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Exploiting T cells specific for human minor
histocompatibility antigens for therapy of leukemia

Marie Bleakley1 and Stanley R Riddell

Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8+ and

CD4+ T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical

individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H

antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been

learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their

role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be

isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat

relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse

in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent

developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia

relapse after allogeneic HCT.
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Allogeneic hematopoietic stem cell transplantation (HCT) is the only
potentially curative therapy for many patients with high-risk or
recurrent acute lymphoblastic leukemia (ALL) or acute myeloid
leukemia (AML). The success of the procedure is now understood
to be due in large part to a graft-versus-leukemia (GVL) effect
mediated by donor immune cells.1–7 However, leukemia recurs
following HCT in many patients, and strategies to augment the
GVL effect to prevent and treat leukemic relapse continue to be a
focus of research. Immune effector cells that have been implicated in
the GVL response include CD8+ and CD4+ T cells, and natural killer
(NK) cells, each of which may contribute more or less to the GVL
effect depending on the type of HCT. After T-cell-depleted haplo-
identical HCT, donor NK cells can mediate a potent GVL effect against
AML in the small subset of recipients who do not express donor class I
human leukocyte antigen (HLA) molecules required to engage donor
NK-inhibitory receptors.8–12 After haploidentical HCT in which small
numbers of donor T cells are administered to the patient, T cells that
recognize major HLA differences participate in the GVL effect.13 In
allogeneic HLA-identical HCTeither from related or unrelated donors,
the GVL effect is thought to be mediated primarily by T cells that
recognize recipient minor histocompatibilty (H) antigens, which are
distinct HLA-binding peptides encoded by polymorphic genes that
differ between the donor and recipient. Specifically, an HLA-matched
individual who is homozygous for the minor H antigen ‘negative’

allele may have T cells in their repertoire that recognize recipient cells
that are homozygous or heterozygous for a polymorphism that
encodes a minor H antigen. A key feature of minor H antigen
recognition is that the tissue expression of the antigen(s) determine
whether the alloreactive T-cell responses that develop after HCT cause
graft-versus-host disease (GVHD), in which cells in the skin, gastro-
intestinal tract and other tissues are targeted, a GVL effect, or both.
This review will focus on recent developments in T-cell recognition of
human minor H antigens, and efforts to translate these discoveries to
reduce leukemia relapse after allogeneic HCT.

THE BASIS FOR IMMUNOGENICITY OF MINOR H ANTIGENS

Minor H antigens are by definition non-self peptides; therefore, the
donor T-cell repertoire is not subject to tolerance mechanisms that
limit self-reactivity, and as a result the T-cell responses that are elicited
to these determinants are typically of high avidity (Figure 1).2–7 Most
commonly, immunogenicity originates from one or more nucleotide
polymorphisms in the coding sequences of homologous donor and
recipient genes that alter peptide-major histocompatibility complex
(MHC) binding and/or T-cell receptor (TCR) recognition of the
peptide–MHC complex. There are at least 90 000 non-synonymous
single-nucleotide polymorphisms (SNPs) in the human genome,14

providing a potentially large number of minor H antigens, based on
minor alterations in protein sequence. Copy number variation,
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specifically homozygous gene deletion of a member of a polymorphic
gene family (UGT2B17) in the donor, has also been shown to result
in T-cell recognition of peptides derived from this protein in recipient
cells that express one or both copies of the gene.15–18 For the majority
of minor H antigens, only unidirectional recognition has been shown,
either because the corresponding donor peptide is not generated15,19

or transported by the antigen processing machinery,20–21 does not bind
stably to MHC molecules22–25 or is not recognized by T cells22–23,26–27

(Table 1).

RATIONALE FOR TARGETING LINEAGE-RESTRICTED MINOR

H ANTIGENS USING T-CELL IMMUNOTHERAPY FOLLOWING

ALLOGENEIC HCT

The potency of the GVL effect mediated by donor T cells is illustrated
by the analysis of outcome data after allogeneic HCT, which shows a
dramatically lower relapse rate in patients who develop acute and/or
chronic GVHD.5 There is also a reduction in relapse in recipients of
allogeneic HCT that do not develop GVHD compared with recipients
of syngeneic HCT, suggesting that the GVL effect may be separated
from GVHD. One strategy to accomplish this separation has been
shown in murine models in which leukemia was eradicated by the
adoptive transfer of CD8+ cytotoxic T lymphocytes (CTL) specific for
a single recipient minor H antigen without GVHD.42 After allogeneic
HCT in humans, both CD8+ and CD4+ T cells that recognize minor
H antigens on recipient cells are activated in vivo and can be isolated
in vitro, suggesting a similar approach to that taken in mice would be
feasible in man.7,43–47 Human CD8+ minor H antigen-specific T-cell
clones have been shown to lyse primary AML and ALL leukemic cells
and inhibit the growth of AML colonies in vitro. Moreover, these
T cells prevent the engraftment of AML in immunodeficient mouse
models, showing that the earliest leukemic progenitors are targets for
minor H antigen-specific T cells.47–50 Unfortunately, most minor
H antigen-specific T cells that have been isolated from patients and
screened for recognition of cells derived from non-hematopoietic
tissues also recognize at least some non-hematopoietic cells, raising

concern that they would cause toxicity if adoptively transferred. A
small subset of minor H antigens discovered are predominantly or
exclusively on hematopoietic cells and several of these are being
evaluated as targets for immunotherapy to facilitate a selective GVL
effect (Table 2).43,51–53 The potential for a few of these ‘hematopoietic-
restricted’ minor H antigens described below to serve as targets for
immunotherapy to augment the GVL effect is supported by the
analysis of T-cell responses in patients who have responded to
allogeneic HCT, or to a donor lymphocyte infusion (DLI) to treat
relapse.

HA-1 and HA-2
HA-1 was the first molecularly characterized autosomal human minor
H antigen and has been comprehensively investigated as a potential
target for GVL therapy. HA-1 is a nonamer peptide (VLHDDLLEA,
called HA-1H. The bold and underlined letter represent the poly-
morphic amino acids within the minor H antigen peptide sequence)
that arises as a consequence of an SNP in the HMHA1 gene and is
presented by HLA-A*0201. The corresponding non-immunogenic
sequence or ‘null allele’ is VLRDDLLEA (called HA-1R), and two groups
have studied the basis for differential immunogenicity of these
peptides in depth.22–24 The proteasomal cleavage and transport of
the two peptides into the endoplasmic reticulum via TAP is similar,
and both variants can bind to the HLA-restricting allele. However, the
arginine (R) variant has lower affinity and less stable binding to HLA-
A*0201, likely related to the relatively large size of the arginine
molecule that results in steric and electrostatic hindrance with HLA-
A*0201 D pocket residues.22–24 The interaction between soluble HA-
1H-specific TCRs and the HA-1H and HA-1R peptides has also been
analyzed, and it was observed that the TCR bound the HA-1H as
expected, albeit with relatively low affinity (35mM) and rapid dissocia-
tion, but completely failed to bind HA-1R.23 Thus, differences in both
MHC and TCR binding account for the immunogenicity of HA-1H.
The immunogenicity of HA-2 (sequence YIGEVLVSV, called HA-2V),
which is also presented in association with HLA-A*0201, arises from
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Figure 1 The cartoon illustrates the pathways of generation and presentation of minor H antigens, and the recognition of minor H antigens by donor T cells

during allogeneic HCT. Minor H antigens arise as a consequence of the normal cellular mechanisms for processing and presenting foreign antigens to T cells.

Polymorphic genes are transcribed and translated and short peptide sequences are generated by proteolytic digestion of longer precursors in the proteosome.

The peptides are transported into the endoplasmic reticulum by the peptide transporter (TAP) and loaded onto MHC class I molecules. The peptide–MHC

complex is subsequently presented on the cell surface. In the setting of allogeneic HCT, polymorphisms in the recipient genome can result in the expression

of proteins and peptides that are distinct from those in donor cells. Donor T cells fail to recognize self-peptides presented on the cell surface of donor cells

due to thymic and peripheral tolerance mechanisms. However, there are high-avidity T cells in the donor repertoire that can recognize recipient minor H

antigens and these cells become activated following allogenic HCT and contribute to GVHD and to the GVL effect.
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an SNP in the MYOG1 gene that results in altered binding of
the encoded peptides to HLA-A*0201. Like HA-1, HA-2 has a
hematopoietic-restricted tissue distribution,52 although it has been
less extensively studied than HA-1 and has a less favorable phenotypic
distribution in the population.

It is well established that HA-1- and HA-2-specific CTL can kill
leukemic blasts and prevent the growth of leukemic progenitors
in vitro.48–49, 57–59 The first example of an in vivo effect of HA-1-specific
T cells was reported by Kircher et al.,57 in which a patient with a
chemotherapy-refractory relapse of BCR-ABL-positive ALL 1 year
after HCT received a DLI from the original HLA-identical sibling
HCT donor. The patient achieved a complete cytogenetic and mole-
cular remission, and clonal analysis of the specificity of a minor H
antigen-specific CTL line established from patient peripheral blood

mononuclear cells revealed sole specificity for HLA-A2+ HA-1H+

target cells, and recognition of primary leukemic cells that endo-
genously presented the HA-1H minor H antigen. The Goulmy group
performed an analysis of three additional patients who received DLI to
treat post-transplant relapse using MHC/peptide tetramers to quantify
HA-1- and/or HA-2-specific T cells.60–61 They observed an expansion
of CD8+ T cells specific for HA-1 and/or HA-2 in the blood after DLI,
and the emergence of HA-1- and HA-2-specific T cells coincided with
remission of the malignancies (chronic myeloid leukemia (CML) and
multiple myeloma) and restoration of complete donor hematopoietic
cell chimerism. HA-1- and HA-2-specific T cells were also isolated
from these patients and shown to lyse recipient leukemic cells and
inhibit leukemic colony formation in vitro.60–61 In one additional
report, the emergence of HA-1H-specific CTL in patients treated with

Table 1 Mechanisms of immunogenicity of human minor histocompatibility antigens

Minor H antigen (gene) HLA allele Immunogenic

peptide epitope

Genetic

mechanisms

Molecular mechanisms preventing recognition

of the alternative allelic peptide

Altered peptide binding to

MHC and/or TCR

Altered peptide binding

to MHC

AAC-4R (cathepsin H)25 A*3101 ATLPLLCAR Exonic nsSNP D peptide MHC binding

AAC-5R (cathepsin H)25 A*3303 WATLPLLCAR Exonic nsSNP D peptide MHC binding

HA-2V (MYO1G)28–29 A*201 YIGEVLVSV Exonic nsSNP D peptide MHC binding

(+possible additional factors)

Altered TCR recognition of

MHC–peptide complex

HA-1H (HMHA1)22,30 A*0201 A*0206 VLHDDLLEA Exonic nsSNP D peptide MHC binding D T-cell

recognition of MHC–peptide complex

HA-1H (HMHA1)31 B*60 B*40012 KECVLHDDL(L) Exonic nsSNP D T-cell recognition of MHC–peptide complex

HB-1H (HMHB1)32–33a B*4402 B*4403 EEKRGSLHVW Exonic nsSNP D T-cell recognition of MHC–peptide complex

HB-1Y (HMHB1)34a B*4402 B*4403 EEKRGSLYVW Exonic nsSNP D T-cell recognition of MHC–peptide complex

ACC-1Y (BCL2A1)35a A*2402 DYLQYVLQI Exonic nsSNP D T-cell recognition of MHC–peptide complex

ACC-2D (BCL2A1)35 B*4403 KEFEDDIINW Exonic nsSNP D T-cell recognition of MHC–peptide complex

ACC-1C (BCL2A1)36a A*2402 DYLQCVLQI Exonic nsSNP D T-cell recognition of MHC–peptide complex

LB-ECGF1-1H

(ECGF1)26

B*0702 RPHAIRRPLAL Exonic nsSNP

in alternative

ORF

D T-cell recognition of MHC–peptide complex

SP110R (SP110)37 A*0301 SLPRGTSTPK Exonic nsSNP D T-cell recognition of MHC–peptide complex,

reverse splicing non-contiguous peptides

LB-ADIR-1F (ADIR/

TOR3A)27

A*0201 SVAPALALFPA Exonic nsSNP

in alternative

ORF

D T-cell recognition of MHC–peptide complex

Altered protein transport and/or processing

Altered transport in TAP HA-8R (KIAA0020)20 A*0201 RTLDKVLEV Exonic nsSNP D peptide transport TAP leading to

absent peptide presentation in donor cells

Proteosomal cleavage HA-3 (Lbc/AKAP13)21 A*0101 VTEPGTAQY Exonic nsSNP Proteosomal cleavage leading to precursor

peptide destruction

Unknown SLC1A5A16 B*4002 AEATANGGLAL Exonic nsSNP Possible D TAP transport

Altered transcription

Gene deletion UGT2B1715,17 A*2902 B*4403 AELLNIPFLY Gene deletion No transcribed sequence

UGTB1716 A*0206 CVATMIFMI Gene deletion No transcribed sequence

Frameshift mutation LRH-1 (P2X5)38–40 B*0702 TPNQRQNVC Frameshift

mutation

Major difference in transcribed sequence

Nonsense mutation PANE1 (CENPM)19 A*0301 RVWDLPGVLK

termination

Nonsense

mutation

Mutation-related stop codon, transcription

aborted, truncated transcript

mRNA splicing ACC-6v (HMSD)41 B*4402 B*4403 MEIFIEVFSHF

HMSD variant

Intronic SNP D mRNA splicing leads to a different transcript

Abbreviations: HLA, human leukocyte antigen; MHC, major histocompatibility complex; nsSNP, non-synonymous single nucleotide polymorphisms; TAP, transporter associated with antigen
processing; TCR, T-cell receptor.
The bold and underlined letters represent the polymorphic amino acids within the minor H antigen peptide sequence.
aBiallelic recognition has been shown.
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DLI for relapse of CML appeared to coincide with the elimination of
the CML.23

HA-1-specific CTL have been identified in peripheral blood mono-
nuclear cell samples obtained from patients who have received DLI
without experiencing severe GVHD.30,57,60–61 However, analysis of
transplant outcome based on donor/recipient disparity of HA-1 has
provided conflicting data concerning a potential role of HA-1 in
GVHD.62–64 This conflicting data could reflect the inherent limitations
of analyzing GVHD outcomes in relation to a few known minor H
antigen differences in population studies of highly outbred indivi-
duals. HA-1 is widely accepted to be selectively expressed on hema-
topoietic cells, and multiple publications have documented very low to
absent HA-1 gene expression in non-hematopoietic cells,65–67 and lack
of recognition of HA-1H-positive non-hematopoietic cells by HA-1H-
specific CTL in cellular assays.52 Furthermore, HA-1H-specific CTL
induce little or no specific tissue damage when co-cultured with HA-
1H-positive skin biopsy specimens in a skin explant model of
GVHD.68

BCL2A1/ACC-1 and ACC-2
BCL2A1 is a member of the bcl-2 family of antiapoptotic genes and
encodes the minor H antigens, ACC-1Y, ACC-1C and ACC-2D. Biallelic
recognition of ACC-1 has recently been shown such that both ACC-1Y

(sequence DYLQYVLQI. The bold and underlined letter represent the
polymophic amino acids within the minor H antigen peptide
sequence) and ACC-2C (DYLQCVLQI) are processed, bind the
HLA-A*2402-restricting allele and are immunogenic.36 ACC-2D

results from a different nucleotide polymorphism in the BCL2A1
gene and is presented by HLA-B*4403.35 The BCL2A1 gene is highly
expressed in hematological malignancies and may contribute to the
survival of malignant cells, making minor H antigens encoded by this
gene attractive for antileukemic immunotherapy.69 The immunogenicity

of ACC-1Y, ACC-1C and ACC-2D have been attributed to physical
differences in the peptide–MHC complex for TCR discrimination.
ACC-1Y- and ACC-2D-specific T cells were isolated from transplant
recipients and lysed primary leukemic cells in vitro.35 Gene expression
analysis by northern blot,35 quantitative PCR67 and database micro-
array data suggests a predominantly hematopoietic-restricted distri-
bution (http://biogps.gnf.org), suggesting that ACC-1Y, ACC-1C and
ACC-2D may be useful targets for segregating the GVL effect from
GVHD.70

P2X5/LRH-1
The P2X5 gene is a member of the P2X purinergic ATP-gated non-
selective cation channels and encodes the HLA-B*0702-restricted
LRH-1 minor H antigen.38 A frameshift mutation resulting from an
insertion/deletion SNP underlies the immunogenicity of LRH-1. The
cytosine deletion in exon 3 leads to the production of a truncated
protein in the donor cells and a sequence disparity between the
recipient and donor in the transcribed region, including a major
partial disparity between recipient and donor for the amino-acid
sequence that gives rise to the minor H antigen peptide in recipient
cells (TPNQRQNVC in the recipient, TPTSGRTSV in the donor. The
bold and underlined letters represent the polymorphic amino acids
within the minor H antigen peptide sequence).38 The fate of the donor
transcript is not known.

Quantitative PCR data show that P2X5 gene is expressed in normal
lymphocytes, B and T lineage ALL, lymphoma and multiple myeloma,
and the CD34+ fractions of CML and AML. P2X5 is expressed at lower
levels in the brain and skeletal muscle, but there is minimal if any
expression in the target tissues of GVHD (small intestine, colon, liver,
lung, skin),38 and skin fibroblasts that are positive by LRH-1 genotyp-
ing, are not recognized in cellular assays.38 Although P2X5 is pre-
dominantly expressed in lymphocytes and there is little expression in

Table 2 Minor H antigens selectively expressed in hematopoietic cells

Minor H antigen Gene/chromosome HLA allele Polymorphism

Immunogenic

peptide epitope Genotype frequencies (%)

Estimated

disparity MSD (%)

Estimated

disparity MUD (%)

Hematopoietic

HA-1H22,30 HMHA1/19p13.3 A*0201

A*0206

rs1801284 VLHDDLLEA HH¼13, HR¼45.8, RR¼41.2 6.4 +A*0206o1 11.6 +A*0206o1

LRH-138 P2X5/17p13.3 B*0702 rs5818907 TPNQRQNVC +/+¼4, +/�¼50, �/�¼46 4.9 7.5

ACC-2D35 BCL2A1/15q24.3 B*4403 rs3826007 KEFEDDIINW DD¼6.4, DG¼38.1, GG¼55.5 3.6 6.7

HEATR1E54 HEATR1/1q43 B*0801 rs2275687 ISKERAEAL E/E¼10, E/G¼45, G/G¼45 3.1 5.6

ACC-1Y35 BCL2A1/15q24.3 A*2402 rs1138357 DYLQYVLQI YY¼6.7, YC¼39.5, CC¼53.5 2.8 5.2

ACC-6v41 HMSD/18q21.3 B*4402

B*4403

rs9945924 MEIFIEVFSHF

HMSD variant

V/V¼10, V/wt¼23, wt/wt¼66.7 2.3 5.9

HA-2V28,29 MYO1G/7p13-p11.2 A*0201 rs61739531 YIGEVLVSV VV¼56.8, VM¼37.7, MM¼5.5 1.8 2.5

SP110R37 SP110/2q37.1 A*0301 rs1365776 SLPRGTSTPK RR¼37.0, RG¼48.3, GG¼14.7 1.6 2.5

LB-LY75-1K55 LY75/2q24 DRB1 *1301 rs12692566 GITYRNKSLM K/K¼6.7, K/N¼33, N/N¼60 1.2 2.4

HA-1H31 HMHA1/19p13.3 B*60 B*40012 rs1801284 KECVLHDDL(L) HH¼13, HR¼45.8, RR¼41.2 o1 o1

ACC-1C36 BCL2A1/15q24.3 A*2402 rs1138357 DYLQCVLQI CC¼53.8, YC¼39.5, YY¼6.7 o1 o1

B cell

CD19L56 CD19/16p11.2 DQ

A1*05B1*02

rs2904880 WEGEPPCLP L/L¼3.4, L/V¼50, V/V¼46.6 10.4 15.9

HB-1Y34 HMHB1/ 5q31.3 B*4402

B*4403

rs161557 EEKRGSLYVW YY¼5.2, HY¼41.2, HH¼53.7 3.9 6.8

HB-1H32,33 HMHB1/5q32 B*4402

B*4403

rs161557 EEKRGSLHVW HH¼53.7, HY¼41.2, YY¼5.2 1.2 1.3

Abbreviations: HLA, human leukocyte antigen; MSD, matched sibling donor; MUD, matched unrelated donor.
The bold and underlined letters represent the polymorphic amino acids within the minor H antigen peptide sequence.
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normal myeloid cells, LRH-1-specific minor H antigens kill CD34+

ALL, AML and CML cells, and CD138+ multiple myeloma cells
in vitro.38–40 Dolstra’s group studied seven HLA-B7+ LRH-1+-positive
patients who received HCT for a hematological malignancy and
subsequently DLI from an HLA-B7+ LRH-1�/� donor, and detected
LRH-1-specific responses coinciding with clinical, molecular or cyto-
genetic responses in three of the seven patients.38,40

PROGRESS IN THE DEVELOPMENT OF IMMUNOTHERAPY

TARGETING MINOR H ANTIGENS FOLLOWING ALLOGENEIC

HCT

Despite the discovery of at least 14 hematopoietic-restricted minor
H antigens and observational data suggesting that certain minor H
antigen-specific T cells may have the potential to induce a potent
selective GVL effect, the translation of these discoveries into clinical
trials that prospectively evaluate strategies such as adoptive T-cell
therapy or vaccination to augment specific T-cell responses has been
challenging. The challenges that have impeded clinical translation of
minor H antigen-directed immunotherapy and the progress in the
field that provides optimism that the potential of this approach will be
realized are described below.

MOLECULAR IDENTIFICATION OF MINOR H ANTIGENS

The challenges
A rational assumption for the clinical investigation of minor H
antigen-directed immunotherapy has been that minor H antigens
that have a predominantly hematopoietic-restricted tissue distribution
should be selected as targets. Analysis of the genotype frequency of the
minor H antigens shown in Table 2 reveals an inherent difficulty,
which is that the current list will only be relevant for a minor
proportion of the transplant population, and that any study targeting
a single minor H antigen would have difficulty accruing sufficient
number of patients to be informative. Ideally, a large panel of minor H
antigens would be available from which to select appropriate targets
for the treatment of individual HCT recipients because of the need
to have the appropriate HLA-restricting molecule and the correct
directional disparity between HCT recipient and donor.

The success in assembling an adequate selection of minor H
antigens for clinical immunotherapy trials is likely to depend on the
stringency of the criteria used to define ‘hematopoietic restricted’, as
the proportion of human genes that are expressed absolutely exclu-
sively in hematopoietic cells is very small. It is uncertain as to whether
it is essential that the expression of minor H antigens be absolutely
exclusive to hematopoietic cells to prevent toxicity in the context of
adoptive immunotherapy or vaccination, or what level of expression
in non-hematopoietic cells might be tolerated. However, this issue is
difficult to approach experimentally, thus there remains a strong case

for selecting highly hematopoietic-restricted minor H antigens as
targets for the initial immunotherapy clinical trials until safety is
established.

The progress
At the present time, 25 and 40% of recipients of HLA-identical
related and unrelated donor HCT, respectively, would be eligible
for immunotherapy targeting one of the molecularly characterized
minor H antigens expressed predominantly on hematopoietic cells
(Table 2).71 The discovery of minor H antigens is accelerating as a
result of novel approaches for isolating minor H antigen-specific
CTL clones that can be used for gene discovery, and the development
of databases of human genetic polymorphisms and cell lines with
characterized genotypes that facilitate dissection of T-cell recognition
(Figure 2). How these developments are being applied to minor H
antigen gene discovery is discussed briefly below.

Cellular tools: isolation of minor H antigen-specific CTL clones by
primary in vitro stimulation. Minor H antigen-specific T cells provide
essential reagents for the molecular identification and characterization
of the polymorphic genes that encode the antigens, and such T cells
have in the past been isolated from post-transplant blood obtained
from allogeneic HCT recipients. This approach was cumbersome and
often unsuccessful, perhaps due to the immunosuppressive drugs the
patients were taking to impede the development of GVHD. We
developed an approach for isolating minor H antigen-specific CD8+

T-cell clones that can be stably propagated for antigen discovery, which
relies on the stimulation of naı̈ve CD8+ T cells from unprimed donors
with monocyte-derived dendritic cells (DC) from the HLA-identical
sibling.54 The generation of minor H antigen-specific CTL by primary
in vitro stimulation required interleukin (IL)-12 and g-chain cytokines
in the culture. With this approach, a large panel of CTL clones was
obtained from granulocyte colony-stimulating factor mobilized stem
cell products of 10 consecutive HCT donors. This panel included CTL
clones specific for novel minor H antigens that were presented in
association with common HLA alleles, encoded by polymorphisms
with a balanced phenotype frequency (between 26 and 78% of the
population), and expressed on hematopoietic cells, including leuke-
mia.54 As proof of principle, a minor H antigen-specific CTL clone
from this panel was used to discover a new minor H antigen encoded
by the HEATR1 gene that is presented on AML stem cells and
minimally in non-hematopoietic tissues.54 Additional minor H anti-
gens have been identified using CTL clones derived by primary in vitro
stimulation and these are currently being fully characterized.

Genetic and molecular tools: genome-wide association and advances in
cDNA library screening. Approaches that have been used previously to
identify the polymorphic genes and peptide sequences that provide
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minor H antigens include cDNA library screening, genetic linkage
analysis and peptide elution followed by high-performance liquid
chromatography to identify immunogenic peptides and mass spectro-
metry to determine their sequence. These approaches have been
reviewed elsewhere,7 but their broad application has been restricted
to a few laboratories with the technical expertise to perform this work.
The application of new genetic and molecular techniques that incor-
porate advances in human genomics reduces technical complexity and
is accelerating the pace of minor H antigen discovery.

Genome-wide association studies and HapMap screening: An impor-
tant development in the field is the application of genome-wide
association studies (GWAS) and HapMap screening for minor H
antigen identification. GWAS with HapMap scanning takes advantage
of the publically available genotyping data from the Human HapMap
project and involves analyzing the relationship between patterns of
expression of the minor H antigen phenotype (as determined by
in vitro cytotoxicity or cytokine secretion assays) of B-cell lympho-
blastoid cell lines (B-LCL) and their patterns of SNP genotype
downloaded from databases. In contrast to genetic linkage analysis,
the association studies in GWAS are performed simultaneously for
SNPs across the whole genome making it a potentially rapid and
powerful technique. GWAS has now been used to discover three novel
minor H antigens, and to retrospectively identify two others.16,56,72

The Akatsuka group published the first report of the use of GWAS
for discovering novel minor H antigens.16 They screened minor H
antigen-specific CTL clones for recognition of up to 72 HapMap
B-LCL, and stratified the B-LCL into those that were clearly positive
for expression of the minor H antigen and those that were clearly
negative. Association scores were then calculated using the purpose-
designed computer program, and chromosomal regions that con-
tained SNPs that were significantly associated with T-cell recognition
were identified. Candidate polymorphisms were then evaluated using
synthetic peptides to identify the precise epitope. In one example
reported by the Akatsuka group,16 the actual SNP that corresponded
to the antigenic allele was not identified in the original GWAS because
of genotyping errors for that SNP in the database, but was subse-
quently identified and confirmed on re-sequencing of the candidate
gene. The GWAS approach is more rapid than traditional genetic
linkage analysis and requires less technical expertise. However, there
can be difficulties with the identification of multiple polymorphisms
located in disparate regions, even different chromosomes, representing
a mixture of false and true positive associations.16,56,72

Bacterial cDNA libraries for the identification of class II MHC-
restricted minor H antigens: Most published work on minor H anti-
gen discovery describes the identification of class I MHC-restricted
minor H antigens recognized by CD8+ T cells. There has been renewed
interest in a role for HLA class II minor H antigens in a selective
GVL effect because HLA class II is not expressed on most non-
hematopoietic tissues under non-inflammatory conditions, and
therefore expression of a minor H antigen in non-hematopoietic
tissue in the absence of its HLA-restricting allele is less likely to
cause GVHD. It remains to be determined whether there is sufficient
HLA class II expression on leukemic cells, including leukemic stem
cells to be recognized by CD4+ T cells, and if so whether leukemic cells
will be susceptible to death pathways invoked in target cells by CD4+ T
cells. These issues are best studied with T cells specific for molecularly
characterized class II-restricted minor H antigens.

Several class I MHC-restricted minor H antigens were discovered by
screening cells co-transfected with pools of a cDNA library prepared
from minor H antigen-positive cells and with a plasmid encoding the
class I MHC-restricting allele. Conventional cDNA library screening

by transfection into COS7 or 293T cells is not as easily applied for the
discovery of class II minor H antigens, as these cells are not profes-
sional antigen-presenting cells. This issue can be resolved by con-
structing the cDNA libraries such that the invariant chain is fused to
each cDNA to direct the transport of translation products to class II
processing compartments, and co-transfecting the COS cells with
essential components of the class II antigen presentation pathway.73

A subsequent improvement for discovery of class II-restricted antigens
relates to the expression of cDNA libraries in bacteria, and loading of
bacteria containing the expressed human protein into class II MHC-
positive B-LCL.55,74–75 The first example of the discovery of a minor H
antigen using a bacterial cDNA library is the minor H antigen LB-
P14K2B-1S encoded by the phosphatidylinositol 4-kinase type II b
(PI4K2B) gene.75 A recombinant cDNA library was constructed from
patient B-LCL by cloning randomly primed cDNAs into a pKE-1
vector, which encodes the glutathione-binding domain of GST under
the control of an isopropyl b-D-thiogalactoside promoter. Protein
expression was induced by IPTG, and individual pools of 50 bacteria
were then opsonized with complement and loaded onto aliquots of
donor B-LCL. The B-LCLs were then screened for T-cell recognition
by enzyme-linked immunosorbent assay to detect interferon-g. One
bacterial pool induced a positive response and sub-cloning of this pool
identified a single cDNA that was identical to the PI4K2B gene. An
SNP in PI4K2B was subsequently confirmed to be the polymorphism
relevant for recognition.

Several other autosomal minor H antigens have now been discov-
ered using bacterial cDNA libraries, including LB-LY75-1K, LB-MR1-
1R, LB-PTK2B-1Y and LB-MTHFD1-1Q.55,75 A minor H antigen of
particular interest is LB-LY75-1K (sequence GITYRNKSLM), which is
encoded by the lymphocyte antigen 75 (LY75) gene, and arises from a
non-synonymous SNP (rs12692566, G/T, lysine/asparagine) in exon
29. LY75 is also known as DEC205 and functions as a scavenger
receptor in DC.76,77 LY75 is expressed in both normal lymphoid and
myeloid hematopoietic cells, with the highest level of expression in
DC. LB-LY75-1K-positive AML cells but not fibroblasts (a represen-
tative non-hematopoietic cell) induced interferon-g release by the
LB-LY75-1K-specific CD4+ T-cell clone, suggesting that targeting LB-
LY75-1K could potentially induce a GVL effect without GVHD.55 One
caveat for targeting LB-LY75-1K to induce a selective GVL effect is
that it is also expressed on cortical thymic epithelial cells that, unlike
most non-hematopoietic cells, do express HLA class II molecules.78

Thymic damage is considered to be a factor in the development of
chronic GVHD by allowing thymocytes to escape deletion of T cells
with self-reactive TCRs. Cortical thymic epithelial cells contribute to
tolerance, and thus the elimination of recipient thymic epithelial cells by
targeting LB-LY75-1K could theoretically contribute to chronic GVHD.

Revisiting old tools: screening candidate polymorphic peptides using
reverse immunology. There has been renewed interest in using reverse
immunology for minor H antigen discovery with the wealth of available
data on human genetic polymorphism. Reverse immunology involves
screening candidate peptides selected from the sequence of a gene
product of interest often based on computer algorithms that predict
binding to HLA molecules. This approach has the potential for high-
throughput analysis and allows the selective analysis of peptides encoded
by genes that are known to be preferentially expressed in hematopoietic
cells. Reverse immunology has been used extensively to discover tumor-
associated antigens, and in the past has facilitated the identification of
additional epitopes in genes such as HMHA-1, and HB-1 that encode
minor H antigens previously discovered by ‘forward’ immunology.34

Reverse immunology has recently been used by the Ritz group to
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identify potentially immunogenic novel Y-chromosome-associated
minor H antigens after HLA-identical transplant between sex-mis-
matched individuals. A large panel of Y-chromosome-derived peptide
sequences was screened for recognition by T cells obtained from short-
term cultures of peripheral blood mononuclear cells obtained from
patients following allogeneic HCT using interferon-g release as a
readout. T-cell responses to a subset of the peptides were observed,
although only a small number of patients responded to any given
peptide. Studies showing that these putative novel HY antigens are
processed and presented by leukemic cells have not yet been
reported.79

Our lab has performed an in silico analysis that incorporated gene
expression and SNP databases, and peptide prediction algorithms to
assemble a library of candidate minor H antigen peptides derived
from genes that are predominantly expressed in hematopoietic cells.
This library of peptides will enable screening for T-cell responses that
might develop in allogeneic HCT recipients who are appropriately
discordant at the putative antigenic allele with the donor, and can be
used for in vitro priming of T-cell responses from the donor-naı̈ve
T-cell repertoire.

ADOPTIVE T-CELL THERAPY TARGETING MINOR H ANTIGENS

The challenges
The adoptive transfer of donor T cells specific for viral antigens
is effective for preventing cytomegalovirus and Epstein–Barr virus
disease after allogeneic HCT without causing GVHD,80–84 and the
transfer of autologous tumor-reactive T cells has been employed
successfully in a subset of patients with melanoma- and Epstein–
Barr virus-related malignancies.85–89 The molecular characterization
of minor H antigens that are expressed by leukemic cells but not on
non-hematopoietic tissues provides the opportunity to use adoptive
transfer of minor H antigen-specific T cells to augment the GVL effect
after HCT without GVHD. There are several significant challenges to
be met before this complex approach can be routinely employed.
These include the need to develop efficient methods for isolating and
expanding rare donor T cells that are specific for relevant minor H
antigens, to define the appropriate cells and conditions that promote
persistence of transferred T cells in vivo, and to implement strategies to
ensure that transferred T cells do not cause toxicity to normal tissues.

The progress
Steady progress has been made in defining principles for isolating,
expanding and re-infusing T cells to treat human infections and
malignancy,84,90–91 including the use of gene transfer techniques to
introduce TCR ab genes and confer specificity for a target antigen, and
to introduce genes that will enhance safety.92–93 Another important
advance is the recognition that cell intrinsic qualities of effector T cells
(TE) that are selected for adoptive transfer play a critical role in their
ability to persist in vivo and establish long-lived memory responses.
Here, we discuss how these advances are being applied to adoptive
T-cell therapy targeting minor H antigens.

Isolation and expansion of minor H antigen-specific T cells. Donor T cells
specific for minor H antigens, including hematopoietic-restricted anti-
gens such as HA-1H, ACC-1Y and ACC-2D and LRH-1, are already
amplified in some HCT recipients,23,30,35,38,40,47,57,60–61 although their
ability to eliminate leukemia may be compromised by the administration
of immunosuppressive drugs to prevent GVHD. Such T cells can be
isolated post transplant and expanded in vitro for adoptive transfer to
magnify the endogenous response and potentially improve the GVL
effect. T-cell clones rather than polyclonal T cells are preferred for

immunotherapy in the allogeneic HCT setting to avoid infusing
other potentially alloreactive T cells, and to facilitate the analysis of safety
and efficacy. A phase I clinical trial of adoptive immunotherapy has been
performed by our group in which T-cell clones that were specific for
minor H antigens that exhibited preferential expression on hematopoietic
cells by in vitro assays were adoptively transferred to patients with
leukemia relapse.94 Before infusion, the T-cell clones were expanded
to several billion cells using culture methods that employ antibodies to
the CD3 signaling complex to activate T cells, ‘feeder’ cells to provide
co-stimulation and IL-2 to promote T-cell proliferation and survival.
This study showed that generating minor H antigen-specific T cells for
therapy was feasible in a significant subset of patients, and showed that
the transferred T cells infiltrated the bone marrow and mediated
antileukemic activity in vivo. However, some treated patients experienced
reversible pulmonary toxicity at high T-cell doses that was subsequently
shown to reflect the unexpected expression of the targeted minor H
antigen in pulmonary epithelial cells. This ‘on-target’ toxicity emphasized
the need to focus on immunotherapy targeting molecularly characterized
minor H antigens with a well-defined tissue distribution for future
clinical trials.94 A second problem observed in this trial was the short
duration of persistence of transferred T cells, which is commonly
observed in adoptive T-cell therapy trials for malignancy and correlates
with lack of a sustained antitumor effect.95 The basis for poor T-cell
persistence is beginning to be elucidated and strategies to improve cell
persistence are discussed later in this review.

An alternative approach is to isolate minor H antigen-specific
T cells directly from the donor before transplant and administer them
either as part of the stem cell graft or early post transplant when the
tumor burden is low. Early therapy may be especially important after
non-myeloablative HCT because of the limited antitumor activity of
the conditioning regimen. Specialized culture conditions employing
DC that are either pulsed with immunogenic peptides, transfected
with the gene encoding the antigen or derived from monocytes
isolated from the HCT recipient (and thereby naturally expressing
the relevant minor H antigens) have been developed to isolate donor
T cells specific for leukemia-associated minor H or non-polymorphic
antigens.54,96–99 Techniques have been established for the isolation of
human T-cell clones and involve plating T cells directly from poly-
clonal cultures at limiting dilution or after selection using tetramers or
cytokine capture, and screening colonies to identify those with the
desired reactivity.47,100 Potential problems with this approach include
the technical difficulty of priming and expanding rare T cells from the
naı̈ve repertoire of the donor, and the possibility that TE cells derived
from naı̈ve T-cell precursors in vitro may not be appropriately
programmed for survival in vivo.

TCR ab gene transfer to derive T cells for adoptive immuno-
therapy. Although culture conditions for the isolation of minor H
antigen-specific T cells for GVL therapy have improved, novel strate-
gies to generate T cells may prove more efficient and ultimately more
effective. One potential approach is to engineer donor T cells for
antigen specificity by the introduction of genes that encode the TCR
a- and b-chains from previously isolated minor H antigen-specific
T-cell clones. TCR gene transfer has been successful for generating
antigen-specific T cells that are effective in murine models of adoptive
immunotherapy,101–103 and the first human clinical trials of T cells
modified by TCR gene transfer to treat metastatic melanoma have
been performed with some success.104–105

TCR gene transfer has the advantage of providing ‘off the shelf’
reagents that could be used to target minor H antigens in HCT
recipients that are appropriately discordant at specific loci. The
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availability of TCR genes for multiple minor H antigens would
increase the applicability of minor H antigen-specific immunotherapy,
requiring only that the donor and recipient be genotyped before
transplant to select the appropriate targets for therapy. The TCRs
would need to be inserted into donor T cells that lack the ability to
cause GVHD, which could potentially be accomplished by introducing
the genes into virus (cytomegalovirus or Epstein–Barr virus)-specific
T cells.103,106–111 For example, the minor H antigen HA-2 has a
favorable tissue distribution and CTL specific for HA-2 have been
observed in patients with relapsed leukemia responding to DLI.
However, 95% of the population expresses the antigenic HA-2v allele
and therefore naturally mismatched recipient donor pairs are infre-
quent. The transfer of HA-2-specific TCRs into T cells from HLA-
A*0201-positive, HA-2-negative individuals using retroviral vectors
has been shown to successfully redirect cytolytic activity against
HA-2-positive target cells, including leukemia.103 Furthermore, the
introduction of an HLA-A*0201-restricted HA-2-specific TCR into
HLA-A*0201-negative lymphocytes also transferred HA-2-specific anti-
leukemic reactivity in vitro, and only against HLA-A*0201-positive target
cells.103 Thus, this approach could also be applied to T-cell therapy in
non-HLA-matched HCT where the donor lacks the HLA-restricting
allele for a minor H antigen that both the donor and recipient share.

There are potential limitations of the TCR transfer approach,
including (a) mispairing of the gene-transferred TCR and native
TCR chains leading to the development of dysfunctional or potentially
autoreactive TCRs, (b) competition for the CD3 co-receptor between
the gene-transferred TCR with the native TCR or mixed TCR dimers
leading to reduced function of the introduced antigen-specific TCR,
and (c) inefficient gene transfer and unstable transgene expression.
Potentially harmful neoreactivity, including HLA class I and II
alloreactivity and autoreactivity, has been observed in human T cells
in vitro as a consequence of mispairing of the gene-transferred minor
H antigen or viral-specific TCR a- or b-chains and native TCR
chains,112 and a lethal GVHD syndrome (‘TCR gene transfer-induced
GVHD’) has been observed in murine models as a result of mispairing
of endogenous and introduced TCRs.113 Efforts to make TCR transfer
safer include modifications of the introduced a- and b-chains to
increase correct pairing,112,114–117 and/or to prevent expression of the
endogenous TCR by the introduction of a zinc-finger nuclease specific
for the endogenous TCR b-chain or the use of small interfering RNA,
thereby avoiding the opportunity for mispairing.118,119 A further
option to prevent mispairing of the introduced and endogenous
a- and b-chains is to introduce the TCR ab genes together with the
requisite CD4 and CD8 co-receptors into g/d T cells, which lack
endogenous a- and b-chains. The g/d T-cell approach has been
studied using the HA-2 minor H antigen TCR as a model and the
HA-2 ab-transduced g/d T cells showed good functional activity
in vitro.107,120

Promoting persistence of adoptively transferred antigen-specific
T cells. The optimal regimen for promoting persistence of trans-
ferred T cells in humans has not yet been defined. Several factors have
been suggested to interfere with T-cell persistence, including terminal
differentiation from prolonged culture of T cells before infusion, the
use of excessive cytokines in vitro and the absence of a CD4+ helper
T-cell response in vivo.81, 121 Strategies for improving in vivo survival
of transferred T cells that have been evaluated in animal models
include the addition of exogenous cytokines, such as IL-2 or IL-15, or
cytokine transduction of the CTL; co-stimulation via CD28 or 4-1BB;
and transferring T cells when the recipient is lymphopenic and homeo-
static regulatory mechanisms that promote T-cell expansion and

survival are invoked.85–86,122–125 The use of IL-2 or IL-15 is likely to
be difficult in the allogeneic HCT setting as these cytokines may
provoke GVHD by inducing the proliferation of donor alloreactive T
cells present in the stem cell graft.

The importance of heritable cell intrinsic qualities of transferred T
cells is increasingly being recognized as a factor for the persistence of
transferred T cells. T cells for adoptive transfer could be isolated from
the naı̈ve (TN CD45RA+ CD45RO� CD62L+), central memory (TCM

CD45RO+ CD62L+) or the effector memory (TEM CD45RO+,
CD62L�) T-cell subsets.126 After in vitro activation and expansion,
T cells acquire a uniform TE phenotype and lack most memory T-cell
markers.127 Studies in our lab in a non-human primate model have
shown that clonally derived TE cells obtained from TCM precursors
have a greatly superior capacity to persist in vivo after adoptive
transfer compared with those derived from TEM precursors, and
reacquire memory markers, and respond to antigenic challenge
in vivo.128 This finding is consistent with studies in murine models
showing that TCM confer superior antitumor protection after adoptive
transfer compared with TEM.129 These results suggest that the transfer
of TCRs specific for minor H antigens to target leukemia would best
be accomplished by purifying TCM cells with a native TCR specific for
a persistent virus to facilitate their survival and function after adoptive
transfer. A recent study performed in a transgenic mouse model
suggests that TE cells derived from TN are also superior to those
derived from TEM cells in their ability to persist in vivo after adoptive
T-cell transfer, provided they are not extensively cultured.130

Preventing toxicity associated with adoptive T-cell transfer: The
adoptive transfer of minor H antigen-specific T cells to augment the
GVL effect has the potential to cause GVHD or toxicity to normal
tissues that express the target antigen, as illustrated by the results of
the first clinical trial of this approach.94 The use of gene transfer
to engineer T-cell specificity would impose an additional risk of
insertional oncogenesis.131 If the therapy is effective in eliminating
leukemia, some limited toxicity may be acceptable. However, it would
be advantageous to be able to eliminate transferred T cells if serious
toxicity developed. The introduction of a conditional suicide gene,
such as the HSV thymidine kinase (TK) gene, has been effective for
controlling GVHD after polyclonal DLI to treat relapse or Epstein–
Barr virus lymphoproliferation in HCT recipients, but this approach
can be limited by the immunogenicity of the viral TK, which can
result in premature elimination of transferred effector cells.93,132–134

Alternative suicide genes based on the expression of chimeric human
proteins such as Fas or caspase 9 that can be activated by a synthetic
non-toxic drug to induce cell death are being investigated by several
groups.135–136 Another approach is to express a surface molecule such
as CD20 that can be targeted by a monoclonal antibody. Preliminary
studies indicate that virus (cytomegalovirus)-specific T cells co-trans-
duced with CD20 and the minor H antigen HA-2 TCR exhibit high-
level HLA-restricted cytotoxicity against HA-2+ targets in vitro and
can be efficiently destroyed with the aCD20 monoclonal antibody
Rituximab by complement-dependent cytotoxicity.137 These develop-
ments suggest that more sophisticated approaches to augmenting GVL
activity by the adoptive transfer of minor H antigen-specific T cells
will be feasible in the future.

FUTURE DIRECTIONS—VACCINATION AGAINST MINOR

H ANTIGENS

Vaccination of HCT recipients against minor H antigens could
represent an alternative approach to adoptive immunotherapy, or a
complementary strategy for augmenting the GVL effect. However,
despite considerable effort to elicit tumor-reactive T-cell responses in
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cancer patients, most studies have yielded poor results. Additional
challenges to priming or boosting immune responses in HCT reci-
pients are posed by the pharmacological immunosuppression that is
administered to prevent or treat GVHD, and by the delayed immune
reconstitution that occurs after HCT. Conversely, there are grounds for
optimism about the potential of vaccines targeting minor H antigens
to augment the GVL effect. In contrast to solid tumors, hematological
malignancies may be more susceptible to vaccine-induced T-cell
responses because the tumor environment is more accessible physically
and immunologically. Several clinical trials of peptide or DC vaccines
targeting non-polymorphic leukemia-associated antigens have now
been conducted and immunological and clinical responses have been
shown.138–151 Minor H antigens are foreign to the donor T cells and
therefore should have the potential to induce high-affinity responses,
in contrast to most non-polymorphic tumor-associated antigens.

Clinical trials of HA-1 or HA-2 vaccination of the transplant
recipient to augment the GVL effect following allogeneic HCT have
been initiated or are planned at several centers, but results have not yet
been reported. Vaccination of the immune-competent transplant
donor before transplant is an intriguing alternative approach that
could increase the frequency T cells specific for leukemia-associated
antigens in the stem cell graft and facilitate the GVL effect. The
feasibility of inducing immune responses with vaccination and trans-
ferring them with adoptive immunotherapy post transplant in humans
has been shown in the autologous HCT setting,152 and transfer of
vaccine-induced T-cell responses to a tumor antigen (idiotype)
through the HCT graft has also been shown in HCT between HLA-
identical siblings.153 Donor vaccines targeting minor H antigens may
pose a theoretical risk of inducing autoimmunity by virtue of cross-
reactivity with the ‘non-immunogenic’ allele. However, the observation
that multiparous women remain healthy in spite of being primed to
minor H antigens from the fetus suggests this is unlikely.154–155

CONCLUSIONS

It is now 15 years since the first molecular characterization of human
minor H antigens and significant strides in minor H antigen discovery
are now being made as a consequence of advances in cellular, genetic
and molecular techniques. Much has been learned about the mecha-
nisms of minor H antigen immunogenicity, their expression on normal
and malignant cells, and their role in GVL responses. As discussed in
this review, the challenges in translating these findings to improve the
outcome of allogeneic HCT have been substantial. The first report of
the adoptive transfer of minor H antigen-specific T-cell clones to
patients with leukemia relapse in 2010 illustrates the potential for
manipulation of alloreactivity for therapeutic benefit. Concurrent
progress in defining the basic requirements for effective adoptive
T-cell immunotherapy, such as the transfer of T-cell subsets with a
high intrinsic capacity for prolonged survival, and in the use of gene
transfer to confer specificity promise to hasten the clinical translation
of cellular therapeutics targeting minor H antigens.
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