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Abstract: Although astrocytes are the most abundant cells in the mammalian brain, much remains
to be learned about their molecular and functional features. Astrocytes express receptors for
numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin.
The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and
decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis.
The widespread expression of the ghrelin receptor in the central nervous system suggests that this
hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact,
ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring
the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this
review, we highlight the possible role of glial cells as mediators of ghrelin’s actions within the brain.

Keywords: glia; neuroprotection; inflammation; metabolism

1. Introduction

Ghrelin modulates systemic metabolism at least in part through activation of orexigenic neural
circuits in the hypothalamus [1–3] and consistent with this, circulating levels of ghrelin rise promoting
an increased sensation of hunger [4]. Ghrelin receptors are found on hypothalamic neurons that
regulate food intake and satiety [5,6], but also on neurons in non-hypothalamic brain regions that
contribute to eating behavior [7]. However, evidence supports a more complex role for this hormone
in the brain and suggests that it participates in a variety of biological functions including modulation
of reward systems [8,9] and learning and memory performance [10,11], as well as playing a protective
role against degenerative diseases [12,13]. Although these effects are mainly mediated through ghrelin
responsive neurons, glial cells such as astrocytes may also participate in these processes.

Astrocytes are involved in a wide range of functions that insure normal brain development
and neural functioning [14] and are fundamental for processes of neuroprotection during both
health and disease [15]. In recent years, the participation of astrocytes in both physiological and
pathophysiological processes related to metabolic control has received increasing attention [16,17].
Indeed, these glial cells express receptors for numerous trophic factors and hormones, participating in
and mediating the effects of these signals on the surrounding neurons. Astrocytes express the ghrelin
receptor and respond to this hormone and its analogs [18–20], although there is little information to
date regarding the physiological and/or pathophysiological function of these receptors in astrocytes.
Here we have reviewed what is known to date regarding the response of astrocytes to ghrelin
and how these glial cells might participate in mediating the effects of this hormone on appetite
and neuroprotection.
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2. Ghrelin and Its Receptor

The discovery of ghrelin, a gastrointestinal peptide, was reported in 1999 [21]. Kojima and
colleagues showed that ghrelin was the endogenous ligand for the growth hormone secretagogue
receptor (GHSR1a) and that it stimulated growth hormone (GH) release from the anterior pituitary
gland. Indeed, ghrelin is the most potent peripherally produced endogenous inducer of the
GH/insulin-like growth factor-1 (IGF-1) axis [22] and of food intake in mammals [23]. In 2000,
Tschöep et al. demonstrated that ghrelin exerts actions in the brain to regulate food intake, body weight,
adiposity, and glucose metabolism [24]. As stated above, ghrelin modulates systemic metabolism via
activation of orexigenic neural circuits [1] and this is largely a direct response on these circuits as its
receptor is highly expressed in the hypothalamic neurons that regulate food intake and satiety [25,26].
In addition, the GHSR1a is also expressed in extra-hypothalamic brain regions that modulate feeding
behavior [27]. Other actions of this gut hormone that have been less studied include modulation of
reward systems [28] together with learning and memory performance [10]. It also plays a protective
role against neurodegenerative diseases [29–31]. Thus, ghrelin emerges as a hormone with a wide
range of functions and possible therapeutic applications, although much is yet to be learned concerning
its mechanisms of action.

In order to mediate many of its biological actions, the post-translational acylation of ghrelin by
actions of the enzyme ghrelin O-acyltransferase [32,33] is necessary, with this chemical modification
facilitating its binding to GHSR1a [34]. The majority of its physiological effects are mediated through
this receptor, as ghrelin treatment does not stimulate GH release or an increase in food intake
in GHSR1a-null mice [35]. Ghrelin binds to the third transmembrane domain of GHSR1a, a G
protein-coupled receptor [36].

The mechanism by which circulating ghrelin can cross the blood–brain barrier (BBB) has been
the subject of diverse studies and is still under debate, although it is clear that it does reach
non-circumventricular areas as intravenous ghrelin administration was shown to induce Fos expression
in these areas [37]. The octanoic group confers hydrophobicity to the N terminus of ghrelin and
this facilitates its transport across the BBB where it is then able to perform its central actions [38].
In addition to the possible passive diffusion across the BBB, ghrelin is also reported to directly reach
the hypothalamic arcuate nucleus through fenestrated capillaries [39]. In mice, a saturable carrier
system has been described by which acyl-ghrelin crosses the BBB, but only in the brain-to-blood
direction, whereas desacyl-ghrelin can be transported in both directions by a non-saturable mechanism.
However human ghrelin, which differs from the mouse peptide in two amino acid residues, is reported
to be bidirectionally transported across the BBB by a saturable system [10,40]. Thus, it appears that
ghrelin transport across the BBB is finely regulated and involves complex mechanisms that appear to
be different between species [41].

It was originally reported that the deacylated form of ghrelin does not signal through GHSR1a;
however, desacyl-ghrelin can activate the GHSR1a receptor at supraphysiological doses [42,43] and
intracerebroventricular (i.c.v.) injections of desacyl-ghrelin are reported to have physiological effects
on metabolism via the GHSR1a [44]. Moreover, transgenic mice over-expressing desacyl-ghrelin are
small, with the GH/IGF-1 axis being blunted [45]. This suggests that desacyl-ghrelin does indeed exert
physiological functions, although more investigation is needed regarding the receptor involved and
the underlying mechanisms.

There is also a truncated form of the ghrelin receptor, GHSR1b. This non-signaling receptor
is suggested to exert a dominant negative role in the trafficking and signaling of GHRS1a [46].
Recent evidence indicates that GHSR1b determines the efficacy of ghrelin-induced GHSR1a-mediated
signaling and facilitates the formation of oligomeric complexes of GHSR1a with other receptors,
leading to changes in ghrelin-induced signaling [47].
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3. Astrocytes

Astrocytes are the most abundant cell type in the central nervous system (CNS) and occupy
more than 50% of total brain volume [48]. They are most often identified by the expression of
the intermediate filament glial fibrillary acidic protein (GFAP), although not all astrocytes express
this structural protein [49]. Indeed, these cells have diverse phenotypes depending on their
location within the brain [50,51], exhibiting differential expression of receptors for a variety of
molecules such as insulin [52], IGF-1 [53], dopamine, serotonin [54], estrogens [55,56], androgens [57],
glutamate [58,59], gamma-aminobutyric acid (GABA) [60], ion channels [61], norepinephine [62],
leptin and neuropeptide Y (NPY) [63]. They participate in the control of extracellular concentrations
of ions and neurotransmitters [64], provide neurotrophic support [65], are involved in the formation,
maintenance and functioning of synapses [66], modulate neuronal connectivity and synaptic
efficacy [49], and contribute to the maintenance of the BBB [67]. After an injury, astrocytes undergo
rapid changes that can either promote or prevent recovery depending on the type and extent of the
damage [68,69]. The morphology and function of these glial cells depends on their activational state
and is also rapidly modified in response to the activity of surrounding neurons [48,61] and by changes
in Ca2+ signaling [70,71]. These changes can include modifications in their expression of glucose [72]
and glutamate transporters [73–75] and in their coverage of neuronal membranes and synapses [76,77].

In response to inflammation or after brain damage, astroglia can be activated and proliferate with
an increase in the expression of the structural proteins GFAP and vimentin [78–80]. This phenomenon
is called astrogliosis and its main function is to protect the damaged area; however, glial scarring
can occur in order to insulate or isolate the lesion, but this process also prevents the formation of
new connections [81]. If reactive astroglia are removed after damage, there is an increase in the entry
of inflammatory cells across the BBB with further extension of inflammatory process and increased
neuronal loss [82]. Therefore, controversy remains concerning the beneficial implications of astrogliosis,
at least under some circumstances [83].

Astrocytes are excitable cells but, unlike neurons, their excitability is not based on changes in
membrane potential, but on changes in intracellular Ca2+ levels [84]. They release gliotransmitters
(peptides, cytokines, and chemokines) to directly activate receptors on neighboring neurons and
express transporters for the re-uptake of neurotransmitters [85]. Therefore, astrocytes are involved in
modulating synaptic efficacy and maintaining ion and neurotransmitter homeostasis in the synaptic
cleft and extracellular environment.

During primate evolution, the proportion of astrocytes to neurons has risen [86], suggesting that
astrocytes play an important role in the increased complexity of the brain. The maturation of astrocytic
processes and the establishment of spatial astrocyte domains in the brain coincide temporally with
the formation of the first synapses [48]. Astrocytes are not only essential for synaptogenesis [48,87],
but they also participate in synaptic remodeling, including that which occurs in neuroendocrine
processes [88]. Hence, astrocytes regulate or modulate almost all neuronal functions, with some effects
of hormones, trophic factors, nutrients, and other substances being mediated through these glial cells.

4. Ghrelin Receptors in Astrocytes

The ghrelin receptor is expressed in a wide variety of tissues and cell types throughout both the
CNS and periphery [89,90]. In addition to its expression in neurons, GHSR1a has been shown to be
expressed in astrocytes of the hypothalamic arcuate nucleus [19,20] and of the dentate gyrus in the
hippocampus [18,91], although a thorough mapping of the expression of this receptor in astrocytes is
yet to be performed.

The ghrelin receptor is also present in astrocytomas, with astrocytoma cell lines expressing higher
levels of GHSR1a compared with primary cultures of normal astrocytes [92,93]. Ghrelin promotes cell
motility in astrocytomas and, given that it is a positive regulator of the somatotropic axis, it could
play a role in astrocytoma cell growth and function with an endogenous hormonal loop, critical in
astrocytoma motility and invasiveness, possibly being involved [93]. On the contrary, desacyl-ghrelin,
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which does not bind GHSR1a at physiologic concentrations, does not exert this effect [94]. Moreover,
ghrelin is unable to elicit any biological effect in GHSR1a-null astrocytoma cells, further suggesting
that ghrelin induced astrocytoma cell motility is mediated by the GHSR1a receptor [93].

5. Ghrelin and Astrocytes in Metabolic Control

The involvement of astrocytes in metabolic control has been increasingly studied in recent
years [48,95,96]. Astrocytes form part of the BBB and are located in close proximity to blood vessels,
which facilitates their transport of ions and other substances, including nutrients and metabolic
hormones, from the peripheral circulation into and within the brain. These nutrients not only serve as
an energy source for cells of the brain but, in conjunction with hormones, inform nutrient/hormone
sensing metabolic circuits as to the systemic metabolic status [97]. Glucose is the major energy source
for cells of the CNS [98] and increased glucose transport is essential for maintaining homeostasis
during synaptic activity [99], with this control depending on the communication between astrocytes
and neurons [100]. Glucose transported into the brain by astrocytes can be used for their own
survival, be stored as glycogen in order to regulate CNS glucose levels in situations of increased energy
demand or be transported to neurons to be used as their energy source [101]. Hence, astrocytes
are responsible for regulating the amount of glucose available in the extracellular space in the
CNS [102]. The ability of astrocytes to transport glucose is modulated by metabolic hormones,
including insulin [52], leptin [103], and ghrelin [19,20]. When astrocytes lack leptin receptors, as a
result of experimental genetic manipulation, there is a reduction in the anorexigenic response to this
hormone and there is a decreased response to fasting and to the effect of ghrelin on appetite [104].
The function of astrocytic insulin signaling is essential for hypothalamic glucose sensing and systemic
glucose homeostasis [52,53]. Moreover, astrocytic insulin signaling is required for efficient glucose
uptake into the brain in response to changes in systemic glucose availability. If insulin signaling in
astrocytes is impaired, as occurs during diet-induced systemic insulin resistance, astrocyte morphology,
mitochondrial function, and circuit connectivity is affected [52,53]. In addition, there is a reduction in
glucose-induced activation of hypothalamic POMC neurons with the physiological response to changes
in glucose availability being impaired [52]. Although central glucose transport or metabolism has not
been analyzed in animals lacking GHSR1a specifically in astrocytes, acyl-ghrelin can modulate glucose
uptake into hypothalamic astrocytes, at least in vitro [19]. The effect of ghrelin on glucose transport
within the brain is further supported by the observation that the expression of glucose transporters
in the hypothalamus is rapidly modified by icv administration of acyl-ghrelin [19]. In addition to
modulating central energy availability, changing glucose transport by hypothalamic astrocytes in
response to metabolic hormones such as ghrelin could also affect central glucose sensing [19,105],
which would in turn modulate appetite and systemic glucose metabolism.

Under some circumstances, lactate can replace glucose as an alternative substrate in brain energy
metabolism [106]. Lactate is produced and secreted by astrocytes with neurons then taking it up via
monocarboxylate transporters [107,108] and converting it to pyruvate for oxidative production of
ATP [106]. Glycogen stored in astrocytes can also be released as lactate to neurons [106,107,109]. Ghrelin
stimulates the expression of glycogen phosphorylase, the rate limiting enzyme in glycogenolysis,
in primary hypothalamic astrocyte cultures [19]. This could lead to increased hydrolysis of glycogen
stores, producing an increase in lactate production and availability to neurons. Indeed, ghrelin also
stimulated the expression of lactate dehydrogenase and of monocarboxylate transporter 4 (MCT4)
in these cells [19]. It is enticing to postulate that ghrelin acts as a signal relaying systemic energy
availability to astrocytes, which in turn modulate the energy substrates that neighboring neurons
receive. If these neurons form part of the energy sensing metabolic circuits, ghrelin would modify the
signals that they receive through astrocytes.
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The opposite metabolic actions of ghrelin and leptin are due in part to their inverse
effects on the release of hypothalamic neuropeptides, such as agouti-related protein (AgRP) and
pro-opiomelanocortin (POMC) derived neuropeptides [110]. In addition, these two hormones also
induce opposite changes in the synaptic organization of hypothalamic metabolic circuits [111] and
astrocytes most likely participate in this reorganization [112]. In high fat diet (HFD)-induced obesity,
astrocytic coverage of AgRP and POMC neurons is modified and this is inversely correlated with
changes in synaptic inputs to the soma of these neurons [112–114]. Both weight gain and leptin
administered icv modify hypothalamic astrocyte structural proteins and morphology, as well as the
expression of synaptic proteins [115,116], with the knock out (KO) of leptin receptors specifically
in GFAP-producing cells resulting in modifications in astroglial morphology and changes in the
astrocyte coverage of hypothalamic metabolic neurons and their synaptic inputs [106]. Although
icv administration of acyl-ghrelin was not found to modify hypothalamic GFAP levels or astrocyte
morphology one hour after treatment, it did affect synaptic protein levels [19]. Moreover, vimentin
levels and tanycyte projections were rapidly increased by icv acyl-ghrelin injection [19]. Tanycytes,
specialized hypothalamic glial cells located in the median eminence transport peripheral hormones
such as leptin [117] and ghrelin from the periphery to the arcuate nucleus. Alteration in ghrelin uptake
by tanycytes is involved in the attenuated ghrelin transport observed after diet-induced obesity [118].
This, with the demonstration that both acyl- and desacyl-ghrelin modulate hypothalamic astrocytes
in culture [19], indicates that the two isoforms of this hormone could possibly mediate effects on
metabolic circuit organization through ghrelin.

Astrocytes also contribute to the control of food intake by directly modulating the actions of the
orexigenic AgRP neurons located in the medial basal hypothalamus. Astrocytes release adenosine
that inhibits ghrelin-evoked feeding by inactivating orexigenic AgRP neurons via adenosine a 1
(A1) receptor signaling [119]. Deletion of astrocytic leptin signaling also modified ghrelin and
leptin-regulated feeding behaviors [104]. These studies indicate that astrocytes affect food intake by
regulating the synaptic strength of metabolic control circuits and the activities of neurons controlling
appetite and energy expenditure [119].

Astrocytes also modulate synaptic transmission and exert neuroprotective effects through their
uptake of glutamate from the synaptic cleft [120] and ghrelin can affect their ability to do so.
The glutamate transporters glutamate transporter 1 (GLT1) and glutamate aspartate transporter
(GLAST) are highly expressed on astrocytes [121,122]. We have shown that ghrelin treatment icv rapidly
stimulates GLT1 and GLAST levels, while only GLAST levels were found to increase in vitro [19].
Acyl-ghrelin rapidly induces the uptake of glutamate by hypothalamic astrocytes in vitro, with a
reduction in uptake occurring with long-term exposure to this hormone [19]. Moreover, ghrelin
stimulates glutamate release and elevates synaptic glutamate release which results in increased firing
of AgRP neurons, response related increased with food intake in mice [123,124]. As mentioned
above, ghrelin’s orexigenic properties are mediated by AgRP neurons with ghrelin increasing the
activity of AgRP neurons, which in turn increases the release of GABA to inhibit POMC neurons [1].
However, when high fat and high sucrose diets are provided, AgRP neurons are dispensable for an
appropriate feeding response [125], as well as possibly in glucodeprivation [126]. Andrews et al. [12]
suggested a direct action of ghrelin on AgRP neurons through GHSR1a signaling and AMP-activated
protein kinase (AMPK)-mediated alteration of fatty acid oxidation and regulation of mitochondrial
uncoupling proteins [12]. The findings of Yang et al. [124] suggest that ghrelin acts at presynaptic
receptors, increasing glutamate release and AgRP neurons are activated through ionotropic glutamate
receptors [124]. This is not related to an increase in the number of excitatory synapses as shown
previously [111]. The glutamate release induced by ghrelin also stimulates the uptake of glutamate by
astrocytes in order to prevent excess excitability and excitotoxicity to neighboring cells [127–130].
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Glutamate is metabolized to glutamine in astrocytes via glutamine synthase or it can be shuttled
into the tricarboxylic acid cycle [99]. Glutamine released by astrocytes can be taken-up by neurons
and reconverted into glutamate [131]. Ghrelin inhibits the expression of glutamine synthetase both
in vivo and in vitro [19], which could indicate that glutamate metabolism is modified by this hormone.
Indeed, the recycling of glutamate is coupled to glycolysis and glutamate can also be used as an energy
source [106].

Ghrelin stimulates the production and release of GABA [132]. By means of the GABA-glutamine
cycle that occurs at GABAergic synapses, neurons take up glutamine that is converted to glutamate that
can then be metabolized to GABA by glutamate decarboxylase. Once released, GABA is taken-up by
astrocytes through specific transporters and catabolized to succinate that enters the tricarboxylic acid
cycle to generate glutamine [99]. Similarly fasting, possibly through stimulation of ghrelin secretion,
increases hypothalamic GABA concentrations [133]. Hence, astrocytes take part in mediating ghrelin’s
effects on hypothalamic synaptic transmission not only through modifications in neurotransmitter
uptake, but also in their metabolism [19].

Studies indicate an important role for glial cells in pathological responses to excess weight
gain [112]. Weight gain as a result of HFD intake is associated with activation of hypothalamic
microglia and astrocytes, resulting in cytokine production and the activation of inflammatory signaling
pathways in the hypothalamus [112,115,134] that can lead to central insulin/leptin resistance and
metabolic disequilibrium [135]. Ghrelin exerts anti-inflammatory effects in various tissues [136–138]
and in hypothalamic astrocyte cell cultures ghrelin decreased tumor necrosis factor-α (TNF-α) mRNA
levels [20]. Thus, while ghrelin stimulates food intake and weight gain, it may also induce mechanisms
of cell protection, at least in part through direct anti-inflammatory effects on astrocytes and this
could help to delay systemic inflammatory responses and hypothalamic gliosis due to excess weight
gain, which in turn would delay the onset of obesity-associated pathologies [20]. Obesity reduces
plasma ghrelin concentrations which is a consequence of decreased secretion from gastric cells.
In addition, the central responsiveness to ghrelin is reduced through reduction in the expression
of GHSR1a on target neurons and through altered metabolic endocrine feedback in diet-induced
obesity. This ghrelin resistance is suggested to possibly protect the system from establishing a higher
body weight set-point during times of food availability and to maximize energy reserves which is
one of the physiological functions of ghrelin: to defend body weight and glucose homeostasis [139].
However, it is unknown whether the response of astrocytes to ghrelin is modulated during obesity.
Although ob/ob mice fed a HFD show gliosis in the arcuate nucleus, they remain ghrelin-sensitive
suggesting that hypothalamic gliosis does not cause ghrelin resistance [140]. In contrast, in this same
study [140] central leptin administration to ob/ob mice was found to induce ghrelin resistance. As leptin
signaling in astrocytes modulates the response to ghrelin [105], astrocytes could be involved in this
change in hormonal sensitivity.

The in vitro effects of ghrelin on astrocyte glucose and glutamate transport appear to be mediated
mainly through GHSR1a, as acyl-ghrelin does not stimulate glucose transporter 2 (GLUT2) or
GLAST levels in primary hypothalamic astrocyte cultures from GHSR1a KO mice [19]. Moreover,
desacyl-ghrelin did not stimulate the expression levels of these two transporters in primary astrocyte
cultures from normal rats, again suggesting that this effect is mediated though GHSR1a. In contrast,
in rat astrocytes GFAP mRNA levels were increased by exposure to both acyl- and desacyl-ghrelin [19],
suggesting that both isoforms of this hormone could affect the functioning of hypothalamic astrocytes.
More studies are necessary to understand the full effects of these two isoforms on astrocytes and
metabolic functioning.
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6. Ghrelin and Astrocytes in Neuroprotection

Astrocyes are also critical to neuronal survival and repair [141]. After brain injury astrocytes
become activated, resulting in morphological changes associated with the up-regulation of structural
proteins such as GFAP and vimentin, but also changes in their release of cytokines, growth factors, and
other signals to modulate neurons [142,143]. The growth, survival, and differentiation of neurons are
dependent on autocrine and paracrine effects of neurotrophic factors and increased neurodegeneration
occurs if astrocytes are not present. Neurotrophic factors secreted by astrocytes promote neuronal
survival and morphological changes of these glial cells can minimize damage to neighboring neurons
by the formation of a glial scar [144]. In situations of damage such as stroke, trauma, Alzheimer’s or
Parkinson’s disease, reactive astrocytes clear glutamate and ions released from injured neurons and also
clear metabolic byproducts in an attempt to maintain the local environment [145]. Several cytokines,
including interleukin-1 (IL-1) and IL-6, have been implicated in the induction and modulation of
reactive and pathological inflammatory responses [145]. However, in vitro data suggest that IL-1, IL-6,
and TNF-α may be neuroprotective at lower doses and could support the production of neuroprotective
mediators [146]. Thus, the primary objective of astrocyte activation in injury or in response to toxic
substances is to protect the surrounding neurons.

Disruption of the BBB during traumatic brain injury is reported to be blunted by ghrelin
treatment [147]. Neuronal degeneration and indices of brain tissue damage due to traumatic brain
injury were decreased by ghrelin, which was related to the maintenance of BBB vascular permeability,
protection against brain edema and reduction of astrocyte reactivity by this hormone [147]. It is
proposed that ghrelin could act through an uncoupling protein 2 (UCP-2)-mediated mechanism to
attenuate BBB disruption during injury [148]. In contrast, in response to stroke desacyl- but not
acyl-ghrelin is reported to improve both functional and neurological outcomes after cerebral artery
occlusion [149]. In this study, post-stroke treatment with desacyl-ghrelin decreased the infarct area
and swelling and reduced BBB disruption [149]. These two isoforms could perform beneficial effects
through different mechanisms and thus be more or less effective in activating protection processes
depending on the type of injury, although this remains to be demonstrated.

Ghrelin acts as a survival factor for neurons through its inhibition of apoptotic pathways [150,151],
having been shown to exert a protective role against a variety of stimuli including
ischemia/reperfusion [152,153], alendronate [154], serum deprivation [155], doxorubicin [156], and
TNF-α [157]. At least some of the neuroprotective effects of ghrelin are mediated through activation
of GHSR1a and the subsequent stimulation of extracellular signal–regulated kinases (ERK1/2) and
phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B or Akt (PI3K/Akt) pathways [151].
Systemic administration of the ghrelin mimetic growth hormone-releasing peptide-6 (GHRP-6)
increases the central expression of proteins involved in cell survival and neuroprotection [158,159].
Treatment of adult male rats with GHRP-6 for one week significantly increased IGF-I mRNA levels in
the hypothalamus, cerebellum, and hippocampus and activated the PI3K/Akt pathway and increased
the levels of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Moreover, GHRP-6 reduced cerebellar
cell death in aged rats via the stimulation of IGF-I production and inhibition of caspases 9 and 3 [160].
Other studies report that ghrelin exerts its neuroprotective effects through stimulation of the protein
kinase A and C pathways [151]. GHRP-6 is capable of preventing glutamate-induced neuronal
death in both the hypothalamus and cerebellum [129] and also in the hypothalamic neuronal cell
line RCA-6 [127]. Ghrelin has a neuroprotective role in hippocampal neurons against KA-induced
excitotoxicity [161] via activation of the PI3K/AKT pathway and inhibition of the mitochondrial
apoptotic pathway. In studies in adult rats treated with GHRP-6, no change in GFAP or vimentin
levels were found, but activation of the PI3K/Akt pathway was observed and this was associated
with increased markers of proliferation. The astrocytoma cell line C6 also responds to GHRP-6 by
up-regulating GHSR1a levels, increasing the activation of the PI3K/Akt pathway and increasing
proliferation [93]. This effect is mediated by GHSR1a as D-Lys3-GHRP-6, an antagonist of GHSR1a,
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reduced the GHRP-6 stimulated increase in cell number [18], suggesting that ghrelin could possibly
stimulate the proliferation of astrocytes through GHSR1a.

Chronic administration of acyl-ghrelin was shown to be protective in a mouse model of
Parkinson’s disease [12] and mice lacking both desacyl- and acyl-ghrelin (ghrelin KO mice) have
enhanced neurodegeneration. In humans, Parkinson’s disease is associated with increased body
mass, adiposity, and diabetes [162–164]; indeed, obesity is considered a risk factor for increased
neurodegeration [165–168]. Ghrelin levels are inversely related to body mass; ghrelin levels are lower
in obese subjects and are increased during caloric restriction [169] and studies show that this could
affect neuroprotection. For example, hepatocytes and neurons treated in vitro with serum from caloric
restricted rats had a reduction in the production of reactive oxygen species (ROS) [170]. When ghrelin
levels are increased, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced neurotoxicity
is attenuated [171,172]. Indeed, this hormone has been shown to preserve mitochondrial integrity
and metabolism during oxygen–glucose deprivation [173] and to attenuate MPTP neurotoxicity in
dopaminergic (DA) neurons [174] by improving mitochondrial function [175]. The protection induced
by ghrelin against MPTP-induced neurotoxicity in nigral dopaminergic neurons in vivo involves a
GHSR1a mediated anti-apoptotic effect [12]. Ghrelin could promote at least part of its neuroprotective
actions by means of UCP2, as it has a role in buffering ROS production, enhancing mitochondrial
biogenesis, and in respiration [176,177].

Situations that are associated with inflammation result in the activation of microglia and astrocytes,
increasing the release of pro-inflammatory cytokines centrally, a process common to all neurodegerative
diseases [178,179], ischemic brain injury [180], and traumatic brain injury [181]. To alleviate the
symptoms of these diseases or injuries, anti-inflammatory agents are used. In both in vivo and
in vitro studies, ghrelin has been shown to act as an anti-inflammatory mediator in response to
different inflammatory situations and in different organs, including in brain injury and pain [182–184].
Ghrelin can inhibit microglial activation [129] and oligodendrocyte cell death that are co-cultured
with lipopolysaccharide (LPS)-stimulated BV2 cells, a microglial cell line [185]. Moreover, ghrelin KO
mice demonstrate an increased activation of microglia and astrocytes following cerebral ischaemia
compared to wild type (WT) mice [186]. The role of ghrelin signaling in the neuroprotective effects of
calorie restriction in Parkinson’s disease was explored with MPTP treatment in ghrelin KO mice. MPTP
treatment increased GFAP positive cells in the substantia nigra in both WT and ghrelin KO mice fed
ad libitum. Calorie restriction reduced GFAP levels in both MPTP-treated WT and ghrelin KO mice
indicating that the caloric restriction-induced reduction in GFAP expression in the substantia nigra
is not mediated by ghrelin [187]. Increased activation and accumulation of microglia and astroglia,
which participates in the hippocampal neurodegeneration that follows kainate-induced excitoxic
injury, is inhibited by ghrelin treatment [188]. Ghrelin suppress the kainic acid-induced increase
in GFAP, as well as in TNF-α, IL-1β and cyclooxygenase (COX)-2 immunoreactivity, and matrix
metalloproteinase-3 expression in the hippocampus. Ghrelin also attenuates the synthesis of TNF-α
following traumatic brain injury [189].

In summary, during infections, injuries, and seizures the first cells to produce cytokines in the
brain are microglia and astrocytes, with these glial cells being the main sources of locally produced
proinflammatory molecules (Figure 1). This inflammatory process then affects neurons and endothelial
cells of the BBB [190], potentially potentiating the damage. Ghrelin exerts its neuroprotective effects,
at least in part, through the inhibition of glial cell activation and production of pro-inflammatory
neurotoxic mediators derived from activated glia, with many of these effects most likely being mediated
through GHSR1a.
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Figure 1. A schematic drawing of the regulation of inflammation and damage exerted by ghrelin in
the brain. Ghrelin would prevent the activation of astroglia and microglia avoiding the excess release
of pro-inflammatory factors that would affect neurons and endothelial cells in neurodegenerative or
injury processes. BBB: blood–brain barrier, ROS: reactive oxygen species, UCP2. Uncoupling protein 2.
Red bars indicate inhibition.

7. Conclusions

Less than 20 years have passed since the discovery of ghrelin was first reported and during this
time diverse functions have been attributed to this hormone. However, many fundamental questions
still remain. For example, it is clear that acyl-ghrelin has non-GHRS1a-mediated physiological
effects and that desacyl-ghrelin has more physiological effects than originally thought; however,
the receptors/mechanisms that mediate these actions remain to a large extent elusive. In addition, how
this hormone influences astrocytes is only beginning to be investigated with much yet to be learned.

The list of functions performed by astroglial cells continues to grow. It is now clear that
hypothalamic astrocytes participate in the control of energy homeostasis, with metabolic hormones and
nutrients mediating at least part of their effects on metabolic circuits through these glial cells. Ghrelin
modulates astrocytic function including glucose transport, glucose metabolism, cytokine production,
and trophic factor production (Figure 2). However, a lot is still to be learned regarding the full range of
effects that this hormone exerts on these glial cells and how this could participate in mediating the
orexigenic effects of ghrelin on the hypothalamus. Moreover, it is yet to be determined if ghrelin affects
glucose transport and metabolism in astrocytes throughout the brain or if this action is specific to the
hypothalamus. If specific to this brain region, it could indicate a more direct implication in systemic
metabolic control compared to a more broad effect on local glucose transport/consumption.

Astrocytes also play a fundamental role in neuroprotection and ghrelin can prevent the activation
of these glial cells, at least in some circumstances. As hypothalamic inflammation/gliosis is thought
to perpetuate and augment food intake and weight gain, the rise in ghrelin before appetite increases
could be a physiological protective mechanism against the possible harmful effects of increased food
intake and metabolism. This hypothesis deserves further investigation. Indeed, more investigation
is needed in order to understand astrocyte functions throughout the brain. It is clear that they are a
heterogeneous population of cells, although we continue to lack appropriate tools to clearly identify
and characterize these subpopulations. Even within the same anatomical area these cells can differ in
something as elementary as the expression of GFAP.

With the increasing attention that astrocytes have received in recent years, including the attempt to
understand their response to metabolic hormones, advances have made in our understanding of their
importance in neuroendocrine function. This increased attention on astrocytes, in conjunction with the
constant technological advances, will surely result in exciting new discoveries in the near future.
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