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Abstract

Background: Interest is increasing in the role of peptide-bound amino acids (AAs) inmilk protein synthesis because studies have

found that the uptake of some essential AAs by the mammary gland cannot meet the requirements for milk protein synthesis.

Although the role of dipeptide in milk protein synthesis is clearly established, little is known about the underlying mechanisms.

Objective: The objective of this study was to determine whether small peptides can be taken up intact by the peptide

transporters in mammary tissue explants and the underlying mechanisms of the effects of methionyl-methionine (Met-

Met) supplementation on milk protein synthesis.

Methods:Mammary tissue explants were cultured in conditional medium and then treated with different concentrations

of Met-Met that replace 0%, 5%, 10%, 15%, 20%, and 25% of free Met for another 24 h. In some experiments, explants

were cultured with an optimal dose of Met-Met with or without the inhibitors of peptide transporter 2 [PepT2;

diethylpyrocarbonate (DEPC), 0.1 mmol/L] and aminopeptidase N (APN; bestatin, 20 mmol/L) for 24 h.

Results: The substitutions of 15% free Met with Met-Met significantly promoted a-s1 casein (as1-CN) expression in the

mammary explants (P < 0.05). The inhibition of the PepT2 by DEPC or APN by bestatin significantly decreased the Met-

Met–stimulated increase of as1-CN expression (P < 0.05). Compared with the control group (0% Met-Met), absorption of

Val, Met, Leu, Phe, Lys, and His was improved, and mRNA abundance of the neutral and basic AA transporter was

increased in the 15%Met-Met group (P < 0.05). In addition, the mRNA abundance of the mammalian target of rapamycin

(mTOR), p70 ribosomal S6 kinase 1 gene, eukaryotic initiation factor 4E binding protein 1 gene , Janus kinase 2 (JAK2), and

signal transducer and activator of transcription 5 (STAT5) was increased in the 15% Met-Met–treated group (P < 0.05).

Conclusion: Met-Met promoted as1-CN synthesis in cultured bovine mammary gland explants, and this stimulation may

be mediated by enhanced intracellular substrate availability and by activating JAK2-STAT5 and mTOR signaling

pathways. J Nutr doi: 10.3945/jn.114.208330.

Keywords: amino acid uptake, bovine mammary gland explants, methionyl-methionine, milk protein synthesis,
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Introduction

Studies have found that the uptake of some essential amino acids
(AAs)7 by the mammary gland cannot meet the requirements for

milk protein synthesis (1, 2). Thus, it was proposed that the
peptide-bond AAs play a role in milk protein synthesis. A large
portion of AAs circulating in the blood is in the form of peptides
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(3, 4). The utilization of these circulating small peptides for milk
protein synthesis appears to be a general phenomenon (2).
Backwell et al. (5) reported that intravenously infused peptide-
bond AA promoted milk protein synthesis in goat mammary
glands. Research that used lactating mouse mammary gland
explants has provided evidence that small peptides containing
Met could serve as a source of Met for the synthesis of secreted
protein, and some Met dipeptides have a higher efficiency in
milk protein synthesis than free Met (6). Recently, our studies
demonstrated that small peptides containing Met, Lys, or Phe
improved as1 casein (as1-CN) synthesis in cultured bovine
mammary gland explants (7, 8).

Although the role of dipeptide in milk protein synthesis is
clearly established, little is known about the underlying mech-
anisms. It was hypothesized that small peptides can be taken up
intact by the peptide transporters in mammary epithelial cells
(MECs) as the intestinal cells and used for milk protein synthesis
(9–11). It was found that the peptide transporter 2 (PepT2)
serves as an integral membrane protein for the cellular uptake of
dipeptides and tripeptides and peptide-like drugs in rat mam-
mary gland extracts and human milk epithelial cells (11). PepT2
was also detected in bovine mammary glands (12). However, the
enterocytes contain high levels of intracellular peptidases that
can hydrolyze peptides into their constituent AA. Kim et al. (13)
detected peptidase activity in the brush border and soluble
fractions of rat intestinal mucosa for 13 dipeptides and 5 tri-
peptides. These peptidases may play important roles in peptide
absorption and utilization. It is important to know whether
these peptidases are also expressed in MECs. To our knowledge,
the expression of aminopeptidase N (APN) was found in caprine
mammary gland and regulated by circulating plasma peptides
(14). In addition to being used as the substrates of protein
synthesis, small peptides may function as signaling molecules
to promote AA absorption and milk protein synthesis in the
mammary gland (8).

In this study, we investigated the effects of methionyl-
methionine (Met-Met) supplementation on as1-CN synthesis,
AA uptake, and the expression of PepT2, AA transporters, and
peptidases in lactating bovine mammary explants. In addition,
we investigated the mechanisms underlying the effects of Met-
Met by inhibition of PepT2 and peptidase activities and by its
effects on the expression of mammalian target of rapamycin
(mTOR) and Janus kinase 2-signal transducer and activator of
transcription 5 (JAK2-STAT5) signaling molecules.

Methods

Mammary tissue preparation and explants culture. The use of all

animals in this study was approved by the Institutional Animal Care and

Use Committee of Zhejiang University of China. Mammary tissues were

obtained from 3 slaughtered mid-lactation Holstein dairy cows in a local
abattoir and diced into pieces (1 mm3) under sterile conditions. The

tissue explants were seeded in 6-well cell culture plates with 2 mL

of growth medium [DMEM-F12 supplemented with 10% FBS, 1%
L-glutamine, 5 mg/mL insulin, 0.5 mg/mL prolactin, 5 mg/mL transferrin,

1 mg/mL hydrocortisone, 100 IU/mL penicillin, and 100 IU/mL

streptomycin (Sigma)] and incubated at 37�C in a humidified incubator

with 5% CO2.

Treatments of cultured mammary gland explants. Mammary tissue
explants were cultured in the above-mentioned growth medium that had

no FBS and was supplemented with the following amounts of essential

AAs to meet the optimal growth requirements of MECs: 210 mg/mL Lys,

60 mg/mL Met, 123 mg/mL Thr, 117 mg/mL Phe, 214 mg/mL Leu,
120mg/mL Ile, 154mg/mLVal, and 45mg/mLHis (7). All AAs are L-isomers.

After 3 h, the conditional medium was replaced with the treatment

medium in which 0%, 5%, 10%, 15%, 20%, and 25% of total free Met

was substituted by Met-Met, respectively, and the explants were further
cultured for another 24 h. In some experiments, explants were cultured

with an optimal dose of Met-Met with or without the inhibitors of

PepT2 [diethylpyrocarbonate (DEPC), 0.1 mmol/L] and peptidase APN

(bestatin, 20 mmol/L) for 24 h.

qRT-PCR. The procedures of qRT-PCR were described previously (15).

Briefly, total RNA was isolated from the explants, and reverse

transcription was performed with an RT Kit (Takara). The mRNA
abundance for genes was quantified with SYBR PrimeScript reagent kit

(Takara) and primers listed in Supplemental Table 1. The relative

expression of target genes was normalized to the expression of b-actin
and calculated with the 22ΔΔCT method.

Western blot analysis. Protein levels were determined by Western blot

analysis according to previously described procedures with minor
modifications (16). Briefly, mammary explants were lysed and centri-

fuged. The protein concentration of the supernatant fluids was measured

with BCA protein assay (Beyotime). Protein (40 mg) was separated on

polyacrylamide gels and transferred to polyvinylidene fluoride mem-
branes. Membranes were first incubated with primary antibodies for

as1-CN (1:5000; Abcam), PepT2 (1:1500; Abcam), and b-actin (1:1000;

Boster), and then with a HRP-conjugated secondary antibody (Boster).
The protein bands were detected with a chemiluminescence system

(CLiNX Science) and analyzed with ImageJ (version 1.32j; NIH). Band

intensities were normalized against corresponding bands of b-actin.

FIGURE 1 Relative mRNA (A) and protein (B) expression of as1-CN

in bovine mammary explants cultured with 0%, 5%, 10%, 15%, 20%,

and 25% Met-Met of total Met. Values are means 6 SEMs (n = 3 per

group). Means without a common letter differ, P , 0.05. Met-Met,

methionyl-methionine; as1-CN, as1 casein.
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AA absorption. The amount of AA absorption by the mammary

explants was determined by measuring the difference of AA concentra-

tions in culture media before and after the incubation of the explants. AA
contents in the media were measured with the Amino Acid Auto-

Analyzer Model L-8900 (Hitachi).

Statistical analysis. All experiments were performed with 3 replicates,
and each experiment was independently repeated 3 times by using

mammary explants from 3 cows. Data were analyzed by using the GLM

procedure of SAS software (version 9.0; SAS Institute). Two-factor

ANOVA was used to determine the effects of Met-Met and DEPC or
bestatin on as1-CN synthesis. Other data were analyzed with 1-factor

ANOVA. Statistical significance for all analyses was set at P < 0.05.

Results

Met-Met enhances as1-CN expression. The effects of Met-
Met as a partial substitution of free Met (5–25%) on the as1-CN
expression in mammary gland explants are shown in Figure 1.
The mRNA abundance of as1-CN increased when 15%, 20%,
and 25% of free Met was substituted by Met-Met (P < 0.05;
Figure 1A). In addition, 15% and 20% substitutions signifi-
cantly enhanced as1-CN protein expression (P < 0.05; Figure
1B).

Met-Met stimulates PepT2 expression. The PepT2 expres-
sion in mammary explants under different Met-Met concentra-
tions is shown in Figure 2. The mRNA abundance of PepT2
significantly increased when 15% free Met was replaced by

Met-Met (P < 0.05; Figure 2A). A similar result was observed for
PepT2 protein expression (P < 0.05; Figure 2B).

PepT2 inhibitor DEPC reduces Met-Met–stimulated as1-CN

expression. When DEPC was added, the increase of as1-CN
mRNA abundance stimulated by Met-Met (15% of total Met)
was totally abolished (Figure 3A), and the increase in protein
level of as1-CN stimulated by Met-Met was reduced from
;100% to 40% (Figure 3B). DEPC itself significantly inhibited
as1-CN expression regardless of the presence ofMet-Met (Figure
3A, B).

Peptidase affects Met-Met–stimulated as1-CN expression.

Substitution of 15% free Met by Met-Met significantly stimu-
lated the mRNA abundance of APN (P < 0.05; Figure 4A).
Adding 20 mmol/L bestatin to the medium markedly decreased
the Met-Met–induced increase of as1-CN mRNA abundance
(P < 0.05; Figure 4B) and as1-CN protein synthesis (P < 0.05;
Figure 4C).

FIGURE 2 Relative mRNA (A) and protein (B) expression of PepT2

in bovine mammary explants cultured with 0%, 5%, 10%, 15%, 20%,

and 25% Met-Met of total Met. Values are means 6 SEMs (n = 3 per

group). Means without a common letter differ, P , 0.05. Met-Met,

methionyl-methionine; PepT2, peptide transporter 2.

FIGURE 3 Effects of DEPC on Met-Met–stimulated expression of

as1-CN mRNA (A) and protein (B) in bovine mammary explants

cultured with or without 15%Met-Met of total Met. Values are means

6 SEMs (n = 3 per group). Means without a common letter differ, P ,
0.05. DEPC, diethylpyrocarbonate; Met-Met, methionyl-methionine;

as1-CN, as1 casein.
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Met-Met stimulates AA absorption and mRNA expression

of AA transporters. When 15% free Met of the medium was
replaced by Met-Met, the absorption of Val, Met, Leu, Phe, Lys,
and His by mammary explants and the mRNA abundance of
sodium- and chloride-dependent neutral and basic AA transporter

gene increased significantly (P < 0.05; Figure 5A, B). There were
no significant changes of mRNA abundance of the neutral AA
transporter gene, the L-type AA transporter 1 gene, the aro-
matic AA transporter gene, and the cationic AA transporter
1 gene (Figure 5B).

Met-Met increases the expression of JAK2-STAT5 and

mTOR signaling molecules. Treatment of mammary explants
with Met-Met (15% of total Met) significantly increased the
mRNA abundance of STAT5, JAK2, mTOR, the p70 ribosomal
S6 kinase 1 (S6K1), and the eukaryotic initiation factor 4E
binding protein 1 (4E-BP1) compared with the control group
(P < 0.05; Figure 6).

Discussion

Studies have indicated that free AAs are not the only substrates
for milk protein synthesis; small peptides that contain 2 or 3 AA
residues can also be used as the precursors for milk protein
synthesis in the mammary gland (5, 17). As one of the most
limiting AAs for the synthesis of milk proteins by dairy cows,
Met and its peptide form have been investigated for decades for
their utilization in mammary tissue explants or epithelial cells
(6–8). In this study, we showed that substitutions of 15% free
Met with Met-Met significantly promoted as1-CN expression in
cultured mammary gland explants of lactating dairy cows. The

FIGURE 4 Relative mRNA abundance of APN (A) and as1-CN (B)

and protein expression of as1-CN (C) in bovine mammary explants

cultured with or without 15% Met-Met of total Met and bestatin.

Values are means 6 SEMs (n = 3 per group). Means without a

common letter differ, P , 0.05. APN, aminopeptidase N; Met-Met,

methionyl-methionine; as1-CN, as1 casein.
FIGURE 5 Absorption of AAs (A) and relative mRNA abundance of

AA transporters (B) in bovine mammary explants cultured with or

without 15% Met-Met of total Met. Values are means 6 SEMs (n = 3

per group). Means without a common letter differ, P , 0.05. AA,

amino acid; ASCT2, neutral amino acid transporter 2 gene; ATB0,+,

sodium- and chloride-dependent neutral and basic amino acid trans-

porter gene; CAT1, cationic amino acid transporter 1 gene; LAT1,

L-type amino acid transporter 1 gene; Met-Met, methionyl-methionine;

TAT1, aromatic amino acid transporter gene.
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result is consistent with previous findings that small peptides
containing Met can be taken up and used for milk protein
synthesis in lactating mouse mammary gland explants (6). In
addition, our previous study demonstrated that Met-Lys signif-
icantly increased as1-CNmRNA abundance compared with free
Met and Lys in cultured bovine MECs (7). Pan et al. (17) also
found that Met-Met, Met-Val, and Leu-Met have higher
efficiencies in milk protein synthesis than free Met. Thus, results
from all of these studies support the hypothesis that Met
dipeptides can be used with a higher efficiency than equivalent
free Met in milk protein synthesis. Our present study also
indicated that the best substitution ratio of Met-Met to free Met
is 15%.

It is known that small peptides can be taken up intact by
mammary tissue via carrier-mediated transport systems (18).
PepT1 and PepT2 are the 2 main transporters for peptides, but
only PepT2 was detected in mammary tissue (13). PepT2
belongs to the family of H+-coupled peptide transporters, and its
activity is affected by H+ (19). The histidyl residues of PepT2 are
the most likely AA residues involved in H+ binding and
translocation in H+-coupled transport systems (20). This study
found that replacement of 15% free Met by Met-Met signif-
icantly promoted the expression of PepT2 in the mammary
explants. DEPC, a chemical known to modify the histidyl
residues of PepT2 and thus block the function of PepT2 (21, 22),
significantly decreased the Met-Met–stimulated increase of
as1-CN expression. However, because DEPC is not a specific
inhibitor of PepT2 and also has some inhibitory effect on
RNAase (23), further studies are required to identify the action
of PepT2 in uptake of small peptides in MECs. On the basis of
these results, we propose that the stimulating effect of Met-Met
on milk protein synthesis might be at least partially via its uptake
by PepT2 into MECs.

The role of APN on peptide hydrolysis was extensively
studied (24). APN can split off the N-terminal Met from
oligopeptides (14, 20). It was shown that knockout or over-
expression of APN delays or accelerates the development of rat
mammary gland, respectively (24). In addition, abomasal
infusion of casein hydrolysate increases the expression of APN

mRNA and protein by 51% and 58%, respectively, in the
mammary gland (24). In this study, we show that the mRNA
abundance of APN in the mammary explants can also be
increased with the supplement of Met-Met. In the presence of
bestatin, an inhibitor of APN, the protein synthesis of as1-CN
was markedly decreased with supplement of Met-Met. How-
ever, because of the nonspecific inhibition of bestatin, further
studies that used knockout or RNA interference are needed in
future to confirm the effects of APN (25). Nevertheless, our data
also support that Met-Met may be hydrolyzed into free Met by
APN in mammary tissue and then used for milk protein
synthesis.

Surprisingly, our study showed that Met-Met can signifi-
cantly enhance the absorption of free Val, Met, Leu, Phe, Lys,
and His in culture medium. The enhanced AA absorptions by
Met-Met may be partially explained by the reduced competition
of AA transporters because of the usage of peptide transporters.
However, to get more direct results of absorption, isotope-
labeled AAs should be used in future studies. Small peptides and
AAs are transported via 2 independent and different systems
(26, 27). When AA is taken up in the form of peptide, the
competition for transporter bound sites of carriers among AAs
can be partly avoided (28). However, the mRNA abundance of
sodium- and chloride-dependent neutral and basic AA trans-
porter gene, a specific AA transporter that transports a broad
spectrum of AAs, including neutral and cationic AAs (29), in
mammary explants was also increased, consistent with AA
absorption. The specific mechanism underlying the stimulation
of the AA transporter expression by Met-Met is not known,
but the AA transporter is known to function as a nutrition sen-
sor (30). Taken together, our results indicated that the increase
of as1-CN synthesis by Met-Met was attributed partly to
the stimulation of AA absorption in the cultured mammary
explants.

Because Met-Met stimulated the as1-CN mRNA expression,
which cannot be explained by the enhanced AA absorption, we
investigated the effects of Met-Met on signal transduction
pathways. The milk protein synthesis is well known to be
regulated by the JAK2-STAT5 and mTOR pathways (31, 32).
JAK2-STAT5 mediates prolactin- and growth factor-stimulated
milk protein synthesis at the transcription level (33). Binding of
prolactin and growth factors to their corresponding receptors on
MECs leads to JAK2 phosphorylation, which, in turn, phos-
phorylates STAT5. Phosphorylated STAT5 forms dimer, en-
ters the nucleus, and binds to the promoters and enhancers of
milk protein genes, inducing their expression. In this study, the
mRNA abundance of JAK2 and STAT5 increased significantly in
mammary explants with the supplement of 15%Met-Met in the
medium, which may play a role in Met-Met–stimulated as1-CN
mRNA expression. The mTOR signaling pathway is another
important pathway that couples nutrient supply to protein
synthesis and cell growth (31). It was shown that dietary AAs
can regulate protein synthesis in animals by regulating the
translation initiation of mTOR (34). In addition, the phospho-
rylation of mTOR and S6K1 is also increased by AAs (35). In
this study, we showed that Met-Met can increase the mRNA
abundance of mTOR, S6K1, and 4E-BP1, which may lead to
increased as1-CN synthesis. On the basis of these observations,
we propose that the effects of Met-Met on JAK2-STAT5 and
mTOR pathways might partly attribute to the increased AA
absorption and utilization. However, the precise mechanism
awaits further investigations.

In conclusion, this study revealed that Met-Met promoted
as1-CN expression in cultured mammary gland explants, most

FIGURE 6 Relative mRNA abundance of STAT5, JAK2, mTOR,

S6K1, and 4E-BP1 in bovine mammary explants cultured with or

without 15% Met-Met of total Met. Values are means 6 SEMs (n = 3

per group). Means without a common letter differ, P , 0.05. JAK2,

Janus kinase 2 gene; Met-Met, methionyl-methionine; mTOR, mam-

malian target of rapamycin gene; STAT5, signal transducer and

activator of transcription 5 gene; S6K1, p70 ribosomal protein S6

kinase 1 gene; 4E-BP1, eukaryotic initiation factor 4E binding protein

1 gene.
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likely by enhancing intracellular substrate availability and by
activating JAK2-STAT5 and mTOR signaling pathways. The
utilization of Met-Met by mammary tissues involves the peptide
transport by PepT2 and hydrolyzation by APN.
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