids were shown to effectively inhibit HIV-1 infection [18,
19]. Indeed, full-length HIV-1 Tat protein, from which the
cationic Tat peptide was derived, was shown to inhibit HIV-1
infection as a CXCR4 antagonist [20].

The present studies were conducted to test the hypothesis
that Tat peptide, because of the numerous cationic amino
acids contained within its primary sequence, can effectively
inhibit HIV-1 infection. In vitro experiments involving
Tat peptide and an HIV-1-susceptible indicator cell line
demonstrated concentration-dependent inhibition of the
X4 HIV-1 strain IIIB, which uses CXCR4 as a coreceptor.
Additional experiments involving variants of Tat peptide
with increased cationic charge suggested a direct relationship
between charge magnitude and antiviral potency. These
results provide further insights into a potential role for Tat as
an HIV-1 inhibitor and suggest a novel anti-HIV-1 activity
attributed to the family of CPPs.

2. Materials and Methods

2.1. Synthesis of Tat Peptide and Variants. Tat peptide
(Table 1) was derived from residues 48-57 (numbering from
HIV-1 strain SF2) of the full-length Tat protein [5, 6, 21].
Three arginine-enriched Tat peptide variants (Table 1) were
designed by substituting arginine for G48, Q54, or both
amino acids. A decaarginine peptide was also included
in these studies as a Tat peptide variant with all four
nonarginine residues converted to arginines. All peptides
were synthesized commercially by liquid phase peptide
synthesis (GenScript, Pascataway, NJ) and provided at >95%
purity as determined by mass spectrometry and high-
performance liquid chromatography analysis performed by
the manufacturer (GenScript). Lyophilized peptides were
suspended in 1 mL of sterile deionized water upon receipt
and stored at —20°C prior to use.

2.2. Cell Line Maintenance. P4-R5 MAGI indicator cells
(NIH AIDS Research and Reference Reagent Program num-
ber 3580) were maintained in Dulbecco’s modified eagle’s
media (DMEM) supplemented with 10% fetal bovine serum
(FBS), 0.05% sodium bicarbonate, antibiotics (penicillin,
streptomycin, and kanamycin at 40 yg/mL), and 1ug/mL
puromycin (Cellgro, Manassas, VA).

2.3. Assessing Inhibition of HIV-1 Infection by Tat Peptide and
Its Variants. Peptide effectiveness was determined in an HIV-
1 infection inhibition assay using P4-R5 MAGI indicator
cells. P4-R5 MAGI cells were plated at a concentration
of 1.5 x 10%cells/well in a flat-bottom 96-well plate (BD
Biosciences, Bedford, MA). The cells were then infected
with HIV-1 strain IIIB (Advanced Biotechnologies, Inc.,
Columbia, MD; 1078 TCIDso/mL) at multiplicities of infec-
tion (MOI) of 0.6, 0.05, or 0.03 in the presence or absence
of peptide or dextran sulfate (DS) (Sigma, St. Louis, MO).
Following a 2 h incubation at 37°C, the cells were washed
with PBS, provided with 200 4L of new media, and incubated
for an additional 46 h. Levels of infection were measured
using the Galacto-Star--Galactosidase Reporter Gene Assay
System for Mammalian Cells (Applied Biosystems, Carlsbad,
CA) as described by the manufacturer. Chemiluminescence
was measured using a Glomax Luminometer plate reader
(Promega, Madison, WI).

2.4. Assessing the Effect of Tat Peptide on In Vitro Cell Viability.
P4-R5 MAGI cells were plated at a concentration of 1.5 X
10* cells/well in a flat-bottom 96-well plate. The cells were
then exposed to the indicated half log concentrations of
peptide and incubated at 37°C for 2 h. Following exposure,
the cells were washed with PBS and then assayed for cell
viability immediately or at 24h or 48h after exposure.
Viability was measured using a 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay as previously
described [13].

2.5. Data Analyses. Mean values and standard deviations
were calculated from two independent assays in which each
concentration was examined in quadruplicate. Calculations
of ECsy (concentrations that resulted in 50% reductions in
infection relative to mock-treated, HIV-1-infected cells) were
calculated using the Forecast function of Microsoft Excel.

3. Results

3.1. Tat Peptide Inhibits HIV-1 Infection. Initial experiments
were performed to test the hypothesis that Tat peptide, by
virtue of its cationic charge, was capable of inhibiting HIV-
1 infection. HIV-1-susceptible P4-R5 MAGI indicator cells
were exposed to HIV-1 strain IIIB (0.6 MOI) for 2 h while
in the presence of half log concentrations of Tat peptide up
to 1 mg/mL. The presence of Tat peptide inhibited HIV-1
infection in a concentration-dependent manner (Figure 1),
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FiGgure 1: Tat peptide inhibits infection by HIV-1 strain IIIB. P4-
R5 MAGI cells were exposed to half log concentrations of Tat
peptide (TP) or dextran sulfate (DS) in the presence of HIV-1 strain
IIIB for 2h. Reductions in HIV-1 infection (%) were calculated
relative to mock-exposed HIV-1 infected cells. The graph represents
data from two independent assays in which infections at each
concentration were repeated in quadruplicate. Error bars represent
standard deviations.

TaBLE 2: Viral titer does not affect the antiviral activity of Tat
peptide. ECsy values were calculated from the results of antiviral
assays (as described in Section 2) involving infection by HIV-1 IIIB
at three different multiplicities of infection (MOI).

Virus concentration during infection

(103 infectious virions/mL) MOl ECso

88 0.6 0.094 mg/mL
8.8 0.05 0.14 mg/mL
4.4 0.03 0.10 mg/mL

with an ECsy of 0.094mg/mL (50uM). No inhibition
was apparent at or below 0.0316 mg/mL. At the highest
concentration tested (1 mg/mL), the presence of Tat peptide
was insufficient to completely inhibit HIV-1 infection (15.6%
infection relative to mock-exposed, HIV-1-infected cells). In
comparison, the anionic compound dextran sulfate, which
was included as a known inhibitor, blocked HIV-1 infection
with an ECsy of 0.0007 mg/mL. To determine the potential
effect of virus titer on Tat peptide antiviral activity, similar
experiments were performed using reduced concentrations
of input virus (0.05 and 0.03 MOI). In these experiments
(Table 2), reductions in input virus had no effect on Tat
peptide antiviral activity (ECsy values of 0.14 mg/mL and
0.10 mg/mL, resp.).

To confirm that any adverse effects of Tat peptide on
reporter cell viability had not compromised the antiviral
assays, MTT cytotoxicity assays were performed using con-
ditions identical to those used in the antiviral assays. In
these assays, 2 h exposures to Tat peptide at concentrations
below 1 mg/mL had no effect on P4-R5 MAGI cell viability,
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FIGURrE 2: Tat peptide has no effect on reporter cell viability. P4-
R5 MAGI cells were exposed to half log concentrations of Tat
peptide for 2 h, washed, and assessed immediately for changes in
cell viability or after extended maintenance (24h or 48h after
exposure) in the absence of Tat peptide. Percent changes in cell
viability were calculated relative to mock-exposed cells. The graph
represents data from two independent assays in which exposure to
each concentration of peptide was repeated in quadruplicate. Error
bars represent standard deviations.

as measured immediately after exposure or after extended
postexposure maintenance (24h or 48h) in the absence of
Tat peptide (Figure 2). These results indicated that measure-
ments of antiviral activity were not biased by reductions in
P4-R5 MAGI cell viability. These results are also consistent
with previous studies [22], in which Tat peptide alone
(but not peptide conjugated to payload) had no effect on
cell viability at concentrations up to 100 uM and exposure
durations as long as 48 h.

3.2. Additional Cationic Charges Increase the Antiviral Potency
of Tat Peptide. Having demonstrated the anti-HIV-1 activity
of the Tat peptide, additional experiments were performed to
investigate the role of charge in determining antiviral efficacy.
Of the 10 aa residues in Tat peptide, eight are cationic (six
arginine and two lysine residues) and the remaining two
are uncharged (G48, nonpolar and aliphatic; Q54, polar).
To increase the net peptide charge, arginine residues were
substituted for one or both of the noncationic residues in
the native Tat peptide sequence (Table 1). These substitutions
increased the net positive side chain charge of the Tat peptide
from +8 to +9 (TPvarl and TPvar2) or +10 (TPvar3). An
additional peptide, decaarginine (R-10), was also included
in these studies. R-10 also had a net side chain charge of
+10, but differed from TPvar3 in that all ten positive charges
were contributed by the arginine guanidinium groups. R-10
was, in effect, a Tat peptide variant with arginine residues
substituted into all nonarginine positions. Like the Tat
peptide, none of the variants had any effect on P4-R5 MAGI
cell viability after a 2 h exposure (data not shown).
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FiGUure 3: Increased peptide antiviral potency is associated with
increased peptide cationic charge. P4-R5 MAGI cells were exposed
to half log concentrations of Tat peptide (TP), three Tat peptide
variants (TPvarl-3), decaarginine (R-10), or dextran sulfate (DS)
in the presence of HIV-1 strain IIIB for 2h. Peptide sequences
are depicted in Table 1. Reductions in HIV-1 infection (%) were
calculated relative to mock-exposed HIV-1 infected cells. The graph
represents data from two independent assays in which infections
at each concentration were repeated in quadruplicate. Error bars
represent standard deviations.

Concurrent incubation of HIV-1 IIIB and each peptide
with P4-R5 MAGI cells again resulted in concentration-
dependent inhibition of HIV-1 infection (Figure 3). How-
ever, the Tat peptide, the Tat peptide variants, and R-
10 differed in antiviral potency, with ECsy values ranging
from 0.094 mg/mL (Tat peptide) to 0.014 mg/mL (R-10).
Single substitutions of arginine into the Tat peptide sequence
(G48R or Q54R) resulted in small increases in antiviral
activity relative to Tat peptide (TPvarl ECs = 0.065 mg/mL;
TPvar2 ECsp = 0.071 mg/mL). Arginine substitutions at
both positions (TPvar3) further increased peptide antiviral
activity (ECsp = 0.025 mg/mL). However, despite having the
same number of positive charges, TPvar3 was less active than
R-10. No peptide was active below 0.00316 mg/mL or 100%
inhibitory at the highest concentration examined (1 mg/mL).

4. Discussion

Results presented in this paper demonstrate that Tat peptide,
a CPP that is capable of delivering molecules intracellularly
[1, 5] across living membranes, also contains intrinsic antivi-
ral activity against HIV-1 infection. Nontoxic concentrations
of Tat peptide inhibited CXCR4-mediated infection by the
X4 virus HIV-1 IIIB in a concentration-dependent manner.
In experiments designed to explore the contribution of
cationic charge to antiviral activity, Tat peptide variants
with arginine substitutions for non-ionic and lysine residues
were also assessed for antiviral activity. Increases in antiviral
potency with increased net peptide positive charge confirmed
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our original hypothesis and suggest a role for peptide charge
in the mechanism of action against HIV-1 infection.

In a broader virologic context, observations reported
herein provide new information about Tat protein and its
contributions to HIV-1-associated pathogenesis. In previous
studies, soluble full-length Tat protein, which is secreted
from infected cells [23], specifically inhibited an HIV-1 strain
that used CXCR4 as a co-receptor (designated X4) but not
a CCR5-tropic (R5) strain [20]. Our preliminary results
using the Tat peptide are consistent with this observation
(data not shown). The authors speculated that, during the
course of HIV-1 infection, this mechanism attributed to
extracellular Tat could favor the replication and spread of R5
virus by inhibiting X4 virus infection. They further suggested
that Tat protein may interact with acidic regions of CXCR4
through the high concentration of basic residues scattered
throughout the Tat protein primary sequence [20]. However,
this study did not identify the specific sequences within
full-length Tat that were the source of the antiviral activity.
This antiviral activity was also complicated by apparent
cytotoxicity associated with exposure to extracellular full-
length Tat protein [24-27]. In contrast, the present studies
demonstrated that the Tat peptide had no adverse effect on
cell viability.

These studies also provide two starting points for the
development of novel inhibitors of HIV-1. First, Tat peptide
can serve as a prototype for the development of novel agents
effective against HIV-1. Such agents may take the form of
cationic peptides or small molecule inhibitors that mimic
a peptide structure. Second, Tat peptide provides the basis
for multifunctional therapeutic agents that combine the
intrinsic and specific anti-HIV-1 activity of Tat peptide with
its ability to deliver therapeutic agents that by themselves do
not readily penetrate cells and tissues [3, 6]. For example,
Tat peptide could be linked to an HIV-1 protease inhibitor to
form a dual-activity antiretroviral agent that combines entry
inhibition, increased drug penetration, and a second, distinct
mechanism of antiretroviral activity.

Our experiments also indicate that this intrinsic antiviral
activity is not limited to the Tat-derived CPP alone. In the
present studies, the R-10 peptide was also an effective HIV-
1 inhibitor, despite changes in four out of ten amino acids
with respect to the Tat peptide. Preliminary studies have
also demonstrated anti-HIV-1 activity associated with the
well-studied CPP nona-arginine (R-9) and a 20-aa peptide
consisting solely of alternating arginine and glycine residues
(data not shown). The finding that antiviral activity is not
limited to Tat peptide suggests that a key characteristic
common to these molecules (i.e., multiple cationic charges)
confers activity against HIV-1.

The involvement of cationic charge in CPP antiviral
activity is also supported by the results of experiments
involving the Tat peptide variants. Those results indicated
a direct relationship between charge and antiviral activity.
Tat peptide (+8 charge) was the least active while R-10 (+10
charge) was the most active, and variants with intermediate
levels of cationic charge had intermediate levels of antiviral
activity. Despite the fact that R-10 and TPvar3 had the
same charge, these two peptides differed in their effects
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on HIV-1 infection, likely due to the replacement of two
lysine residues with two arginine residues. Lysine has a
single positive charge associated with a terminal amino group
while arginine has a single positive charge associated with
a terminal guanidinium group. The charge in arginine is
delocalized across the guanidinium group, supporting the
formation of multiple hydrogen bonds [2, 28]. Polar and
charged interactions supported by the arginine end group
may favor mechanisms that are responsible for antiviral
activity and, perhaps, cell penetrating activity [5, 28].
Interestingly, peptides with multiple guanidinium groups,
such as R-10 and nona-arginine, are in the same family with
other demonstrated HIV-1 inhibitors ALX40-4C, NB325,
and LL-37, which are also cationic molecules with multiple
guanidinium groups.

Related studies have also indicated the importance of
charge in cationic HIV-1 inhibitors and provided further
evidence for a mechanism of CPP antiviral activity. We previ-
ously demonstrated that charge distribution plays a key role
in the antiviral activity of biguanide-based molecules [13].
These molecules are oligomeric, cationic compounds charac-
terized by the presence of alternating biguanide groups and
hydrocarbon linkers [15]. Using rational compound design
and structure-function screening of biguanide-containing
synthetic molecules, studies identified polyethylene hexam-
ethylene biguanide (PEHMB; also known as NB325) as a
molecule with minimal cytotoxicity and considerable activity
against HIV-1 [12, 15]. More recent work identified NB325
as an HIV-1 entry inhibitor [14, 15] that antagonizes CXCR4
through epitope-specific interactions with extracellular loop
2 (ECL2). Further experiments demonstrated relationships
between charge density, cytotoxicity, and antiviral activity
[13]. These findings add to a collective understanding of
cationic HIV-1 inhibitors and can be used to guide further
investigations focused on defining mechanisms of action and
optimizing the antiviral potency of cationic inhibitors such
as the CPPs.

These results provide the basis for further basic science
and translational studies. Expanded studies will be necessary
to investigate the antiviral effect of Tat and Tat peptide
on HIV-1 replication in natively HIV-1-susceptible immune
cell populations and to better understand the contribution
of the potential bias toward R5 virus replication to viral
pathogenesis and disease progression. Related efforts will
be directed toward the development of novel CPP-based
antiviral agents that can serve as multifunctional HIV-1
inhibitors. These efforts will address CPP potency, stability,
mechanism of action, and combined activity as these agents
are advanced into preclinical investigations and clinical trials.

Acknowledgments

These studies were supported by faculty development funds
provided by the Department of Microbiology and Immunol-
ogy, Drexel University College of Medicine and the Institute
for Molecular Medicine and Infectious Disease. The authors
would like to thank Dr. Brian Wigdahl for lively discussions
and insightful contributions relevant to this work, and the
critical review of this paper prior to its submission.

References

[1] C.Foerg, K. M. Weller, H. Rechsteiner et al., “Metabolic cleav-
age and translocation efficiency of selected cell penetrating
peptides: a comparative study with epithelial cell cultures,”
American Association of Pharmaceutical Scientists Journal, vol.
10, no. 2, pp. 349359, 2008.

[2] 1. Nakase, T. Takeuchi, G. Tanaka, and S. Futaki, “Methodolog-
ical and cellular aspects that govern the internalization mech-
anisms of arginine-rich cell-penetrating peptides,” Advanced
Drug Delivery Reviews, vol. 60, no. 4-5, pp. 598—607, 2008.

[3] V. P. Torchilin, “Tat peptide-mediated intracellular delivery
of pharmaceutical nanocarriers,” Advanced Drug Delivery
Reviews, vol. 60, no. 4-5, pp. 548-558, 2008.

[4] A. T. Jones, “Gateways and tools for drug delivery: endocytic
pathways and the cellular dynamics of cell penetrating pep-
tides,” International Journal of Pharmaceutics, vol. 354, no. 1-2,
pp. 34-38, 2008.

[5] J. M. Gump and S. E Dowdy, “TAT transduction: the
molecular mechanism and therapeutic prospects,” Trends in
Molecular Medicine, vol. 13, no. 10, pp. 443-448, 2007.

[6] H. Brooks, B. Lebleu, and E. Vives, “Tat peptide-mediated
cellular delivery: back to basics,” Advanced Drug Delivery
Reviews, vol. 57, no. 4, pp. 559-577, 2005.

[7] A. Mishra, G. H. Lai, N. W. Schmidt et al., “Translocation
of HIV TAT peptide and analogues induced by multiplexed
membrane and cytoskeletal interactions,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 108, no. 41, pp. 1688316888, 2011.

[8] B.]J. Doranz, K. Grovit-Ferbas, M. P. Sharron et al., “A small-
molecule inhibitor directed against the chemokine receptor
CXCR4 prevents its use as an HIV-1 coreceptor,” Journal of
Experimental Medicine, vol. 186, no. 8, pp. 1395-1400, 1997.

[9] A. Lapidot, A. Peled, A. Berchanski et al., “NeoR6 inhibits
HIV-1-CXCR4 interaction without affecting CXCL12 chemo-
taxis activity,” Biochimica et Biophysica Acta, vol. 1780, no. 6,
pp. 914-920, 2008.

[10] S. Lee-Huang, V. Maiorov, P. L. Huang et al., “Structural
and functional modeling of human lysozyme reveals a unique
nonapeptide, HL9, with anti-HIV activity,” Biochemistry, vol.
44, no. 12, pp. 4648-4655, 2005.

[11] P. Bergman, L. Walter-Jallow, K. Broliden, B. Agerberth, and J.
Soderlund, “The antimicrobial peptide LL-37 inhibits HIV-1
replication,” Current HIV Research, vol. 5, no. 4, pp. 410-415,
2007.

[12] E C. Krebs, S. R. Miller, M. L. Ferguson, M. Labib, R. E.
Rando, and B. Wigdahl, “Polybiguanides, particularly poly-
ethylene hexamethylene biguanide, have activity against hu-
man immunodeficiency virus type 1,” Biomedicine and Phar-
macotherapy, vol. 59, no. 8, pp. 438-445, 2005.

[13] S. R. Passic, M. L. Ferguson, B. J. Catalone et al., “Structure-
activity relationships of polybiguanides with activity against
human immunodeficiency virus type 1, Biomedicine and
Pharmacotherapy, vol. 64, no. 10, pp. 723-732, 2010.

[14] N. Thakkar, V. Pirrone, S. Passic et al., “Persistent interactions
between biguanide-based compound NB325 and CXCR4
result in prolonged inhibition of human immunodeficiency
virus type 1 infection,” Antimicrobial Agents and Chemother-
apy, vol. 54, no. 5, pp. 1965-1972, 2010.

[15] N. Thakkar, V. Pirrone, S. Passic et al., “Specific interactions
between the viral coreceptor CXCR4 and the biguanide-based
compound NB325 mediate inhibition of human immunod-
eficiency virus type 1 infection,” Antimicrobial Agents and
Chemotherapy, vol. 53, no. 2, pp. 631-638, 2009.



6 International Journal of Peptides

[16] K. Lozenski, T. Kish-Catalone, V. Pirrone et al., “Cervi-
covaginal safety of the formulated biguanide-based human
immunodeficiency virus type 1 (HIV-1) inhibitor NB325 in
a murine model of microbicide application,” Journal of
Biomedicine and Biotechnology, vol. 2011, Article ID 941061,
10 pages, 2011.

R. A. Wilkinson, S. H. Pincus, J. B. Shepard et al., “Novel com-

pounds containing multiple guanide groups that bind the HIV

coreceptor CXCR4,” Antimicrobial Agents and Chemotherapy,

vol. 55, no. 1, pp. 255-263, 2011.

[18] J. A. Martellini, A. L. Cole, N. Venkataraman et al., “Cationic
polypeptides contribute to the anti-HIV-1 activity of human
seminal plasma,” FASEB Journal, vol. 23, no. 10, pp. 3609—
3618, 2009.

[19] N. Venkataraman, A. L. Cole, P. Svoboda, J. Pohl, and A.

M. Cole, “Cationic polypeptides are required for anti-HIV-1

activity of human vaginal fluid,” Journal of Immunology, vol.

175, no. 11, pp. 7560~7567, 2005.

H. Xiao, C. Neuveut, H. L. Tiffany et al., “Selective CXCR4

antagonism by Tat: implications for in vivo expansion of

coreceptor use by HIV-1,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 97, no. 21, pp.

11466-11471, 2000.

[21] M. Kuppuswamy, T. Subramanian, A. Srinivasan, and G.
Chinnadurai, “Multiple functional domains of Tat, the trans-
activator of HIV-1, defined by mutational analysis,” Nucleic
Acids Research, vol. 17, no. 9, pp. 3551-3561, 1989.

[22] A. K. Cardozo, V. Buchillier, M. Mathieu et al., “Cell-
permeable peptides induce dose- and length-dependent cyto-
toxic effects,” Biochimica et Biophysica Acta, vol. 1768, no. 9,
pp. 2222-2234, 2007.

[23] B. Ensoli, G. Barillari, S. Z. Salahuddin, R. C. Gallo, and
F. Wong-Staal, “Tat protein of HIV-1 stimulates growth of
cells derived from Kaposi’s sarcoma lesions of AIDS patients,”
Nature, vol. 345, no. 6270, pp. 84—86, 1990.

[24] A. Nath, K. Psooy, C. Martin et al., “Identification of a
human immunodeficiency virus type 1 Tat epitope that is
neuroexcitatory and neurotoxic,” Journal of Virology, vol. 70,
no. 3, pp. 1475-1480, 1996.

[25] G.R. Campbell, E. Pasquier, J. Watkins et al., “The glutamine-
rich region of the HIV-1 Tat protein is involved in T-cell
apoptosis,” Journal of Biological Chemistry, vol. 279, no. 46, pp.
48197-48204, 2004.

[26] A. Chauhan, A. Tikoo, A. K. Kapur, and M. Singh, “The
taming of the cell penetrating domain of the HIV Tat: myths
and realities,” Journal of Controlled Release, vol. 117, no. 2, pp.
148-162, 2007.

[27] B. Romani, S. Engelbrecht, and R. H. Glashoff, “Functions of

Tat: the versatile protein of human immunodeficiency virus

type 1,” Journal of General Virology, vol. 91, part 1, pp. 1-12,

2010.

J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, and

P. A. Wender, “Role of membrane potential and hydrogen

bonding in the mechanism of translocation of guanidinium-

rich peptides into cells,” Journal of the American Chemical

Society, vol. 126, no. 31, pp. 95069507, 2004.

(17

(20

™
%



International Joumal of

Peptl

BioMed Stem Ce||5 ~ International \ urnal of
Research International International ( Genomics

Journal of

Nucleic Acids

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal o L The SCientiﬁC
Signal Transduction World Journal

Anatomy var i
Research International Mlcroblology Research International Bioinformatics

International Journal of Biochemistry Advances in

Enzyme International Journal of Molecular Biology

Archaea Research Evolutionary Biology International




