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Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine
residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive
candidate for the biocatalytic deprotection of formylated peptides that are used in chemoenzymatic pep-
tide synthesis. For this application it is essential to use PDF preparations that are free of contamination by
peptidases that can cleave internal peptide bonds. Therefore, different purification methods were
attempted and an industrially applicable purification procedure was developed based on a single
anion-exchange chromatography step of an engineered PDF variant that was equipped with an anionic
octaglutamate tag. The deformylation activity and stability of the engineered enzyme were similar to
those of the wild-type PDF. This purification method furnished a PDF preparation with a 1500-fold
decreased level of contamination by amidases and peptidases as compared to cell-free extract. It was
shown that the enzyme could be used for deprotection of a formylated dipeptide that was prepared by
thermolysin-mediated coupling.

� 2013 Elsevier Inc. All rights reserved.
Introduction

Chemical peptide synthesis, either in solution or by solid phase
methods, generally proceeds by elongation at the N-terminal side
of the nascent peptide chain. In academic and industrial practice
N-protecting groups like tert-butoxycarbonyl (Boc)1, benzyloxycar-
bonyl (Cbz) and especially fluorenylmethoxycarbonyl (Fmoc) are
used in combination with advanced coupling reagents such as carbo-
diimides, phosphonium salts, or uronium/guanidinium salts [1].
Examples of coupling reagents are 1-ethyl-3-(3-dimethylaminopro-
pyl)-carbodiimide/N-hydroxysuccinimide (EDC/HOSu), 1-ethyl-3-
(3-dimethylaminopropyl)-carbodiimide/N-hydroxybenzotriazole
(EDC/HOBt) or benzotriazolyloxy-tris-(pyrrolidino)-phosphonium
hexafluorophosphate (ByBOP) [2]. Although these coupling methods
work well on a laboratory scale and proceed without substantial
ll rights reserved.
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racemisation of the amino acid building blocks, cheaper protecting
groups and coupling reagents are desired for large scale industrial
application. In this respect, a particularly interesting N-terminal
amino protecting group is the formyl moiety, which can be readily
introduced at low cost using formic acid and acetic acid anhydride
[3]. The removal of the N-terminal formyl group after the coupling
reaction can be performed chemically or enzymatically. Acidic
hydrolysis is a conventional method for removing N-formyl groups
from amino acids and from the amino terminus of peptides [4]. How-
ever, the low pH and harsh reaction conditions lead to significant
peptide bond hydrolysis when this method is applied in peptide syn-
thesis. A mild and selective enzymatic method would thus be more
attractive.

A class of enzymes that can be used for the removal of N-for-
myl-protecting groups from peptides consists of the peptide
deformylases. The cellular ribosome-mediated synthesis of pro-
teins starts with a methionine residue. In prokaryotes and eukary-
otic organelles (mitochondria and chloroplasts), the methionyl
moiety carried by the initiator tRNA. fMet is N-formylated prior
to its incorporation into a polypeptide [5]. Following initiation of
translation, the enzyme peptide deformylase (PDF, EC 3.5.1.88)
cleaves the formyl group from the nascent polypeptide chain [6].
Next, methionyl aminopeptidase may remove the N-terminal
methionine from the deformylated polypeptide, leading to a ma-
ture protein [7]. Because of this deformylase activity, PDF can be
an attractive biocatalyst for the deprotection of formylated
peptides.

http://dx.doi.org/10.1016/j.pep.2013.01.004
mailto:d.b.janssen@rug.nl
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Although much knowledge is available on PDFs as a target for
antibacterial, antiparasitic and chemotherapeutic agents [8–10],
data on biocatalytic applications are scarce. Concerning the use
of PDF in organic synthesis, the only information available in the
literature describes the application of the enzyme in the synthesis
of enantiopure amines and amino acid derivatives starting from
racemates, based on its ability to hydrolyze N-formyl a-aminoni-
trile and N-formyl derivatives of non-functionalized amines and
b-amino alcohols in a stereoselective manner [11]. In this paper,
the authors also describe an example of the use of PDF for the
selective deprotection of N-formyl-dipeptides. A prerequisite of
the application of PDFs in peptide synthesis is the possibility to iso-
late the enzyme in a form that is free of contaminating peptidases
that may originate from the E. coli host strain used for overexpres-
sion and could cause peptide bond hydrolysis in the peptide that is
under synthesis.

The aim of the work described here is to obtain a method for the
rapid, upscalable, and cheap production of purified PDF that is
capable of removing N-terminal formyl groups from peptides with-
out concurrent peptide bond hydrolysis. A one-step purification
method for PDF based on affinity chromatography with a Met–
Lys modified Sepharose matrix was described before [11]. This
strategy is in practice only suitable for use on laboratory scale since
the matrix is not commercially available and its preparation in-
volves a complicated chemo-enzymatic preparation process mak-
ing use of expensive materials. In this paper, we explore the
development of two simple and industrially applicable purification
methods for peptide deformylase from E. coli (EcPDF).

Because EcPDF is a monomeric enzyme of 168 aa (19.24 kDa),
which is rather small as compared to the average E. coli amidases
and peptidases, the use of ultrafiltration methods was first exam-
ined. Membrane ultrafiltration (UF) is a pressure-modified, convec-
tive process that uses semi-permeable membranes to separate
species in aqueous solutions by molecular size, shape and/or
charge [12]. Alternatively, the selectivity of ion-exchange chroma-
tography (IEC) may be improved by modification of the target pro-
tein, e.g. by changing the charge distribution on the surface [13].
The second option that is described makes use of IEC of a variant
of PDF that is equipped with a negatively charged octaglutamate
tag introduced in a solvent exposed loop on the surface of EcPDF.
This allowed efficient purification using IEC.
Experimental

Materials

All standard chemicals were of the highest grade obtainable. H-
Phe-NH2, H-Tyr-OMe, N-formyl-Met–Ala-OH, H-Met–Ala-OH, N-
formyl-Met–Lys-OH, H-Leu–Phe-OH, H-Phe–Leu-OH, H-Asp–Phe-
OH, H-Phe–Asp-OH, H-Arg–Phe-OH, H-Phe–Arg-OH, H-Gly–Phe-
OH, and H-Phe–Gly-OH were purchased from Bachem (Bubendorf,
Switzerland); tris-(2-carboxyethyl)-phosphine (TCEP) was ob-
tained from Fluka (Buchs, Switzerland). If desired, amine groups
were formylated in a refluxing mixture containing 1.1 equiv formic
acid and 1.1 equiv of acetic acid anhydride [11].

The mono Q HR 5/5 and HiLoad Q Sepharose anion exchange
columns were purchased from GE Healthcare Bio-Sciences Ltd
(United Kingdom). Centriprep and Centricon centrifugal filter de-
vices were purchased from Millipore Corporation (Billerica, Massa-
chusetts, USA).

E. coli strains CJ236 and JM109 were from Bio-Rad Laboratories
GmbH (Munich, Germany). Helper phage M13K07 was from GE
Healthcare Bio-Sciences Ltd (United Kingdom).

Restriction enzymes, T4 DNA ligase, T4 DNA polymerase, and
polynucleotide kinase were obtained from New England Biolabs
(Schwalbach, Germany). Adenosine triphosphate and deoxynucle-
otide triphosphates were purchased from Roche (Mannheim, Ger-
many). Catalase from bovine liver was obtained from Sigma (St.
Louis, Missouri, USA). Synthesis of oligonucleotides for site-direc-
ted mutagenesis and DNA sequencing were performed by MWG
Biotech AG (Ebersberg, Germany).
Construction of E. coli PDF wild-type expression vector

Wild-type peptide deformylase from E. coli (EcPDFwt) was pro-
duced with the expression vector pBAD/Myc-His-DEST using Gate-
way cloning technology (Invitrogen). The PDF gene was first
amplified by PCR using forward primer 50-GGGGACAAGTTTGTA
CAAAAAAGCAGGCTAGG-AGGAATTAACCAATGTCCGTGCTTCAAGTGT
TACATATTCC-30 as (attB1 site in italics, Shine–Dalgarno sequence
underlined, start codon in boldface), and reverse primer 50-GGG
GACCACTTTGTACAAGAAAGCTGGGTTTAAGCCCGGGCTTTCAGACGATC
CAGTTTTTC-30 as (attB2 site in italics, stop codon in boldface) and
plasmid pTL7-1. The PCR reaction was performed using AccuPrime
Taq DNA polymerase (1U) and accompanying buffer (Invitrogen).
The amplification reaction was started with an initial denaturation
of 2 min at 95 �C, followed by 30 cycles of 15 s at 95 �C, 30 s at
58 �C and 1 min at 68 �C, with an additional cycle of 5 min at
68 �C. The amplification product was purified using the QIAquick
PCR purification kit (Qiagen), after which this product was intro-
duced into the pDONR201 vector via a Gateway BP recombination
reaction in a vector:insert molar ratio of 1:2. After transformation
of E. coli TOP10, recombinant cells were selected by plating on LB
plates containing kanamycin (50 lg/mL), followed by overnight
incubation at 28 �C. The PDF-encoding gene in pDONR201 was sub-
sequently recombined to expression vector pBAD/Myc-His-DEST in
a standard Gateway recombination reaction using LR clonase
(Invitrogen) and a molar ratio of destination vector vs. entry vector
of 1:2.4 (150:300 ng). After transformation of E. coli TOP10, recom-
binant cells were selected by plating on LB plates containing car-
benicillin (100 lg/mL) followed by overnight incubation at 28 �C.
Finally, a correct clone, as established by plasmid DNA isolation
and restriction enzyme analysis was designated pBAD/Myc-His-
DEST PDFwt, or pBAD-PDFwt.
Construction of EcPDF variant expression vector

The Kunkel method [14] that we used for site-directed mutagen-
esis of the def gene was performed according to the instruction man-
ual of the Muta-Gene phagemid kit (Bio-Rad Laboratories GmbH,
Munich, Germany). The def gene from E. coli K12 (EMBL accession
number U00096, nucleotides 3,431,712–3,432,221) was cloned be-
tween the EcoRI and HindIII sites of phagemid pTZ18U [14], placing
the gene under the control of the lac promoter [15]. The resulting
phagemid was used for mutagenesis. A DNA segment encoding an
octaglutamate tag between codons for Glu64 and Asn65 was ob-
tained using the primer prPDF-Etag (50-CGTCAC GGTCCTCTTCTTCTT
CCTCCTCTTCCTCTTCCGAAACATC-30, AvaII restriction site under-
lined). The oligoglutamate tag is encoded by a mixture of CCT and
CTT codons (in bold) to prevent hairpin formation. For the construc-
tion of PDFshort the primer was prPDFstop (50-GTTGTTTCACTTAAG
ACAGATAATCC-30, AflII site underlined) which changes the CCG co-
don for Pro148 into a stop codon (TAA, in bold). After synthesis of
dsDNA, this was used to transform E. coli JM109 (ung+) which con-
tains uracil N-glycosylase for inactivating the uracil-containing tem-
plate. The resulting PDFEtag- and the PDFshort-encoding plasmids
were respectively called pTL7-1 and pTL7-2. For expression, the mu-
tated genes were recloned into the pBAD/Myc-His-DEST vector as
described above, yielding pBAD-PDFEtag and pBAD-PDFshort.
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Cultivation and preparation of cell-free extract

EcPDFwt, EcPDFEtag and EcPDFshort were isolated from overpro-
ducing E. coli TOP10 cells transformed with the respective plas-
mids. Cells were grown at 28 �C for 14–16 h in 1.5 L LB medium
containing 100 lg/mL carbenicillin. When the OD620 reached 0.6,
PDF expression was induced by addition of 0.02% L-arabinose. Cells
were harvested by centrifugation and about 12 g (wet weight) of
cell paste was suspended in 40 mL buffer (20 mM Hepes/KOH,
100 mM KCl, pH 7.7, supplemented with 10 lg/mL catalase from
bovine liver). After sonication at 0 �C, cell-free extract (CFE) con-
taining 5–10 mg/mL of protein was obtained by centrifugation at
33,300g for 1 h at 4 �C.
Purification procedures for PDF

For purification by anion exchange chromatography, 1 mL of
CFE was fractionated with a 1 mL Mono Q 5/50 GL column oper-
ated with HTK-buffer (20 mM Hepes/KOH, 1 mM tris(2-carboxy-
ethyl)phosphine (TCEP), 100 mM KCl, pH 7.7). PDF was eluted
with 60 mL of a 0–1 M KCl gradient. Fractions with PDF activity
were concentrated using Centriprep 30 kDa filters to 10 mg/mL of
protein. Purified enzyme was stored at �20 �C.

This purification procedure was also scaled up. An amount of
44 mL of CFE (30 mg/mL total protein) was loaded on a HiLoad
26/10 Q Sepharose HP column equilibrated with HTK-buffer. Un-
bound proteins were washed off with 100 mL of the same buffer
and PDF was eluted with 1 M KCl in HTK buffer, and concentrated
by ultrafiltration to 10 mg/mL of protein.

For purification of by affinity column chromatography, CFE was
prepared in HFC buffer (20 mM Hepes/KOH, pH 7.7, 100 mM KF,
supplemented with 10 lg/mL catalase from bovine liver). An
amount of 10 mL of CFE was fractionated using a 20 mL Met–Lys-
Sepharose column that had been equilibrated with HFT-buffer
(20 mM Hepes/KOH, pH 7.7, containing 100 mM KF and 0.2 mM
TCEP) [11]. After washing, PDF was eluted with the same buffer
containing containing 100 mM KCl and concentrated to 10 mg/mL.

Purification by ultrafiltration was tested with CFE from E. coli
TOP10 cells expressing PDFwt. using Centriprep or Centricon de-
vices equipped with 50 or 100 kDa cutoff filters (YM-50 or YM-
100, Millipore). Before loading, samples were centrifuged for 2 h
at 16,100g and 4 �C, diluted 5-fold with buffer composed of
20 mM Hepes/KOH, pH 7.7, 100 mM KCl, and supplemented with
10 lg/mL catalase and 2 mM TCEP. Diluted material (3 mg/mL)
was loaded and centrifuged for 2.5 h at 1000g and 4 �C.

For purification of PDF by gel filtration chromatography, cell-
free extracts were diluted with standard dilution buffer (SDB),
which was composed of 20 mM MOPS/NaOH, 100 mM NaCl, sup-
plemented with 10 lg/mL catalase from bovine liver and 2 mM
TCEP, pH 7.7, to a protein concentration of 5 mg/mL. Subsequently
100 lL samples of the extracts were chromatographed on a TSK-
GEL G2000SWXL column (TOSOH Bioscience). The flow rate was
0.5 mL/min.
Enzyme and protein assays

Deformylase activity of PDF was routinely measured at 30 �C in
a volume of 500 lL. Samples of 50 lL of PDF in SDB were mixed
with 450 lL of substrate solution composed of 110 mM MOPS/
NaOH buffer (pH 7.2), 300 mM NaCl, 0.1 mg/mL bovine liver cata-
lase, and 5.5 mM of the substrate N-formyl-Met–Ala-OH. The dilu-
tions of the enzyme were chosen such that approx. 10% of the
substrate was converted in 15 min. After starting the reaction by
addition of PDF, 100 lL aliquots were withdrawn from the reaction
mixture every 5 min and added to 100 lL of 1 M phosphate buffer
(H3PO4-NaOH, pH 2.66) to stop the reaction. Analysis of substrate
and product was performed using HPLC.

Peptidase activity in samples was determined using a mixture
of the following 8 dipeptides: H-Leu–Phe-OH, H-Phe–Leu-OH, H-
Asp–Phe-OH, H-Phe–Asp-OH, H-Arg–Phe-OH, H-Phe–Arg-OH, H-
Gly–Phe-OH, H-Phe–Gly-OH. An amount of 450 lL of a solution
composed of 110 mM MOPS/NaOH buffer (pH 7.2), 300 mM NaCl,
0.1 mg/mL bovine liver catalase, and 0.625 mM of each of the 8
dipeptides, was mixed with 50 lL of different dilutions of PDF in
SDB. After starting the reaction at 30 �C by the addition of PDF,
50 lL samples were withdrawn at various times and added to
150 lL methanol to stop the reaction. Analysis of substrates and
product (L-phenylalanine) was performed using HPLC as described
below.

Protein concentrations were determined using the Bradford
method with bovine serum albumin (BSA, Sigma) as standard pro-
tein. SDS–polyacrylamide gelelectrophoresis was performed
according to standard protocols. Marker proteins are from the
BenchMark Protein Ladder (Invitrogen), containing marker pro-
teins of 220, 160, 120, 100, 90, 80, 70, 60, 50 (thick band), 40, 30,
25, 20 (thick band), 15 and 10 kDa).

PDF stability

The effect of several water miscible organic cosolvents [metha-
nol, tetrahydrofuran (THF), N,N-dimethylformamide (DMF), tert-
butanol, dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidi-
none (NMP)] in a 10, 20 or 40% (v/v) concentration was measured
by incubating diluted purified EcPDFwt and its variants at 30 �C in a
solution containing 20 mM MOPS/NaOH, pH 7.7, 100 mM NaCl,
10 lg/mL bovine liver catalase, and 2 mM TCEP. To this mixture
was added 450 lL of substrate solution composed of 110 mM
MOPS/NaOH buffer, pH 7.2, 300 mM NaCl, 0.1 mg/mL bovine liver
catalase and 5.5 mM of the substrate N-formyl-Met–Ala-OH. Sam-
ples were periodically withdrawn from the incubation mixture to
measure the specific activity. The residual activity is reported as
a percentage of the specific activity of the enzyme that was found
when no cosolvent was added to the reaction mixture.

The temperature stability of the enzymes was analyzed by
preincubating purified PDFs (30 lg/mL) for 60 min at temperatures
between 4 and 60 �C in standard dilution buffer. After an incuba-
tion of 10 min on ice, 50 lL samples of the pretreated enzyme solu-
tions were used to determine the remaining activity according to
the standard assay at 30 �C.

HPLC analyses

HPLC was carried out using a stainless-steel analytical column
(250 mm length, 4.6 mm ID) packed with Inertsil ODS-3 material,
5 lm particle size from Alltech Applied Science (Breda, The Neth-
erlands). The flow rate was 1 mL/min. UV detection was performed
at 40 �C at a wavelength of 210 nm. The injection volume was 5 lL.

N-formyl-For-Met–Ala-OH and H-Met–Ala-OH were analyzed
using the following gradient of acetonitrile in 10 mM H3PO4:
t = 0–4 min, 0.1% (v/v) acetonitrile isocratic; t = 4–15 min, 0.1–
50% acetonitrile linear increase; t = 15–15.1 min, 50–0.1% linear
decrease; t = 15.1–20 min, 0.1% acetonitrile isocratic (retention
times: N-formyl-Met–Ala-OH = 13.54 min, Met–Ala-OH = 5.39 min).

The peptides H-Leu–Phe-NH2, N-formyl-Leu–Phe-NH2, and N-
formyl-Tyr–Leu–Phe-NH2 were analyzed using the following gradi-
ent of acetonitrile in 10 mM H3PO4: t = 0–5 min, 2.5% (v/v) acetoni-
trile isocratic; t = 5–20 min, 2.5–75% acetonitrile linear increase;
t = 20–20.1 min, 75–2.5% linear decrease; t = 20.1–27 min, 2.5% ace-
tonitrile isocratic (retention times: H-Leu–Phe-NH2 = 12 min, N-for-
myl-Leu–Phe-NH2 = 16.81 min, N-formyl-Tyr–Leu–Phe-NH2 =
19.46 min.
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For peptidase activity measurements, the production of L-phen-
ylalanine was analyzed using the following gradient of acetonitrile
in 10 mM H3PO4: t = 0–15 min, 0–30% acetonitrile linear increase;
t = 15–15.1 min, 30–0% acetonitrile decrease; t = 15.1–20 min, 0%
acetonitrile isocratic.
Chemo-enzymatic synthesis of N-formyl-Tyr–Leu–Phe-NH2 using
EcPDFEtag

N-formyl-Leu–Phe-NH2 was synthesized as follows: 7.9 g
(49.7 mmol) N-formyl-Leu-OH and 10 g (61.0 mmol, 1.23 equiv)
H-Phe-NH2 were dissolved in 200 mL of water containing 0.4 mM
NaCl and 15 mM CaCl2 keeping the pH at 6 by addition of NaOH
(20% w/v). Then, 4 g of thermolysin (Sigma) was added and the
mixture was stirred for 30 h at ambient temperature. The precipi-
tate was isolated by filtration and washed with 50 mL of water. The
identity of N-formyl-Leu–Phe-NH2 was confirmed by NMR analysis
and its purity (>96%) was determined by HPLC analysis.

PDF-catalyzed deprotection of N-formyl-Leu–Phe-NH2 was per-
formed as follows. To a solution of 55 mM N-formyl-Leu–Phe-NH2

in 260 mM aqueous MOPS-NaOH buffer containing 675 mM NaCl
and 0.1 g/L of catalase (pH 7.2) was added purified PDFEtag (ob-
tained using ion-exchange chromatography) to a final concentra-
tion of 5 lM. The reaction mixture was stirred at 28 �C for 46 h.
The product was isolated in 80% yield by extraction with ethyl ace-
tate at pH 9.5 and subsequent evaporation of the ethyl acetate
phase in vacuo. The identity of Leu–Phe-NH2 was confirmed by
NMR spectroscopy and its purity was checked by HPLC (>98%).

For the synthesis of N-formyl-Tyr–Leu–Phe-NH2, a 4 mL aque-
ous solution of 0.334 g N-formyl-Tyr-OH and 0.390 g H-Leu-Phe-
NH2 in H2O containing 0.4 mM NaCl and 15 mM CaCl2 was pre-
pared and 0.1 g thermolysin (Sigma) was added. The mixture was
Fig. 1. SDS–PAGE analysis of induced E. coli cells overexpressing EcPDF variants.
Lanes: 1, reference protein ladder; 2, CFE of E. coli cells overexpressing EcPDFwt; 3,
idem EcPDFEtag; 4, idem EcPDFshort.

Table 1
Purification of EcPDFwt from E. coli TOP10 using Met–Lys-Sepharose affinity chromatograp

Purification step Activity
(�103 U)a

Protein
(mg)

Deformylase
(U/mg)a

Affinity chromatography
CFE 14.7 64.5 229
Met–Lys-Sepharose 8.4 4.5 1,880

a Deformylase activities measured with N-formyl-Met–Ala-OH as the substrate.
b Peptidase activity; was determined by peptide bond hydrolysis rates of a mixture o
incubated at ambient temperature for 3 days. The product was iso-
lated by filtration and washed with 10 mL water and 5 mL diethyl
ether. The identity of N-formyl-Tyr–Leu–Phe-NH2 was confirmed
by NMR and its purity (>65%) was checked by HPLC.

Results and discussion

Production of PDF

To obtain an expression construct for EcPDFwt and its variants,
the E. coli def gene, coding for EcPDFwt, or variants thereof were
cloned into pBAD/Myc-His-DEST via standard molecular biology
procedures. This resulted in a high-level overexpression in E. coli.
of EcPDFwt. A construct in which codons for eight glutamates were
introduced between codons for Glu64 and Asn65 was constructed
and expressed with the same vector. A shorter variant of E. coli PDF
(see below) was obtained by changing the codon for Pro148 by a
stop codon (TAA, in bold). All three PDFs were well overexpressed
in soluble form using the same vector (Fig. 1). The specific activity
of PDFwt in CFE was 229 U/mg as measured with the standard as-
say, compared to 16 U/mg in a non-overexpressed CFE. Levels in
CFE for EcPDFEtag and EcPDFshort were 180 U/mg and 215 U/mg,
respectively. The PDF proteins were produced in E. coli at levels
of 10–20% of the total soluble protein recovered in CFEs.

Initially, membrane filters with different pore sizes and filter set-
ups were tested for separating PDF from other proteins. However,
even when CFEs were loaded on a 100 kDa Centriprep filter, only
about 10% of the deformylase activity was found in the filtrate, both
with EcPDFwt and EcPDFshort. Even pure protein obtained by affinity
chromatography did not easily pass the 30 or 50 kDa cutoff filters,
suggesting protein aggregation or interaction with the filter mate-
rial. The use of cross-flow filtration or additives such as salt (0.1 or
1 M NaCl) or betaine [16,17] did not improve the results. Thus, even
though PDF is a small protein, ultrafiltration appeared ineffective,
possibly due to fouling of membrane material.

Purification of E. coli PDF via affinity chromatography

For purification of EcPDFwt, we first tested the single-step pro-
cedure using a Met–Lys-Sepharose affinity column as described
in Materials and Methods. In the Met–Lys-Sepharose matrix, the li-
gand is bound via the e-NH2 group of the Lys side-chain to the N-
hydroxysuccinimide-activated Sepharose. The method is based on
the binding of active PDF to the Met–Lys-Sepharose affinity matrix
in the presence of fluoride ions, which significantly increase the
affinity of EcPDFwt for small peptides, most likely because fluoride
mimics formate.

The result of a typical purification experiment starting from ca.
15 g (wet weight) E. coli TOP10 cells containing pBAD-PDFwt is gi-
ven in Table 1. The specific activity of the purified PDF towards the
substrate N-formyl-Met–Ala-OH was 1880 U/mg protein at pH 7.2
and 30 �C. This is somewhat higher than the 1170 U/mg reported
for a homogeneous preparation of PDF(Fe) [18]. Purified PDF
obtained this way served as a reference when measuring the ami-
dase and peptidase content of various enzyme samples.
hy.

Recovery
(%)

Purification
(fold)

Peptidase
(U/mg)b

Deformylase
peptidase. ratio

100 1 0.23 995
57 8.2 0.002 1�106

f eight phenylalanine-containing dipeptides was used (see Materials and methods).
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To enable rapid determination of amidase and peptidase activ-
ity, enzyme samples were incubated with a mixture of 8 different
dipeptides, each containing a Phe at the N- or at the C-terminal po-
sition. The increase of purity of PDF containing samples was deter-
mined by calculating the ratio of the deformylase activity and
peptidase activity, and comparing this to the same ratio found
for pure PDF. This calculation showed that in PDF samples purified
by affinity chromatography the level of contamination by pepti-
dases was reduced over thousand fold as compared to CFE. How-
ever, in view of the costs of the affinity matrix and the use of
fluoride, this purification method is not attractive for use on indus-
trial scale and consequently we explored alternative and more
cost-efficient purification procedures for PDF.
Fig. 2. SDS–PAGE analysis of purified EcPDF variants using IEC and affinity
chromatography. Lanes: (1) reference proteins; (2) EcPDFwt purified via affinity
chromatography; (3) EcPDFshort purified via affinity chromatography; (4) EcPDFEtag

purified via affinity chromatography; (5) EcPDFEtag purified via IEC; (6)
EcPDFshort,Etag purified by affinity chromatorgaphy; (7) idem, EcPDFshort,Etag; (8)
CFE of EcPDFEtag; (9) reference proteins.
Purification of PDF via ultrafiltration

Data on the use of ultrafiltration (UF) for protein purification
purposes are limited [19,20]. Since EcPDF is a monomeric globular
protein of about 19 kDa [21] whereas most proteases are multi-
mers of monomers with a size of about 60 kDa [22], ultrafiltration
could offer a simple and cost effective way of separating PDF from
amidases and peptidases. For testing ultrafiltration, both wt E. coli
PDF was used as well as a smaller variant (EcPDFshort) that lacks
residues 148–169 from the C-terminal a-helix of the EcPDF. It is
known that the last 18 residues of EcPDF are disordered in the X-
ray structure and dispensable for activity [23]. EcPDFshort is a pro-
tein of 16.7 kDa.
Purification of PDF via ion-exchange chromatography

The use of ion-exchange chromatography (IEC) as a cheap and
easily scalable protein purification method for separating PDF in
a single chromatographic step from amidases and peptidases was
attempted with a Mono Q 5/50 GL column (Table 2). The specific
activity of the purified EcPDFwt and the recovery were unsatisfac-
tory with a yield of only 19%. Moreover, the level of contamination
due to the presence of amidases and peptidases in the sample was
only reduced by a factor of 2, when the fractions containing the
highest levels of PDF activity were pooled and tested.

To obtain better separation, the use of a purification tag was
considered. Most commercial tags used in research, such as a hexa-
histidine tag, are too expensive for large-scale preparation of pro-
teins because they require expensive resins. Protein-based tags,
such as maltose-binding protein, are large as compared to the size
of PDF and require expensive processing enzymes for removal. The
fusion of a small tag that introduces multiple charged amino acids
could help separation by classical ion exchange chromatography. It
was observed that a tag consisting of six arginines fused to the C-
terminal end of human urogastrone could act as an ion-exchange
tag [24,13]. Other positively and negatively charged tags composed
of multiple arginine, glutamate or aspartate residues have been
Table 2
Purification of EcPDFEtag from CFE of E. coli TOP10 containing pBAD-PDFEtag using ion-exch

Purification step Activity
(�103 U)a

Protein
(mg)

Deformylase act.
(U/mg)a

Mono Q 5/50 GL column
CFE 0.8 4.5 180
IEC column 0.6 0.6 970
HiLoad 26/10 ion-exchange column
CFE 21 1400 156
HiLoad 26/10 14 150 884

a Deformylase activities measured with N-formyl-Met–Ala-OH as the substrate.
b Peptidase activity was determined by measuring the release of L-Phe from a mixtur
constructed [25–30]. More general purification tags providing dif-
ferent interaction possibilities have also been proposed [31].

In view of these results, we inserted an octaglutamate tag (Etag)
in the flexible loop that is present between b-strands C and D (res-
idues 61–66) of PDF (PDB code 1BS6). It has been reported that this
CD loop has to be flexible but has no role in activity and/or sub-
strate binding. Moreover, it is not conserved and its composition
and length varies in different PDF types [32,33]. The point of inser-
tion was chosen after codon 192 (TCG) which encodes Glu64 in the
wild-type sequence. The construct was verified by sequencing and
expressed in E. coli TOP10 yielding the desired EcPDFEtag. The over-
expression of this new PDF variant was similar to what was
achieved with EcPDFwt (20% of the total protein) and the deformyl-
ase activity of the EcPDFEtag was only slightly affected by the pres-
ence of the charged moiety. After purification using Met–Lys-
Sepharose affinity chromatography (Fig. 2), the specific activity of
EcPDFwt towards the substrate N-formyl-Met–Ala-OH was
1800 U/mg while with EcPDFEtag an activity of 1300 U/mg was
found.

Unlike the wild-type enzyme, the E-tag containing protein
could easily be separated from amidases and peptidases by ion-ex-
change chromatography (Table 2, Fig. 2). The short PDF variant
equipped with an E-tag (EcPDFshort,Etag) could also be purified this
way (Fig. 2). When using a Mono Q 5/50 GL column, more than
70% of the PDF activity was found back after IEC and the amount
of amidases and peptidases in the purified sample was reduced
by a factor of 1500. A similar purity was found when EcPDFEtag
ange columns.

Recovery
(%)

Purification
(fold)

Peptidase act.
(U/mg)b

Deformylase/
peptidase. ratio

100 1 0.16 1120
73 5 6�10�4 1.6�106

100 1 0.19 821
64 5.5 8�10�4 1.1�106

e of eight phenylalanine-containing dipeptides (see Materials and methods).
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was purified on larger scale from CFE using a HiLoad 26/10 column.
This procedure allowed the isolation, in a single step, of 150 mg of
pure EcPDFEtag from 44 mL of CFE obtained from a 1 L culture.

The results show that IEC in combination with the use of an
engineered PDF carrying a charged octaglutamate tag is a suitable
method for the removal of amidases and peptidases from EcPDF to
be used in peptide deformylation.

Suitability of EcPDFEtag for deprotection of enzymatically synthesized
N-formyl-dipeptides

The purified EcPDFEtag was subsequently used in a reaction con-
taining 1.2 mM N-formyl-Leu–Phe-NH2. The mixture was incu-
bated under standard reaction conditions (pH 7.2, 30 �C, 8 lg/mL
EcPDFEtag). After 4 h, full deformylation of the substrate was ob-
tained without any detectable peptide bond hydrolysis. When
the deformylation reaction was carried out with CFE, extensive
peptide bond hydrolysis occurred, most likely due to leucine ami-
nopeptidase activity produced by the E. coli host.

Polar organic solvents, such as dimethyl sulfoxide (DMSO), N,N-
dimethylformamide (DMF), methanol (MeOH), N-methyl-2-pyrro-
lidinone (NMP), tetrahydrofuran (THF) and tert-butanol are often
utilized as cosolvents to increase peptide solubility [34]. Therefore,
the stability of EcPDFwt, EcPDFshort and EcPDFEtag was tested by
determining activities in the presence of different concentrations
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of cosolvents. Complete inactivation of these PDFs was observed
when the enzymes were incubated with 10% (v/v) NMP and THF.
The effect of DMF and DMSO was not as detrimental, but remaining
activities were very low for all three enzymes, even when only 10%
cosolvent was used (Fig. 3A and B). With methanol, the loss of
activity was somewhat less, but the residual activity was still
low since only 20% of the initial activity was left in the presence
of 20% (v/v) methanol (Fig. 3). Nevertheless, the data show that
there is little difference in enzyme stability between the EcPDFwt

and the two engineered variants.
In order to demonstrate the applicability of the purified

EcPDFEtag in chemo-enzymatic peptide synthesis, we synthesized
the tripeptide N-formyl-Tyr–Leu–Phe-NH2 using two thermoly-
sin-catalyzed coupling steps and one PDF-catalyzed deformylation
step according to the scheme in Fig. 4. The formyl group can be con-
veniently introduced on single amino acids using formic acid and
acetic acid anhydride. First, a dipeptide was prepared by coupling
the formyl-protected amino acid N-formyl-Leu with H-Phe-NH2

using thermolysin (Fig. 4, step a). The formylated dipeptide precip-
itated from the reaction mixture and could be isolated by filtration.
Subsequently, it was deprotected with EcPDFEtag (Fig. 4, step b),
which was successfully completed even though the formyl group
needed to be removed from a Leu residue instead of the Met residue
that is present on the N-terminus of PDF’s natural substrates.
Deprotection by PDF resulted in complete removal of the formyl
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group, without any detectable peptide bond hydrolysis, indicating
that amidases and peptidases were absent.

After isolation of H-Leu–Phe-NH2 using extraction with ethyl
acetate at pH 9.5, the purity of the product was >98% with a final
yield of 80%. The deprotected Leu–Phe-NH2 dipeptide was subse-
quently coupled to N-formylated tyrosine applying thermolysin
as catalyst (Fig. 4, step c). This yielded the desired tripeptide N-for-
myl-Tyr–Leu–Phe-NH2.

In conclusion, we have engineered and overexpressed in E. coli
TOP10 a variant of E. coli PDF with a octaglutamate tag inserted
into a flexible surface loop. This E. coli PDFEtag was subsequently
purified from the overproducing strain by a single step of anion ex-
change column chromatography. This purification method is easily
scalable and requires only cheap materials, making it industrially
attractive. Although not completely pure, the enzyme lacked most
of the amidase and peptidase that is present in CFE and is detri-
mental for peptide synthesis applications. The enzyme appeared
to be suitable for the application in peptide synthesis since it al-
lows a mild and selective deprotection of N-formyl peptides with-
out detectable peptide bond hydrolysis.
Database links

Uniprot: http://www.uniprot.org/uniprot/P0A6K3.
RSCB: http://www.rcsb.org/pdb/explore/explore.do?structureId

=1DFF.
RSCB: http://www.rcsb.org/pdb/explore/explore.do?structureId

=1BS5.
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