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In previous papers (1955-1957) a theory of biological similarity was established, assuming
that the limits are the mechanical and the electrodynamical similarity criteria. The
range of this theory lies between the coefficient of the time exponent (y) for mechanical
(0.5y) and electrodynamical (1.0y) similarities, being the mode 0.93y. Moreover, for
certain functions this restricted theoretical range should be extended to the hydro-
dynamical similarity criterion (2y), so that the dimensionless numbers commonly used in
Physics (Reynolds, Froude, Weber, etc.) can be included within the total range (0.5 —2y)
of biological similarities. From dimensional analysis of physiological functions it was
possible to obtain, by means of dimensional and solution matrices, a group of ‘“non-
dimensional numbers” by applying Buckingham’s Pi-theorem. Nevertheless, only if a
single similarity eriterion was applied, the residual weight exponent was exactly zero; in
all other instances the weight exponent was not zero, due to the existence of a range for -
biological similarities and to the statistical meaning of exponent (b) of the allometric
equations. From the similarity criteria ‘‘invariant numbers” can be obtained, by means
of which it is possible to establish correlations between numerous morphological and
physiological characteristics of a particular system (circulation, respiration, metabolism,
ete.).

The idea of geometrical similarity was first analyzed by Greek mathematicians
in connection with ratios and proportions of similar triangles. The same
reasoning was afterwards extended to the ratios of physical quantities by
Galileo (1638), who studied structural and functional changes involved in bio-
logical scale-up phenomena. Newton in 1735 applied similarity criteria mainly
to mechanical problems. Modern mathematicians and physicists, as Bridge-
man (1922), Langhaar (1951), Birkhoff (1960) and Sedov (1959) among others,
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have been concerned for many years with dimensional analysis and similarity
principles.

Several attempts were made in the past to introduce dimensional analysis
and similarity principles into the Biological Sciences, particularly by von
Hoesslin (1888, 1927), Lambert and Teissier (1927), von Bertalanffy (1951),
D’Arcy Thompson (1952), Giinther and Guerra (1955, 1957), Rashevsky (1960),
Kleiber (1961), and more recently this particular matter has been thoroughly
discussed by Stahl (1961, 1962a, 1962b, 1963).

Years ago we tried to find a single similarity rule for all biological phenomena
(Giinther and Guerra, 1955), where dimensions are power functions of M, L,
and 7. Nevertheless, in Stahl’s (1963) own words (page 296) our previous
attempts ‘““to find a single physical similarity criterion for scaling of all bio-
logical variables™ should fail, because “the systems are much too complex to
be governed by so simple a requirement as invariance of one similarity
criterion”.

In the present paper we have tried to reexamine certain assumptions of the
previous theory of biological similarities, particularly the problem related to
the coefficient 0.93 for the exponent y of the time ratio . Furthermore, due
to the fact that certain dimensionless numbers (Reynolds, Froude, Weber, etc.)
which are commonly used in Physics were not considered in the original formu-
lation of the theory, steps were taken so that they could be included. Finally,
through the applications of Buckingham’s Pi-theorem, similarity criteria were
found and when they were combined it was possible to obtain “invariants”,
whose residual weight exponent is almost zero, i.e. that all these constants are
practically independent of body mass.

A. New approach to the theory of biological similarities. The original equa-
tion of the theory of biological similarity was:

A =a Wi+ 8+ 0887, 1)

being
A = physiological function;
a = parameter of the same dimensions as 4;
W = numerical value of body weight in arbitrary units (Kyg, g, mg, ete.);
o = exponent of the mass ratio Mjm = u;
B = exponent of the length ratio L/1 = A; and
y = exponent of the time ratio 7'/t = ~.

The coefficient 0.93 for y was obtained as the most probable value from the
exponents of the allometric equations, corresponding to heart frequency and
to the heat generation rate, both as functions of body weight.
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For these reasons it seems necessary that the basic assumptions leading to
the general theory of biological similarity should be discussed briefly.

1. - Dimensional analysis and theories of similarity. The derived physical
magnitudes (@) can be expressed as power functions of M, L, and 7', as for
instance: @ = M*LET". Considering (@) the prototype and (¢) the model
g = m®lPt". The ratio between prototype and model is therefore:

x = Qlg = p* X7
or

Q@=qx=qpN7. (2)
a) Mechanical similarity. The model theory of mechanical systems assumes
that acceleration (g) and density (d) should be considered constant, so that
g (£ L-T-2) = C, implying A-7~2 = 1.0.
Now, when density (d) is maintained constant:

d(L£ ML3) =C, then pu= M or \=put

Furthermore, the ratio between the weights of the prototype (W) and the

model (w) gives;
w = W/w = Mg/mg = pn.
Finally,
A= pt = ok
Introducing these equivalences into equation (2) we obtain:
Q = g-ABHHE+D — g, I Ba+B+D (3)

b) Electrodynamic Similarity. The model theory of electrodynamic pheno-
mena considers—besides the constancy of densities—that the following factors
are maintained constant (ug-¢,)"* = C, being u, = magnetic permeability
and ¢, = dielectric coefficient. But, since this constant is ¢ £ L-T-! =
velocity of light in the vacuum, therefore A~ = lor A = 7.

The electrodynamic similarity formula is obtained by introducing into
equation (2) the corresponding relations between u, A, =

Q — q~/\(3rx+6+7) — q,w§(3a+ﬂ+7)‘ (4)

¢) Biological similarities. As stated above, the general equation of the
theory of biological similarities can be defined as:

Yy = a-@¥@ets+), (5)

where ¢’ could assume any value in the interval [y/2, y] that is g <y <y
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The coefficient 0.93 for y was established only for statistical reasons and as
the most likely coefficient for a single biological similarity criterion. Since a
detailed study of the possible coefficients of y was not made at that time, we
have now calculated the coefficients directly from the exponent (b) of the
empirical allometric equations.

Determination of the coefficient of y for “‘compliance.” As an example, let us
calculate the coefficient for “thoracic compliance”, whose allometric equation

18:
Cp = 162 x 10-2|W|oe2,

According to the dimensional analysis, “compliance’” can be defined as
M-1L*T?, with the exponents « = —1,8 = 4 and y = 2.
From the general equation of biological similarities we have:

wiBa B+ = (,)0.82,
-3+ 4+ 4) =082
1+ 9" = 246,

The value for ¢’ is 1.46. Since compliance has an exponent y = 2, it follows
that coefficient of ' = 0.73.

The frequency distribution of the numerical values of the coefficient for the
time exponent y are shown in Figure 1. They were determined for 54 allo-
metric equations of physiological functions, with time (7') as one of their
dimensions. It can be observed that in the majority of cases the coefficients
are located in the range between 0.9 and 1.0 and that the frequency decreases
rapidly for the other values of the coefficients. Nevertheless, in few cases
(Fig. la) the coefficients for y are beyond the limits established for the
mechanical similarity (0.5y), probably due to inaccuracies of the exponent (b)
of the allometric equations. On the other hand (Fig. 1b, ¢) in several
instances the calculated value of the coefficient of the time exponent is located
outside the limits defined for the electrodynamical similarity (y = 1.0). For
this reason additional physical similarity criteria should be applied, as for
instance certain dimensionless numbers (Reynolds, Froude, Weber, Peclet,
Laplace and Womersley), which are commonly used in Physics.

Determination of the coefficient y for Reynolds model. The Reynolds number
is usually defined as:
R, =U-Dv;

being: U = velocity; D = diameter; v = kinematic viscosity, that in this
particular case is assumed to be constant.
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The values outside the common limits (0.5 and 1.0y) correspond to:

a) diodrast clearance; water intake; creatinine—N—output and lung weight;

b) lung compliance; ¢) pulmonary flow resistance

Since the product U-D, both for the prototype (p) and for the model (m)
should be constant (C):

U, D,=0C
U, D, =0l

leading to U,/U,, = D,/D,,.
Moreover, L/l = D,/D,, = XA and D,/D, = A~' it follows that: U, =

U,-A~L.

Introducing again the reduction coefficient of biological similarities (y) we

have:

— ASw+ ‘.
X_Aa ﬁ+7’

and for a velocity U £ L.T-! the following are the exponents of M, L and T:
«=0,8=19 = —1; which can also be written:

x = A(3x0)+(1x1)+7' — )\—1‘



96 B. GUNTHER AND B. LEON DE LA BARRA

TABLE 1

Dimensional Analysis and Allometric Exponents of Three Independent

Similarity Criteria

SIMILARITY
Exponent of
M,L, T Electro- Hydro-
Mechanical | dynamical dynamical
Comment o B8 v | MBa+B+E | 3Ba+B+y) | HBa+B+2y)

Acceleration 0 1| -2 0.00 -0.33 -1.00
Action 1 21 -1 1.50 1.33 1.00
Area 0 2 0 0.66 0.66 0.66
Compliance -1 4 2 0.66 1.00 1.66
Density 1| -3 0 0.00 0.00 0.00
Diffusivity 0 2 - 1 0.50 0.33 0.00
Energy 1 21 -2 1.33 1.00 0.33
Flow resistance 1] —4} —-1 —0.50 —0.66 —1.00
Force 1 17 -2 1.00 0.66 0.00
Frequency 0 0f —1 —0.16 —0.33 —0.66
Length 0 1 0 0.33 0.33 0.33
Moment of inertia 1 2 0 1.66 1.66 1.66
Momentum 1 1| -1 1.66 1.00 0.66
Period 0 0 1 0.16 0.33 0.66
Power 1 2| -3 1.16 0.66 —0.33
Pressure 1 —-11[ -2 0.33 0.00 —0.66
Surface tension 1 0| -2 0.66 0.33 —0.33
Torque or moment of

force 1 21 -2 1.33 1.00 0.33
Velocity 0 1 -1 0.16 0.00 —0.33
Viscosity 1| -1 -1 0.50 0.33 0.00
Volume 0 3 0 1.00 1.00 1.00
Volume flow 0 3| ~1 0.83 0.66 0.33
Volume elasticity

coefficient 1| —4| -2 - 0.66 —-1.00 —1.66




Since y =

— 1 for all velocities:

’

v = 2y.

Finally, the reduction coefficient (y) becomes:

and since A =

— )3 .
X = X a+B+2y’

w? we have:

X = w¥Ba+8+2n
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TABLE 2
Dimensionless Number and Reduction Coefficients of Biological
Similarities
Expressed
according to
Biological As constant
Nondimensional Similarity are
numbers Composition criteria considered
FROUDE P
Relation between vVI-@
inertia and gravity | U = velocity wiBa BN G
forees G = gravity acceleration
= length
LAPLACE . P-L
Relation betwee?n =T Wi+ B+EN o
pressure tension and | P = pressure
radius ¢ = tension
PECLET p, =0 UL
Ratio between trans- K
port of thermal p = density @dBE B a
energy by fluid and C, = specific heat at constant %
molecular motion pressure .
K = heat conductivity
REYNOLDS U-L
Relation between R, = 1Ga+B8+29)
inertia and viscous 4 L i it v
forces in a fluid v = kinematic viscosity
WEBER
Relation between w.o= P U2-L PO FE 2 P
inertia forces and e T 5 o
surface tension forces
WOMERSLEY L2.f
Related to pulse wave o= T @iEEHET2N v
transmission

J = frequency

T—B.M.B.
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In Table 2 the coefficients of y are defined for various dimensionless numbers.
For instance, Peclet’s, Reynolds’ and Womersley’s numbers have a coefficient
of y equal to 2.0, while for the rest of the nondimensional numbers the co-
efficients are distributed between 0.5 and 2.0y..

In conclusion, the range of the theory of biological similarity corresponds to
an infinite number of coefficients of y, with the limiting values of 0.5 and
1.0y, being 0.93y the mode.

Exceptionally the coefficient of y may assume values between 1.0 and 2.0.

B. Biological similarities and allometric equations. From the general equa-
tion of the theory of biological similarities it is possible to predict the range of
the exponent (b) of Huxley’s allometric equation y = a-|W|?, were y = physio-
logic function, @ = parameter, |W| = numerical value of body weight and
b = characteristic exponent of an allometric growth.

The relationship between the theory of biological similarity and Huxley’s
allometric equation can be established through the ratio W/jw = w of the
prototype (W) and the model (w). But, if the weight of the model is established
as w = 1.0, it results that w = |W/| and the general equation will become:

y = al W|§(3a+ﬁ+1');

were | W| should be considered as the numerical value for any particular weight

EXPONENTS OF ALLOMETRIC EQUATIONS AND RANGE OF BIOLOGICAL SIMILARITIES
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Figure 2. Theoretical range according to the biological similarity theory (shaded area) and

experimental values of the exponent (b) of empirical allometric equations (dots). In few cases

(area, length, volume) there is only one value for the exponent (b) and the experimental data are
located around this single figure
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scale (kg, g, mg, etc.) and not in the sense of weight as a force (M-L-T~3).
Apparently, the theoretically calculated exponent of | W/ is equivalent to the
empirical value of (b) in Huxley’s allometric formula y = a. W°.

As it is shown in Table 1, the numerical equivalent of the three similarity
criteria or the corresponding values of the exponent (b) are given for each
physical magnitude commonly used in biology. As stated before, the range of
biological similarities can be established between mechanical and hydro-
dynamical similarity criteria, being the mean value close to the electrodynamical
similarity criterion (y = 1.0), which happens to be the same similarity rule
(A = 7) established by Lambert and Teissier (1927) in their ‘“Théorie de la
similitude biologique”.

Now, it is noteworthy to compare the theoretical range of biological simi-
larities with the values of (b) calculated from experimental data (Fig. 2).
There is concordance between the theoretical assumptions and the empirical
exponents of (b) calculated for numerous physiological functions.

C. Similarity criteria and invariants. The adequate combination of the
exponents (b) of the allometric equations gives dimensionless numbers or simi-

TABLE 3
Dimensional and Solution Matrices for 11 Functions and 8 Independent
Similarity Criteria
SYMBOLS OF
FUNOTIONS vie |Gl Al p (BB | v | WOy T
(\ M 0 0 1 0 1 1 1{ 0 1 1 0
Dimension-3 | 7,1 3| 3| o 2|-1|-4|-4| 1| 1| 2| o similarity
al Matr Criteria
|T] ol-1]-1] o|-2|-1]|-2|-1(|-2|-3] 1}[—r—"
(lm ] 1] 0] ol ol o} o] o} o} 3{—-3|-3| V.(WGy-T)®
m | 0] 1] of ol ol o] o] o] 3|-3|-2]@¢, Wwyoey. T2
ms| O] 0of 1| of o o o] of-2| 1| 0] Gu-Gu/W?
Solubion me| 0 0ol ol 1] o] of o] of 2|-2|-2| 4W/Gy-T)?
< i
Matrix 30 1 o] ol of o] 1| o] o o|-3] 2| 2| p@ - TyywWe
ms| 0] o] o ol o 1] o] o|-6]| 5| 4| Rn(G%-T4/We
a| 0] 0 0] ol o of 1| ol|-6]| 5| 5| E.(Gq-T)5/W"
Ll s 0 0 0 0 0 0 0 1 1]-1 0| v-W/Gy
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larity criteria, which were first systematically studied by Stahl (1962, 1963) by
applying Buckingham’s Pi-theorem to biological functions.

In order to obtain a complete group of similarity criteria that at the same
time are independent from each other it is convenient to arrange the exponents
of certain biological funetions in a “dimensional matrix” (Table 3). TFor each
function ordered in the first row the corresponding exponent of M, L, and T
are arranged in the columns. From the dimensional matrix a ‘‘solution
matrix”’ can be derived in which the rows correspond to the Pi-numbers or
specific similarity criteria. In this particular case, the application of a single
similarity criterion (electrodynamical or mechanical) results in a complete
group of similarity eriteria which are invariant, i.e. in all instances the exponent
of | W] is exactly zero.

Furthermore, when the Pi-numbers are combined (Table 4) it is possible to
obtain a number of new invariants (I,), again with a residual weight exponent
equal to zero.

Equivalent results may be obtained combining adequately certain empirical
allometric equations; but in this case the residual weight exponent is not
equal to zero and a “scale effect’”’ is apparent. Only if a single similarity
criterion is applied (mechanical, electrodynamical or hydrodynamical) a zero
residual weight exponent should be expected.

The invariants (I;) obtained from the empirical allometric equations of
different physiological systems (circulation, respiration, metabolism, etc.) have
residual weight exponent close to zero, due to the theoretically established
range of biological similarities and also to the statistical variation of the
exponent (b).

Further studies are necessary to include other dimensions, as for instance
temperatures (£) and heat (H) besides M, L, and T, in order to increase the
accuracy of the final equations and its biological applications.
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