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In previous papers (1955-1957) a theory of biological similarity was established, assuming 
that the limits are the mechanical and the eleetrodynamieal similarity criteria. The 
range of this theory lies between the coefficient of the time exponent (~) for mechanical 
(0.5y) and electrodynamical (1.0y) similarities, being the mode 0.93~. Moreover, for 
certain functions this restricted theoretical range should be extended to the hydro- 
dynamical similarity criterion (2),), so that the dimensionless numbers commonly used in 
Physics (Reynolds, Froude, Weber, etc.) can be included with'm the total range (0.5 - 2y) 
of biological similarities. From dimensional analysis of physiological functions it was 
possible to obtain, by means of dimensional and solution matrices, a group of "non- 
dimensional numbers" by applying Buckingham's Pi-theorem. Nevertheless, only if a 
single similarity criterion was applied, the residual weight exponent was exactly zero; in 
all other instances the weight exponent was not zero, due to the existence of a range for 
biological similarities and to the statistical meaning of exponent (b) of the allometric 
equations. From the similarity criteria "invariant numbers" can be obtained, by means 
of which it is possible to establish correlations between numerous morphological and 
physiological characteristics of a particular system (circulation, respiration, metabolism, 
etc.). 

The idea of  geometrical  similarity was first analyzed by  Greek mathemat ic ians  
in connection wi th  ratios and proport ions  of  similar triangles. The same 

reasoning was af terwards extended to the ratios of  physical  quanti t ies by  

Galileo (1638), who studied s t ructural  and funct ional  changes involved in bio- 

logical scale-up phenomena.  Newton  in 1735 applied similarity criteria main ly  

to mechanical  problems. Modern mathemat ic ians  and physicists,  as Bridge- 
man  (1922), Langhaa r  (1951), Birkhoff  (1960) and  Sedov (1959) among others, 
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have been concerned for many years with dimensional analysis and similarity 
principles. 

Several at tempts were made in the past  to introduce dimensional analysis 
and similarity principles into the Biological Sciences, particularly by  yon 
Hoesslin (1888, 1927), Lambert  and Teissier (1927), yon Bertalanffy (1951), 
D'Arcy Thompson (1952), Giinther and Guerra (1955, 1957), Rashevsky (1960), 
Kleiber (1961), and more recently this particular matter  has been thoroughly 
discussed by  Stahl (1961, 1962a, 1962b, 1963). 

Years ago we tried to find a single similarity rule for all biological phenomena 
(Giinther and Guerra, 1955), where dimensions are power functions of M, L, 
and T. Nevertheless, in Stahl's (1963) own words (page 296) our previous 
at tempts  "to find a single physical similarity criterion for scaling of all bio- 
logical variables" should fail, because "the systems are much too complex to 
be governed by  so simple a requirement as invariance of one similarity 
criterion". 

In the present paper we have tried to reexamine certain assumptions of the 
previous theory of biological similarities, particularly the problem related to 
the coefficient 0.93 for the exponent ~ of the time ratio r. Furthermore, due 
to the fact that  certain dimensionless numbers (Reynolds, Froude, Weber, etc.) 
which are commonly used in Physics were not considered in the original formu- 
lation of the theory, steps were taken so that  they could be included. Finally, 
through the applications of Buckingham's Pi-theorem, similarity criteria were 
found and when they were combined it was possible to obtain "invariants", 
whose residual weight exponent is almost zero, i.e. that  all these constants are 
practically independent of body mass. 

A.  New  approach to the theory of biological similarities. The original equa- 
tion of the theory of biological similarity was: 

A = a �9 W ~(~ + ~ + o.~8~)., (1) 

being 
A = physiological function; 
a = parameter of the same dimensions as A; 

W = numerical value of body weight in arbitrary units (Kg, g, mg, etc.); 
a = exponent of the mass ratio M / m  = i~; 
fl = exponent of the length ratio L/1 = 2; and 
y = exponent of the time ratio T/ t  = ~-. 

The coefficient 0.93 for y was obtained as the most probable value from the 
exponents of the allometric equations, corresponding to heart frequency and 
to the heat generation rate, both as functions of body weight. 
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For these reasons it seems necessary that  the basic assumptions leading to 
the general theory of biological similarity should be discussed briefly. 

1. Dimensional analysis and theories of similarity. The derived physical 
magnitudes (Q) can be expressed as power functions of M, L, and T, as for 
instance: Q = MaLBTL  Considering (Q) the prototype and (q) the model 
q = m~lZt y. The ratio between prototype and model is therefore: 

o r  
X = Q/q = ~ "  ~ "  ~ ;  

Q = q 'x  = q .~ . ) t a . ,~ .  (2) 

a) Mechanical similarity. The model theory of mechanical systems assumes 
that  acceleration (g) and density (d) should be considered constant, so that  
g(__d L . T _ 2 )  = C, implying A . , -2  = 1.0. 

Now, when density (d) is maintained constant: 

d ( s  M L  -8) = C ,  then /x = h a or ) t= /~ t .  

Furthermore, the ratio between the weights of the prototype (W) and the 
model (w) gives; 

to = W/w  = Mg/mg = Ix. 
Finally, 

)t = /x~ = to~. 

Introducing these equivalences into equation (2) we obtain: 

Q = q.~(3~+~+~) = q.to~(8~+B+-~). (3) 

b) Electrodynamic Similarity.  The model theory of electrodynamic pheno- 
mena considers--besides the constancy of densit ies--that  the following factors 
are maintained constant (/x0.%)-�89 = C, being /x o = magnetic permeability 
and % = dielectric coefficient. But,  since this constant is C d L.  T -1 = 
velocity of light in the vacuum, therefore )t~-1 = 1 or )t = T. 

The electrodynamic similarity formula is obtained by  introducing into 
equation (2) the corresponding relations between/x, 2, 

Q = q.~(~+~+~) = q.to~(3~+~+~). (4) 

c) Biological similarities. As stated above, the general equation of the 
theory of biological similarities can be defined as: 

y = a.to~(8~+~+~'); (5) 

9' 9" where 9" could assume any value in the interval [9"/2, 9"] that  is ~ < ~< 9". 
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The coefficient 0.93 for r was established only for statistical reasons and as 
the most likely coefficient for a single biological similarity criterion. Since a 
detailed s tudy of the possible coefficients of ~ was not made at  tha t  time, we 
have now calculated the coefficients directly from the exponent (b) of the 
empirical allometric equations. 

Determination of the coeJficient of ~ for "compliance." As an example, let us 
calculate the coefficient for "thoracic compliance", whose allometric equation 
is: 

Cr = 1.62 • 10-21WI ~ 

According to the dimensional analysis, "compliance" can be defined as 
M - Z L 4 T  2, with the exponents a = - 1, fl = 4 and ~ = 2. 

From the general equation of biological similarities we have: 

oj~(3~z+B+~,') - -  o)0.82; 

� 8 9  + 4 + ~') = 0.s2;  

1 + ~' = 2.46. 

The value for y' is 1.46. Since compliance has an exponent ~ = 2, it follows 
tha t  coefficient of ~,' = 0.73. 

The frequency distribution of the numerical values of the coefficient for the 
time exponent y are shown in Figure 1. They were determined for 54 allo- 
metric equations of physiological functions, with time (T) as one of their 
dimensions. I t  can be observed tha t  in the majority of cases the coefficients 
are located in the range between 0.9 and 1.0 and that  the frequency decreases 
rapidly for the other values of the coefficients. Nevertheless, in few eases 
(Fig. la) the coefficients for ~ are beyond the limits established for the 
mechanical similarity (0.Sy), probably due to inaccuracies of the exponent (b) 
of the allometric equations. On the other hand (Fig. lb, c) in several 
instances the calculated value of the coefficient of the time exponent is located 
outside the limits defined for the electrodynamical similarity (y = 1.0). For 
this reason additional physical similarity criteria should be applied, as for 
instance certain dimensionless numbers (Reynolds, Froude, Weber, Peclet, 
Laplace and Womersley), which are commonly used in Physics. 

Determination of the eoeJficient ~/ for Reynolds model. The Reynolds number 
is usually defined as: 

R e = U.D/v; 

being: U = velocity; D = diameter; v = kinematic viscosity, that  in this 
particular case is assumed to be constant. 
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Figure 1. Statist ical  distr ibution of the coefficients corresponding to ~he 
exponent (F) of the t ime rat io (~-) for 54 allometric equations which are functions 
of  time. The values outside the common limits (0.5 and 1.0y) correspond to: 
a) diodrast  clearance; water  intake; e rea t in ine- -N-- -output  and lung weight; 

b) lung compliance; c) pulmonary flow resistance 

Since the product U. D, both for the prototype (p) and for the model (m) 
should be constant (C): 

leading to Up/U m = Dp/D,, .  

Moreover, L/1 = Dp/D, ,  = 2~ 

U,,.  ~ -1. 

U~,.D~ = O I 

U,, .  D,,  = C]; 

and  D,,/D~, = 2~ -1 i t  follows tha t :  U p =  

In t roduc ing  again  the  reduct ion  coefficient o f  biological similari t ies (X) we 
have :  

X = ~8~+~+y,; 

and  for a ve loci ty  U ~ L .  T -  1 the  following are the  exponen ts  of  M,  L and  T:  
a = 0, fl = 1, ~ = - 1; which can  also be  wri t ten:  

X -- A(3xo)+(zxI)+~," _- ,,~-i. 
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T A B L E  1 

D i m e n s i o n a l  A n a l y s i s  a n d  A l l o m e t r i c  E x p o n e n t s  o f  T h r e e  I n d e p e n d e n t  

S i m i l a r i t y  C r i t e r i a  

E x p o n e n t  o f  
M ,  L,  T 

C o m m e n t  a ~ T 

Acce l e r a t i on  0 1 - 2 

A c t i o n  1 2 -- 1 

A r e a  0 2 0 

C o m p l i a n c e  - 1 4 2 

D e n s i t y  1 - 3 0 

D i f f u s i v i t y  0 2 -- 1 

E n e r g y  1 2 - 2 

F l o w  r e s i s t a n c e  1 - 4 - 1 

F o r c e  1 1 -- 2 

F r e q u e n c y  0 0 - 1 

L e n g t h  0 1 0 

M o m e n t  o f  i n e r t i a  1 2 0 

M o m e n t u m  1 1 -- 1 

P e r i o d  0 0 1 

P o w e r  1 2 - 3 

P r e s s u r e  1 - 1 - 2 

Su r f ace  t e n s i o n  1 0 -- 2 

T o r q u e  o r  m o m e n t  o f  
force  1 2 -- 2 

Ve loc i t y  0 1 - 1 

V i s c o s i t y  1 - 1 - 1 

V o l u m e  0 3 0 

V o l u m e  f low 0 3 - 1 

V o l u m e  e las t i c i ty  
coefficient  1 - 4 - 2 

S I M I L A R I T Y  

E l e c t r o  - H y d r o  - 
Mechan ica l  d y n a m i c a l  d y n a m i c a l  
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Since  y = - 1 fo r  a l l  ve loc i t i e s :  
i y = 2 y .  

F i n a l l y ,  t h e  r e d u c t i o n  coeff ic ient  (X) b e c o m e s :  

X = ~ 3 a + B + i y .  

a n d  s ince  A = o~ we  h a v e :  

X ~ to}(3a +a +2y).  

T A B L E  2 

Dimensionless N u m b e r  and Reduc t ion  Coefficients of  Biological 
Similari t ies 
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Nondimensional 
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p.Gp. U. L 
R e  K 

p = density 
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pressure 
K -~ beat conductivity 
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v 
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IT  

We = L2 "$ 
y 
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In Table 2 the coefficients of  ~ are defined for various dimensionless numbers. 
For instance, Peclet's, Reynolds' and Womersley's numbers have a coefficient 
of  ~ equal to 2.0, while for the rest of  the nondimensional numbers the co- 
efficients are distributed between 0.5 and 2,0r.. 

In conclusion, the range of the theory of  biological similarity corresponds to 
an infinite number of  coefficients of  ~, with the limiting values of 0.5 and 
1.05, being 0.93~ the mode. 

Exceptionally the coefficient of ~ may assume values between 1.0 and 2.0. 

B. Biological similarities and allometric equations. From the general equa- 
tion of the theory of  biological similarities it is possible to predict the range of 
the exponent (b) of Huxley's allometric equation y = a. I Wp, were y = physio- 
logic function, a - -  parameter, I WI = numerical value of body weight and 
b -- characteristic exponent of  an allometrie growth. 

The relationship between the theory of  biological similarity and Huxley's 
allometric equation can be established through the ratio W/w = o~ of  the 
prototype (W) and the model (w). But, if the weight of the model is established 
as w = 1.0, it results that o~ = I W] and the general equation will become: 

y = a IWl~(~+~+~'); 

were ]WI should be considered as the numerical value for any particular weight 

E X P O N E N T S  O F  A L L O M E T R I C  E Q U A T I O N S  A N D  R A N G E  OF  B I O L O G I C A L  S I M I L A R I T I E S  

- 1 . 0  - 0 5  0 I 0 .S 1 .0  1 5  
I i i i 

I 

i I 
I I 

C O H P L I A N C  E ~" I 1" " [  i i "  ",~ i l l  <.-;~:;::~/l~, ;~,~; ; ; ; i :~ 7 ~ 7 ~ ;  i | 
I 

f L O W  RESISTANCE - - - -1  " '  " l t ; " H " " i "  "" " ; ' : j  I 
I I 

F 'ORCE . . . . . . .  t ; 
t 1 

I / 
L IF" NGTH . . . . . .  P . . . . . . . . . . . . . . . . . .  *i '  . . . . .  ~ T ~ "  ! 

I / 

I i 

~ ' o w  E R . . . . .  - - - I - -  . . . . . . . . . . . .  f ; ; :  ~ ; ;  " :"~;'.; W " S " ,  . . . . .  ,: ~"~" ~ " ' ~ , ~  ;~ I ~ N I ~ B P ' ~  ~'~ " 6 " ~ "  - l 
I i 

PRESSURE . . . . .  ~ . . . . .  -- [  " - V ' : ' ~ t ' - / ' k - ~ : ~ q  i ' ' ' L a ' ~  , ,  ,~ii',, . . . .  "# 
I 

' O" V O L U H E  I 

VOLUME FLOW r - -  . . . .  F / / ~ S ~ k ~ L T k ' ~  . . ~  
i 

WORK . . . . . . . .  + . . . . . .  -f,77 ~,b:~7,7 "; ~ ;;," ~ ;~: ; ;  : "  7 ?>..~;. : 
/ 
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scale (ky, g, rag, etc.) and  not  in the sense of weight as a force ( M . L .  T - 2 ) .  

Apparent ly ,  the theoretically calculated exponent  of  I WI is equivalent  to  the  
empirical value of  (b) in Huxley ' s  allometric formula y -- a .  W b. 

As i t  is  shown in Table 1, the  numerical  equivalent  of  the  three similari ty 
criteria or the  corresponding values of the  exponent  (b) are given for each 
physical magni tude  commonly used in biology. As s ta ted  before, the  range of 
biological similarities can be established between mechanical  and  hydro~ 
dynamical  similari ty criteria, being the mean  value close to the  electrodynamical  
s imilari ty criterion (7 = 1.0), which happens to be the  same similari ty rule 
()~ = ~) established by  Lamber t  and Teissier (1927) in their  "Th6orie de la 
similitude biologique". 

Now, i t  is no tewor thy  to compare the theoretical  range of biological simi- 
larities wi th  the values of (b) calculated from experimental  da ta  (Fig. 2). 
There is concordance between the  theoretical  assumptions and  the  empirical 
exponents  of  (b) calculated for numerous physiological functions. 

C. S i m i l a r i t y  criteria and invariants .  The adequate  combinat ion of  the 
exponents  (b) of the  allometric equations gives dimensionless numbers  or simi- 

TABLE 3 
Dimensional and Solution Matrices for 11 Functions and 8 Independent 

Similarity Criteria 

IYMBOLS OF 
:FITNCTIONS V G v G M 

( M  0 0 1 

Dimension- t al Matrix L 3 3 0 

T 0 --1 --1 

Irl 1 0 0 

�9 rr2 0 1 0 

�9 r3 0 0 1 

3olu~ion w4 0 0 0 
Matrix ] w5 0 0 0 

I ~r6 0 0 0 

r 0 0 0 

0 0 0 ~. 7T8 

A p Rp Ea v W GH T 

0 1 1 1 0 1 1 0 

2 --1 --4 --4 1 1 2 0 Similarity 
Criteria 

0 - - 2  - 1  - - 2  - 1  - - 2  - 3  1 

0 0 0 0 0 3 --3 - 3  V . ( W / G ~ . T )  8 

0 0 0 0 0 3 I--3 --2 Gv. W3/G~ . T  2 

o o o o o - 2  1 o a , ~ . a M w  2 

1 0 0 0 0 2 --2 --2 A ( W / G H . T )  2 

0 1 0 0 0 --3 2 2 p(GH'T)~/W a 

0 0 1 0 0 --6 5 4 Rv(G ~ . T 4 ) / W  ~ 

0 0 0 1 0 -- 6 5 5 Ea(G H. T ) 5 / W  e 

0 0 0 0 1 1 --1 0 v . W / G ~  
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larity criteria, which were first systematically studied by Stahl (1962, 1963)by 
applying Buckingham's Pi-theorem to biological functions. 

In order to obtain a complete group of similarity criteria tha t  at  the same 
time are independent from each other it is convenient to arrange the exponents 
of certain biological functions in a "dimensional matr ix" (Table 3). For each 
function ordered in the first row the corresponding exponent of M, L, and T 
are arranged in the columns. From the dimensional matrix a "solution 
matr ix" can be derived in which the rows correspond to the Pi-numbers or 
specific similarity criteria�9 In this particular case, the application of a single 
similarity criterion (electrodynamical or mechanical) results in a complete 
group of similarity criteria which are invariant, i.e. in all instances the exponent 
of[W[ is exactly zero. 

Furthermore, when the Pi-numbers are combined (Table 4) it is possible to 
obtain a number of new invariants (It) , again with a residual weight exponent 
equal to zero. 

Equivalent results may be obtained combining adequately certain empirical 
allometric equations; but in this ease the residual weight exponent is not 
equal to zero and a "scale effect" is apparent. Only if a single similarity 
criterion is applied (mechanical, electrodynamical or hydrodynamieal) a zero 
residual weight exponent should be expected. 

The invariants (It) obtained from the empirical allometric equations of 
different physiological systems (circulation, respiration, metabolism, etc.) have 
residual weight exponent close to zero, due to the theoretically established 
range of biological similarities and also to the statistical variation of the 
exponent (b). 

Further studies are necessary to include other dimensions, as for instance 
temperatures (t) and heat (H) besides M, L, and T, in order to increase the 
accuracy of the final equations and its biological applications. 
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