
FEBS Letters 582 (2008) 1451–1458
Osteoactivin is a novel osteoclastic protein and plays
a key role in osteoclast differentiation and activity
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Abstract This study presents gene expression, protein expres-
sion, and in situ immunohistochemical evidence that osteoclasts
express high levels of osteoactivin (OA), which had previously
been reported to be an osteoblast-specific protein in bone. OA
expression in osteoclasts was up-regulated upon receptor activa-
tor of NFjB ligand-induced differentiation. Suppression of func-
tional activity of OA with neutralizing antibody reduced cell size,
number of nuclei, fusion, and bone resorption activity of osteo-
clasts. OA was co-immunoprecipitated with integrin b3 and b1,
indicating that OA co-localizes with integrin b3 and/or b1 in a
hetero-polymeric complex in osteoclasts. These findings indicate
that OA is a novel osteoclastic protein and plays a role in osteo-
clast differentiation and/or activity.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Osteoactivin (OA), discovered by the mRNA differential

display approach in the mouse bone [1], was initially cloned

from a murine dendritic cell cDNA library as Dchil (dendritic

cell-associated, heparan sulfate proteoglycan-dependent inte-

grin ligand) [2]. It is a homologous to human Gpnmb (glyco-

protein non-metastatic melanomal protein B) [3]. OA plays a

regulatory role in endothelial cell adhesion [2] and is linked to

development of retinal pigment epithelium and iris [4]. The

nervous system, basal layer of the skin, germinal cells of hair

follicles, and the forming nephrons of the kidney of late
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aran sulfate proteoglycan-dependent integrin ligand; Gpnmb, glyco-
protein non-metastatic melanomal protein B; MMP, matrix
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mouse embryos show high OA protein expression [5]. It is

also found to be highly expressed in various malignant tumors

[3,6,7]. OA up-regulates expression of matrix metalloprotein-

ase (MMP)-3 and -9 in the infiltrating fibroblasts into dener-

vated skeletal muscle [8]. Overexpression of OA protects

skeletal muscle from severe degeneration caused by long-term

denervation in mice, suggesting that an OA-mediated increase

in MMPs in skeletal muscle might protect injured muscle

from fibrosis, leading to better regeneration after denervation

[9]. Transgenic expression of OA in the liver also reduces he-

patic fibrosis [10]. OA expression is increased in the injured or

diseased liver [11]. Because of its suggestive functions in cell

adhesion, migration, and differentiation, it was postulated

that OA is involved in the pathophysiological cascade of tis-

sue injury and repair [11].
The OA gene, located on human chromosome 7p15.1 or on

mouse chromosome 6 [5], has 11 exons with an open reading

frame of 1,716 bp, encoding a protein of 572 amino acid resi-

dues. It has 13 N-linked glycosylation sites, a heparin binding

domain and an integrin binding arginine-glycine-aspartic acid

motif (RGD) at its extracellular domain [1,2,11]. RGDS tetra-

mer completely blocked the OA-induced endothelial cell adhe-

sion, suggesting that the OA-mediated endothelial cell

adhesion involves integrin binding [2].

In bone, an in situ hybridization analysis showed that OA

expression was restricted to mature active osteoblasts [1,5].

The differentiation and maturation of osteoblasts are associ-

ated with the temporal expression of OA in primary rat osteo-

blasts [5,12]. Blocking the function of OA with an antibody

reduces the differentiation and functional activity of rat osteo-

blasts without affecting cell proliferation and viability [12]. A

recent study indicated that the OA expression in osteoblasts

was up-regulated by bone morphogenetic protein (BMP)-2

and that OA acted as a downstream mediator of the BMP2-

mediated activation of osteoblast differentiation [13]. Accord-

ingly, it was concluded that OA is an osteoblast-specific gene

in bone and plays an essential role in osteoblast differentiation

[5,12]. In osteoblasts, OA exists as two isoforms: a 65-kDa type

I transmembrane protein, and a highly glycosylated 115-kDa

secreted glycoprotein [3]. However, the functional role of each

form has not been determined.
Our preliminary comparative microarray analysis of the

murine RAW264.7 cells and their derived osteoclast-like cells

indicated that osteoclast-like cells expressed high levels of

OA/Dchil/Gpnmb mRNA transcript, and that the OA/Dchil/

Gpnmb expression was enhanced 3.25-fold by the soluble

receptor activator of NFjB ligand (sRANKL) treatment. This
blished by Elsevier B.V. All rights reserved.
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gene expression result indicates that OA gene expression in

bone may not be restricted to osteoblasts and that cells of

osteoclast lineage may also express this gene. Congruent with

this possibility, macrophages, which share the same cell lineage

with osteoclasts, also express substantial OA protein levels and

its expression in macrophages is enhanced by IFN-c and lipo-

polysaccharide [14]. A very recent report has also shown a high

expression level of the OA/Dchil/Gpnmb gene in the RAW264.7

cell-derived osteoclast-like cells [15].

The objectives of this study were twofold: (1) to confirm the

gene expression data by demonstrating OA protein expression

in primary osteoclasts in vitro and in vivo and (2) to assess the

role of OA in osteoclast differentiation by determining the ef-

fects of neutralizing anti-OA antibody on the formation and

function of murine osteoclasts in vitro.
2. Materials and methods

2.1. Cell cultures
Primary bone marrow cells, flushed out of long bones of adult

C57BL/6J (B6) mice, were cultured in minimum essential medium a
(a-MEM) supplemented with 10% fetal bovine serum (FBS). After
24-hour cultures, the adherent stromal cells and the non-adherent cells,
which contained osteoclast precursors, were separated. Osteoblasts
were isolated from calvaria of adult B6 mice by 90 min crude collage-
nase digestion and were cultured in Dulbecco�s modified Eagle�s med-
ium (DMEM, Mediatech Inc., Herndon, VA) containing 10% FBS.

2.2. Osteoclast differentiation
To generate marrow-derived osteoclasts, the non-adherent marrow

osteoclast precursors were plated at a density of 4 · 105 cells/cm2 in
a-MEM and 10% FBS in the presence of 50 ng/ml sRANKL (Pepro-
Tech, Rocky Hill, NJ), 50 ng/ml mCSF (CalBiochem, San Diego,
CA), with or without 100–200 pg/ml TGF-b1 (R&D Systems, Minne-
apolis, MN). Under this condition, identifiable tartrate-resistant acid
phosphatase (TRACP)-positive, multinucleated osteoclasts began to
appear after 3 days of treatment. After 4 or 6 days, >60% or >90%,
respectively, of the cells converted to large, TRACP-positive, multinu-
cleated osteoclasts that resorbed bone on dentine slices (data not
shown).

2.3. Neutralizing anti-OA antibody treatment
To assess the effects of a neutralizing anti-OA antibody on osteoclast

differentiation, the non-adherent marrow osteoclast precursor cells
were plated at a density of 2 · 105 cells/cm2 and treated with sRANKL,
mCSF, and TGF-b1 for 4 days. During the final 24 h of the RANKL
treatment, normal goat IgG (20 lg/ml) or goat anti-mouse OA-neu-
tralizing polyclonal antibody (R&D Systems) at 5, 10, 20 lg/ml was
each added to a group of three replicate wells. Cells were then fixed
in 5% formalin for 30 min and stained for TRACP. The cell size and
number of nuclei of the derived osteoclast in six randomly selected
areas were measured with the OsteoMeasure system (Osteometrics
Inc., Atlanta, GA) equipped with the manufacturer�s software and a
digitizing tablet under a microscope.

2.4. Real-time RT-PCR
Total RNA was isolated from osteoclasts, pre-osteoclasts, osteo-

blasts, and stromal cells, with the RNeasy� Mini Kit (Qiagen, Valen-
cia, CA) and each reverse-transcribed to cDNA using the
ThermoScript� reverse transcriptase-polymerase chain reaction (RT-
PCR) System (Invitrogen, Carlsbad, CA). Real-time RT-PCR was per-
formed using gene-specific PCR primers [synthesized by Integrated
DNA Technologies (Coralville, IA)], and the QuantiTect� SYBR�

Green detection system (Qiagen) in the ABI PRISM 7900 Cycler (Ap-
plied Biosystems, Foster City, CA). The PCR amplification was per-
formed for 40 cycles of denaturation at 95 �C for 15 s and annealing
and extension at 60 �C for 1 min each, after an initial hot start at
95 �C for 10 min. The relative level of gene expression was determined
by the cycle threshold (DCT) method.
2.5. Western blotting
Total cellular protein was extracted in a commercially-made RIPA

lysis buffer (Santa Cruz Biotechnology, Santa Cruz, CA) containing
the Sigma protease inhibitor cocktail (St. Louis, MO), supplemented
with phenylmethylsulfonyl fluoride, NaF, and Na3VO4. Western
immunoblots for OA protein were performed using both the rat
anti-mouse OA monoclonal antibody (R&D Systems) and the goat
anti-mouse OA polyclonal antibody, followed by enhanced chemilumi-
nescence.

2.6. Immunohistochemical staining of OA
Serial paraffin-embedded mouse femoral bone sections of a trans-

genic mouse with targeted overexpression of an osteoclastic protein-
tyrosine phosphatase in cells of osteoclastic origin using a TRACP
exon 1C promoter, which showed elevated osteoclastic resorption
[16] were used for in vivo identification of OA protein in osteoclasts.
After removal of paraffin wax, the first serial section was stained for
TRACP [17] for identification of osteoclasts. The second section was
stained immunohistochemically for OA, using the polyclonal goat
anti-mouse OA antibody; while the third section was stained with
non-immune rat IgG as a negative control. Detection of immunoreac-
tive OA protein was performed with biotinylated anti-goat IgG
antibody, streptavidin-horse radish peroxidase (Vector Labs, Burlin-
game, CA), and 3-3 0-diaminobenzidine-peroxide. Double TRACP
histochemical and OA immunohistochemical stainings on the same
section were not performed, since the pinkish stained TRACP products
was not readily identifiable in the presence of brownish stained OA
product in osteoclasts.

2.7. Resorption pit formation assay
The non-adherent marrow osteoclast precursor cells were plated on

dentine slices at a density of 2 · 105 cells/cm2 and treated with
sRANKL, mCSF, and TGF-b1 for 4 days. During the final 24 h of
treatment, normal goat IgG (10 or 20 lg/ml) or the goat anti-mouse
OA-neutralizing polyclonal antibody at 2, 10, or 20 lg/ml was added.
Dentine slices were then trypsinized and sonicated to remove the at-
tached osteoclasts, and the resorption pits were stained with acid-
hematoxylin (Sigma–Aldrich, St. Louis, MO). The size of individual
pits was determined using the OsteoMeasure system.

2.8. RGD peptide treatment
Primary murine marrow cells (at 2.5 · 105 cells/cm2 in 24-well plates)

were pre-treated with sRANKL, mCSF, and TGF-b1 for 3 days as de-
scribed above. At the beginning of day 4, a RGD blocking peptide
[c(RGDyK), an avb3 integrin binding peptide] or the corresponding
negative control peptide [c(RADyK)] [both were obtained from Pep-
tides International Inc. (Louisville, KY)], each at 30 lM, was added
to the cells for an additional 48 h. Cells were then fixed with 5% forma-
lin and stained for TRACP. The average cell size was determined as
described above.

2.9. Statistical analysis
Statistical significance was determined with one-way ANOVA fol-

lowed by the Tukey post-hoc test or with two-tailed Student�s t-test.
The difference was considered significant, when P < 0.05.
3. Results and discussion

Past research on the RANKL pathway has enormously ad-

vanced our understanding of the regulation of osteoclast for-

mation and activity at the molecular level but also

underscored its complexity [18,19]. While a number of genes

and signaling pathways essential for osteoclast formation

and activation have been identified, there are likely additional

regulatory genes and pathways. In this regard, our preliminary

microarray survey to compare the gene expression profile of

RAW264.7 cells and their derived osteoclast-like cells has iden-

tified a novel osteoclastic gene, OA/Dchil/Gpnmb, that was

highly expressed in mature osteoclasts and was up-regulated

3.25 ± 1.22-fold (P < 0.001) after the RANKL-induced osteo-
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clast differentiation. In this study, we measured the expression

of OA/Dchil/Gpnmb mRNA in primary marrow-derived osteo-

clasts by real-time RT-PCR to confirm the microarray results

(Table 1). Marrow pre-osteoclasts, stromal cells, and osteo-

blasts were included for comparison. The relative TRACP

mRNA transcript level was included as a marker gene for

osteoclasts. As expected, the TRACP mRNA expression level

was the highest in osteoclasts (P < 0.001) and different from

the other test cell types (ANOVA: P < 0.001). The expression

level of OA/Dchil/Gpnmb transcript was similarly greater in

osteoclasts than that in marrow pre-osteoclasts and in osteo-

blasts by 8.6- and 28.7-fold, respectively (P < 0.001 for each).

Interestingly, the relative OA/Dchil/Gpnmb mRNA level of

stromal cells was not significantly different from that of osteo-

clasts. The high OA/Dchil/Gpnmb expression level in stromal

cells was presumably due to the contaminating cell types that

are known to express high levels of OA/Dchil, such as fibro-

blasts, chondrocytes, and dendritic cells.

To confirm that OA protein is expressed in functionally ac-

tive osteoclasts in vivo, we performed in situ immunocyto-

chemical staining of OA in mouse femoral sections. Fig. 1A

shows multiple resorption sites containing active TRACP-po-

sitive osteoclasts (stained in pink) on the trabecular bone sur-

face. These osteoclasts in a serial section were stained

positively (in brown) for OA (Fig. 1B). A number of cuboidal

shaped osteoblasts on the bone surface also stained positively

for OA. As a negative control, another serial section stained

with control non-immune IgG showed no positive OA staining

in the TRACP-positive osteoclasts (Fig. 1C). These findings

confirm that mature osteoblasts express the OA protein, but

they also clearly demonstrate that active osteoclasts on bone

surfaces also express substantial levels of the OA protein.

These results contradict the previous conclusion that OA is

an osteoblast-exclusive protein in bone [1,5,12].

Our gene expression data indicate that OA expression is up-

regulated by RANKL during osteoclast differentiation. To

characterize the temporal relationship between OA expression

and the sRANKL-induced osteoclast differentiation, we as-

sessed the time-dependent change in OA protein levels by Wes-

tern blot analyses during the 6-day sRANKL-induced

differentiation of pre-osteoclasts into osteoclasts. Two com-

mercially available anti-mouse OA antibodies (a polyclonal

neutralizing antibody and a monoclonal antibody) were used

for this work. OA in osteoblasts has been reported to exist

as two forms: the un-glycosylated 65-kDa form and a 115-

kDa highly glycosylated secreted form [3]. Thus, osteoblasts

from two inbred mouse strains (C3H/HeJ and C57BL/6J)
Table 1
Comparison of the relative TRACP and OA/Dchil/Gpnmb mRNA transcript l
marrow cells and osteoblasts by real-time RT-PCR

Cell type TRACP mRNA transcript

DCT Relative fold

Marrow-derived osteoclasts 2.67 ± 0.84 1045.5 ± 1.7
Non-adherent marrow cells 12.7 ± 1.8*** 1.0 ± 3.4
Adherent stromal cells 9.50 ± 0.49*** 9.2 ± 1.4
Osteoblasts 10.1 ± 0.2*** 6.1 ± 1.1
ANOVA P < 0.001 P < 0.001

The identity of each PCR product was confirmed by DNA sequencing. The da
the gene-of-interest � CT of b-actin) and fold-changes compared to non-adh
***P < 0.001 in comparison with osteoclasts by Tukey post-hoc test.
[treated with an osteogenic medium containing 50 lg/ml ascor-

bic acid and 10 mM b-glycerol phosphate for 6 days to pro-

mote differentiation] were included for comparison. Fig. 1D

shows that the polyclonal anti-mouse OA antibody recognized

both the glycosylated and unglycosylated forms of OA in both

osteoblasts and osteoclasts. In contrast, the monoclonal anti-

body recognized only the 65 kDa, presumably the unglycosy-

lated form, of OA (Fig. 1E). We confirmed that OA in

mouse osteoblasts existed as the 65 kDa (unglycosylated) and

the 115 kDa (presumably glycosylated) forms (Fig. 1D). While

murine osteoclasts also expressed glycosylated and unglycosy-

lated forms of OA proteins, there was a major difference be-

tween the glycosylated forms of OA in osteoclasts and those

in osteoblasts. Murine osteoclasts expressed at least three gly-

cosylated forms (i.e., 139 kDa, 100 kDa, and 80 kDa) of OA in

addition to the 65-kDa unglycosylated form. The 115-kDa gly-

cosylated form of OA was not found in osteoclasts. It appears

that the majority of the OA protein in osteoclasts is glycosyl-

ated, but the glycosylation process may be different in osteo-

clasts than that in osteoblasts. The significance of these

multiple glycosylated forms of OA in osteoclasts is not clear

and needs further investigation. Nevertheless, there was an

obvious time-dependent increase in the expression of both gly-

cosylated and unglycosylated OA proteins upon the sRANKL-

induced differentiation, confirming that the OA protein expres-

sion in pre-osteoclasts is temporally associated with the

sRANKL-induced differentiation.

Fig. 1F compares the effects of several known effectors of

osteoclasts (mCSF, TNF-a, TGF-b1, IL-1, IL-6, and

sRANKL) on the expression of OA protein during osteoclastic

differentiation. With the exception of sRANKL, none of the

test effectors had appreciable effects on the OA protein expres-

sion, suggesting that the up-regulation of OA expression in

osteoclasts may be specific for RANKL. Since none of the test

effectors alone was able to produce appreciable numbers of

TRACP-positive, multinucleated osteoclasts without

sRANKL in vitro, it is conceivable that OA gene expression

in osteoclasts is associated with osteoclast differentiation. In

osteoblasts, the expression of OA is up-regulated by BMP-2

[13], and in macrophages, it was enhanced by IFN-c and lipo-

polysaccharide [14]. We have not tested whether these effectors

could also stimulate OA expression in osteoclasts.

The polyclonal anti-mouse OA antibody used in this study is

a neutralizing antibody that has been shown by the supplier to

block the bioactivity of OA to induce SVEC4-10 cell adhesion.

Thus, we next used this neutralizing antibody to assess the

functional role of OA in osteoclast differentiation and/or activ-
evels in primary murine marrow-derived osteoclasts with those in other

OA/Dchil/Gpnmb mRNA transcript

changes DCT Relative fold changes

9 1.88 ± 0.73 8.6 ± 1.6
*** 4.98 ± 0.56*** 1.0 ± 1.4***

0*** 1.72 ± 0.54 9.6 ± 1.4
*** 6.87 ± 0.43*** 0.3 ± 1.3***

P < 0.001 P < 0.001

ta are in mean ± S.D. (n = 3–4 per group) and are shown as DCT (CT of
erent marrow cells.



Fig. 1. Murine osteoclasts express substantial OA protein levels, which is up-regulated by RANKL. (A) The histochemical staining of TRACP
activity (in pink) as a marker of osteoclasts in the first serial femoral section. (B) The in situ immunocytochemical staining of OA (in brown) in
osteoclasts stained with the goat anti-mouse OA polyclonal antibody in the second serial femoral section. (C) The third serial section, in which in situ
immunocytochemical staining of OA was performed using a non-immune anti-goat IgG antibody. (D) Western immunoblot analysis of cellular OA
protein in marrow-derived osteoclasts before and after 2, 4, or 6 days of sRANKL treatment using the goat polyclonal anti-murine OA antibody.
Differentiated osteoblasts of both C57BL/6J (B6 Obs) and C3H/HeJ (C3H Obs) inbred mouse strains were included for comparison. (E) Western
immunoblot analysis of the duplicate blot of (D) using the rat anti-OA monoclonal antibody. (F) Shows a Western immunoblot of the 65-kDa
unglycosylated OA (identified with the rat anti-OA monoclonal antibody) after 4 days of treatment with indicated effectors of osteoclasts. Similar
results were seen with anti-OA polyclonal antibody (data not shown).
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ity. We treated marrow-derived pre-osteoclasts with various

amounts of the neutralizing antibody during the final 24 h of

the 4-day sRANKL treatment and then determined the effects

on osteoclast differentiation by measuring the average size and

number of nuclei per osteoclast of the derived osteoclasts. This

time point was chosen, because no significant osteoclast-like

cells were seen before 3 days and because OA expression in

osteoclasts appeared to be maximally up-regulated after 4 days

of sRANKL treatment (Fig. 1D and E). Fig. 2A shows that

the neutralizing antibody yielded a dose-dependent decrease

in the average cell size of the derived osteoclasts, while the

non-immune goat IgG treatment had no detectable effect.

The neutralizing antibody, not only decreased the average cell

size of the derived osteoclasts, but also significantly and dose-

dependently reduced the average number of nuclei per osteo-

clast (Fig. 2B). Because the average cell size and number of nu-

clei per osteoclast are determined by cell fusion and/or cell

spreading, these findings suggest that OA may have regulatory

functions in osteoclast fusion and/or spreading. Because the

polyclonal anti-OA antibody, but not the monoclonal anti-

body that recognizes only the un-glycosylated form, blocked

the sRANKL-induced osteoclast formation, these results sug-

gest that the glycosylated forms, and not the un-glycosylated

form, mediate the sRANKL-induced osteoclast differentiation,

spreading, and/or fusion.

Increases in the degree of multinucleation enhance the

capacity of osteoclasts to resorb bone [20], and cell spreading

is essential for the osteoclastic resorption process [21]. We next

tested the possibility that the neutralizing anti-OA antibody

would also have an inhibitory effect on bone resorption activ-

ity of the osteoclast, by measuring the effects of the final 24-

hour treatment with neutralizing anti-OA antibody during
the 4-day sRANKL treatment on the bone resorption activity

of the derived osteoclasts with a resorption pit formation as-

say. The neutralizing anti-OA antibody produced a significant

and dose-dependent decrease in the average size of the resorp-

tion pits (Fig. 3A), supporting our interpretation that OA has

a functional role in the overall osteoclastic resorption process.

Because we did not measure the average depth of the resorp-

tion pits, which is relevant to the overall resorption capacity

of the osteoclast, we do not know if the suppression of the

functional activity of OA would also reduce the bone resorp-

tion capacity of the osteoclast by reducing the average pit

depth. Nevertheless, because TRACP expression and secretion

are markers of osteoclastic resorption, our findings that the

neutralizing antibody also significantly suppressed the cellular

and conditioned medium (CM) levels of TRACP activity in

osteoclasts (Fig. 3B) are consistent with an inhibitory effect

of the neutralizing antibody on osteoclastic resorption. To-

gether, our results have clearly demonstrated that suppression

of the functional activity of OA in osteoclasts not only reduces

the fusion and/or spreading of osteoclasts, but also inhibits

their overall bone resorption activity.

Fusion events that give rise to multinucleated osteoclasts can

occur at different stages: fusion of mononucleated osteoclast

precursors will initially form small osteoclasts with few nuclei,

and fusion between multinucleated osteoclasts will then give

rise to large osteoclasts with large numbers of nuclei. If OA

is involved in the fusion of mononucleated osteoclast precur-

sors, blocking the function of OA by the neutralizing antibody

would reduce the number of both the small and large multinu-

cleated osteoclasts. In contrast, if OA is involved only in the

formation of large multinucleated osteoblasts by promoting

the fusion process of smaller multinucleated cells, the neutral-



Fig. 2. Neutralizing antibody-mediated suppression of OA functional
activity reduced the cell area (A) and number of nuclei (B) of the
marrow-derived osteoclasts. Marrow-derived osteoclasts were treated
with 0 (i.e., 20 lg/ml normal goat IgG), 5, 10, or 20 lg/ml of goat anti-
OA neutralizing antibody during the last 24 h of the sRANKL
treatment. Because of the significant difference in the relative size of the
derived osteoclasts in the normal IgG and anti-OA-treated cultures,
the actual number of osteoclasts analyzed in the control and treated
group was different, ranging from �50 per well (in the normal IgG-
treated control group) to �200 per well (in the group treated with
20 lg/ml anti-OA). To adjust for the difference in the number of cells
analyzed, the results are shown as the percentage of total number of
osteoclasts counted. Mean ± S.D., n = 3. Significance was assessed by
ANOVA followed by Tukey post-hoc test.

Fig. 3. Suppression of OA functional activity by the neutralizing antibody r
activity (B) of marrow-derived osteoclasts. Top panel of A shows representa
goat IgG (left) and by those treated with goat anti-OA neutralizing antibody,
antibody on the average size of resorption pits (mean ± S.D., n = 3) as % of th
the cellular layer and conditioned medium (CM) of marrow-derived oste
neutralizing anti-OA antibody (anti-OA antibody). Results are shown as me
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izing anti-OA antibody treatment should primarily reduce the

number of large multinucleated osteoclasts that have multiple

nuclei clusters. Consistent with the concept that formation of

large osteoclasts involved fusion between smaller multinucle-

ated osteoclasts, the large multinucleated osteoclasts derived

from the sRANKL-treated murine marrow osteoclast precur-

sors contained multiple clusters of nuclei (left panel of

Fig. 4). However, the number of nuclei clusters in the anti-

OA-treated marrow-derived osteoclasts was greatly reduced

(right panel of Fig. 4); a finding that is consistent with the pos-

sibility that the function of OA, in the context of osteoclast fu-

sion, acts primarily through promotion of fusion of smaller

multinucleated cells into large multinucleated cells. To assess

if OA also has a regulatory function in earlier events, we have

also performed an additional experiment to determine the ef-

fect of addition of the neutralizing antibody on day 2 (for

24 h) of the RANKL treatment on formation of osteoclast-like

cells. We did not see a statistically significant effect (data not

shown). Because RANKL treatment has already up-regulated

OA expression after 2 days (Fig. 1D), the lack of an obvious

effect of the neutralizing antibody at day 2 of RANKL treat-

ment suggests that OA might not have an essential regulatory

function in early fusion events.

Little is known about the molecular mechanism of action of

OA. However, OA contains an integrin-recognition RGD mo-

tif in both its extracellular and intracellular domains [1,2], and

it has been suggested that integrin binding is involved in the

OA-mediated endothelial cell adhesion [2]. In this regard, some

of the processes essential for osteoclast differentiation and acti-

vation, such as the re-organization, polarization, and construc-

tion of osteoclast-specific structures (e.g., sealing zone and

ruffled borders), involve the integrin-dependent cytoskeleton

reorganization [22,23]. There is compelling evidence that the

RANKL-induced osteoclast differentiation [24,25], adhesion,

spreading, and re-organization of cytoskeleton in osteoclasts

[24] and resorption activity of osteoclasts [26] are all in part

mediated through the integrin (especially avb3 integrin) signal-

ing pathway. However, the requirement of b3 integrin can be

compensated by b1 integrin [23]. We postulate that OA may
educed bone resorption activity (A) and cellular and secreted TRACP
tive resorption pits formed by murine osteoclasts treated with normal
and bottom panel of A summarizes dose-dependent effects of anti-OA

e IgG-treated control osteoclasts. B summarizes the TRACP activity of
oclasts after 24-hour treatment with goat IgG (control IgG) or the
an ± S.D., n = 6.



Fig. 4. The neutralizing anti-OA antibody treatment reduced the size and the number of nuclei clusters in marrow-derived osteoclasts. Left panel is a
photomicrograph of osteoclasts derived from sRANKL-treated marrow osteoclast precursors, many of which are large and contains multiple nuclei
clusters. Right panel is a photomicrograph of osteoclasts derived from the neutralizing anti-OA antibody treated marrow osteoclast precursors.

Fig. 5. OA co-immunoprecipitated with integrin b3 or b1 in osteo-
clasts. Cell extract of marrow-derived osteoclasts were immunoprecip-
itated (IP) with an anti-murine integrin b1, anti-murine integrin b3

antibody, or non-immune IgG. The co-immunoprecipitated proteins
were resolved on 10% SDS–PAGE, and the presence of OA was
identified by Western blot (IB) using the rat anti-OA monoclonal
antibody.
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be involved in the integrin signaling of b3 and/or b1 through

binding to the hetero-polymeric complex of integrins on the

cell surface of osteoclasts and as such, functions as a ‘‘co-inte-

grin receptor’’ to activate the integrin signaling. As an initial

test of our hypothesis of an association between OA and the

integrin signaling complex, we tested if integrin b3 or b1 in

osteoclasts would be co-immunoprecipitated with OA. Consis-

tent with our hypothesis, a significant amount of OA was

found to be co-immunoprecipitated with integrin b3 and b1

(Fig. 5). If the action of OA to regulate osteoclast fusion

and/or spreading is in part mediated through the integrin sig-

naling, blocking the action of integrin avb3 with an inhibitory

RGD peptide should mimick the action of the neutralizing

anti-OA antibody on cell size of the marrow-derived osteo-

clasts. As predicted, addition of an inhibitory RGD peptide

[c(RGDyK)], but not that of the control RGD peptide [c(RA-

DyK)], to the marrow-derived osteoclast precursors during the

final 48 h of the total of 5-day sRANKL treatment signifi-

cantly reduced the average size of the derived osteoclasts by

>40% (Fig. 6). However, it is highly likely that integrin signal-

ing mediates a number of mechanism and pathways to regulate

cell spreading and/or fusion, in addition to that of OA. Thus,

we can not rule out the possibility that at least some of the ob-

served effects of the inhibitory RGD peptide may be unrelated

to blocking of the OA action in osteoclasts. In this regard,

there appeared to be slight differences in the morphology of

RGD peptide-treated osteoclasts as opposed to that of anti-

OA-treated osteoclasts, in that the inhibition of osteoclast

spreading by the RGD peptide was more pronounced than

that by anti-OA neutralizing antibody (data not shown). At

any rate, these findings provide circumstantial support for

the hypothesis that OA may act in part through an interaction

with the integrin b3 and/or b1 pathway to regulate osteoclast

fusion, migration, and/or resorption. However, much addi-

tional work is needed to confirm this interesting hypothesis.

With respect to subcellular localization of OA, a recent

study using immunofluorescence confocal microscopy in

RAW264.7 cells [15] has shown that OA is primarily at a per-

inuclear location during the first three days of RANKL treat-

ment. However, after 5–7 days of RANKL treatment, the

localization of OA is restricted to late endosomes and lyso-

somes. The localization of OA to these compartments is con-

sistent with the presence of a predicted endosomal/

lysosomal-sorting signal located immediately after the trans-
membrane domain of OA [27]. These findings suggest that

OA resides in the endocytic pathway of osteoclasts and is

probably targeted to the plasma membrane or extracellular

space, where it exerts its biological function, upon osteoclast

differentiation and maturation. In this regard, intracellular

membrane trafficking and endocytic pathways are regulated

by RANKL and are important for osteoclast function [28].

These findings are also consistent with our conclusion that

OA is involved in primarily the late rather than early osteoclast

differentiation processes.



Fig. 6. The inhibitory RGD peptide for integrin avb3 reduced the
average size of marrow-derived osteoclasts. Mouse marrow-derived
osteoclast precursors were treated with 30 lM of either the c(RGDyK)
peptide, an inhibitory peptide for integrin avb3 (RGD peptide), or the
inactive c(RADyK) negative control peptide (control peptide) during
the final 48 h of the 5-day sRANKL treatment. The average size of
osteoclasts was measured at the end of the treatment.
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In summary, we have demonstrated for the first time that

osteoclasts express substantial amounts of OA and that OA

plays an important functional role in the regulation of osteo-

clast formation and/or activity, presumably in part through

mediating the RANKL-dependent fusion and/or spreading of

osteoclasts. This study also provides evidence that OA may

act in part through the signaling pathway of integrin b3 and/

or b1 in osteoclasts and raises the interesting possibility that

the OA/integrin signaling interaction may be essential in the

RANKL-induced osteoclast formation, spreading, fusion,

and bone resorption activity.
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