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Early T-cell activation is selected by evolution to discriminate a few
foreign peptides rapidly from a vast excess of self-peptides, and
it is unclear in quantitative terms how this is possible. We show
that a generic proofreading cascade supplemented by a single
negative feedback mediated by the Src homology 2 domain
phosphatase-1 (SHP-1) accounts quantitatively for early T-cell acti-
vation, including the effects of antagonists. Modulation of the
negative feedback with SHP-1 concentration explains counterintu-
itive experimental observations, such as the nonmonotonic behav-
ior of receptor activity on agonist concentration, the digital vs.
continuous behavior on certain parameters, and the loss of re-
sponse for high SHP-1 concentration. New experiments validate
predictions on the nontrivial joint dependence on binding time
and concentration for the relative effect of two antagonists: We
explain why strong antagonists behave as partial agonists at low
concentration and predict that the relative effect of antagonists
can invert as their concentrations are varied. By focusing on the
phenotype, our model quantitatively fits a body of experimental
data with minimal variables and parameters.
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In vertebrates, T lymphocytes constantly scan the surface of
antigen-presenting cells (APCs) for the detection of foreign

peptide fragments bound in the peptide-MHC (pMHC). Rec-
ognition takes place via the pMHC binding to T-cell receptors
(TCRs) and the transduction of the signal via the downstream
signaling cascade. It is essential that T cells be activated when
binding to foreign peptides occurs and not when confronted with
self-peptides. Failures in the discrimination process result in ei-
ther infection or autoimmune diseases (1).
The T-cell signal transduction system is experimentally found

to satisfy a tight set of properties, all necessary for appropriate
initiation of the immune response (1):

Speed: TCRs have to scan a large number of APCs to detect
the rare foreign peptide; thus, discrimination speed is essen-
tial. Experiments provide direct visualizations of the treadmill-
like process of scanning (2–4) and indicate that interactions
last in the range of 1–5 min. Discrimination among antigens is
achieved within this time window. The binding between the
pMHC and activated T cells is subsequently stabilized and
restructured by dynamical processes, such as the formation
of the immunological synapse (5).

Sensitivity: T cells recognize foreign ligands even in minute
amounts (6, 7); that is, 10 agonist ligands charged on APCs
activate lymphocytes and the immune response.

Specificity: On the contrary, T cells usually do not respond to
self-ligands, even if presented in numbers as high as 105 or more.

Any model of early T-cell response must be compatible with
these three properties.
A natural and elegant early hypothesis proposed that antigen

discrimination would be achieved mostly through structural
rearrangements specific to agonists (8). However, experimental

data have not identified strong causal relations between struc-
tural modifications of the receptors and the type of antigen
bound. Existing experimental evidence points rather to the life-
time τ of the TCR–pMHC complex as the major determinant in
the discrimination process (9). Self-ligands typically have a short
lifetime (i.e., dissociate rapidly), whereas foreign ligands stay
bound to TCRs for longer typical times. It should be pointed out,
however, that some ligands with very strong binding constants
and shorter lifetime can also trigger responses. One explanation
is that they reassociate after unbinding so quickly that their ef-
fective binding time is much longer (10, 11).
An idealized immune response in terms of ligand concentra-

tion vs. dissociation time is summarized in Fig. 1A. There is some
debate on the precise value of dissociation times in vivo com-
pared with experiments in solution (12, 13). Experiments with
cells isolated from ovalbumin-specific TCR transgenic line 1 (OT-1)
mice present a “threshold’’ for activation around τ = 3–5 s, and
a three- to fivefold increase in τ is sufficient to distinguish anti-
gens that activate T cells (agonists) from those that do not
(nonagonists) (14).
The few-fold difference in affinity between agonists and non-

agonists is insufficient to compensate for their orders-of-magnitude
difference in potency as long as only equilibrium thermodynamic
processes are considered. However, out-of-equilibrium kinetic
proofreading (KPR) provides a mechanism that amplifies dif-
ferences in affinity and could permit discrimination (15, 16). This
possibility was originally recognized and proposed for immunol-
ogy by McKeithan (17). Phosphorylation processes postulated in
the KPR scheme are indeed compatible with the existing mo-
lecular evidence of immunoreceptor tyrosine-based activation
motif (ITAM) sites on the cytoplasmic side of TCRs (1). How-
ever, KPR amplification of discrimination requires a sufficiently
large number of phosphorylation layers and a strong bias toward
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the dissociation of the TCR–pMHC complex. These features are
incompatible (see below) with the observed fast response times
(only roughly 10-fold longer than typical lifetimes of the
TCR–pMHC complex) and the small number of antigens re-
quired for activation that we mentioned above. Furthermore, the
linearity of KPR cannot account for the observed phenomenon of
antagonism, whereby the presence of nonagonists can inhibit the
response to agonists (18).
Germain and colleagues (19) added to the basic KPR process

a negative feedback mediated by Src homology 2 domain phos-

phatase-1 (SHP-1) and a positive feedback mediated by ERK
kinase. Their insights were codified in a very elaborate model
that, given plausible parameters, was able to satisfy the con-
straints of speed, sensitivity, and specificity (14, 20). Subsequent
experimental work, informed by the model, identified parame-
ters (i.e., concentrations of key effectors, such as SHP-1 and
CD8) that can quantitatively tune the immune response in either
a digital or analog way (21). Another model (22) was built on the
premise that when the agonist concentration is very low, the
foreign peptides must cooperate with endogenous peptides to

A B
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Fig. 1. Scheme of our model for early T-cell response and its behavior. (A) Idealized sensitivity-specificity curve of the immune response as a function of
ligand concentration and dissociation time. Antigen discrimination is supposed to hinge on the antigen-TCR dissociation time. (B) Our model of KPR with
negative feedback. The blue box indicates the core KPR, and the red box illustrates the negative feedback mediated by phosphatase, assumed to be SHP-1.
Equations are defined in SI Appendix. (C) Numerical integration for the steady-state concentration of the effector CN , which controls the response of the
system, as a function of antigen concentration for different dissociation times. All concentrations are expressed per cell. Parameters used are as in Table 1.
Threshold K on CN for activation of response is indicated by the dotted line. The color (from blue to orange) corresponds to values of τ =1, 2, 3, 5, 10, and 20 s.
Crosses indicate the analytical derivation performed in SI Appendix assuming no receptor saturation. The discrimination range in antigen concentration
between τ = 3 s and τ =10 s is indicated by the red arrow. (D) Numerical integration of the system of equations with no phosphatase (i.e., pure KPR) for
comparison. The discrimination range in antigen concentration between 3 and 10 s is indicated by the red arrow. Crosses indicate analytical KPR without
receptor saturation. (E) Fraction of activated SHP-1 as a function of antigen concentration for different dissociation times (same color code as in C and D). SHP-1
controls the strength of the negative feedback; it increases with ligand number but clearly does not depend much on the dissociation time. (F) Concentration
of antigen-triggering response as a function of its dissociation time. Note that for intermediate dissociation time, the response can disappear for a small range of
high ligand concentrations. From this curve, one can define the agonist region for τ > 3 s; the response is specific. For 3 s < τ < 10 s, ligand concentration to
trigger response drops from more than 100,000 to values of order 10, spanning ligand concentrations across four orders of magnitude; the response is sensitive.
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activate T cells (23). To satisfy the speed, sensitivity, and selectivity
constraints, they required additional feedback onto the relevant
KPR kinase, lymphocyte-specific protein tyrosine kinase (Lck).
This model was also quite elaborate, with upward of 50 parame-
ters, and had to be solved stochastically to explain experiments.
Here, we propose a phenotypic model for early T-cell activa-

tion that relies on just the SHP-1 feedback and can be largely
solved analytically. It has just nine relevant parameters (with only
seven for the steady state). The model does not require any
cooperativity between self and foreign peptides at low agonist
levels, which could, however, contribute supplementary modu-
lation as suggested by Yachi et al. (24) and Ma et al. (25). Our
model recapitulates all the data used to validate the prior model
(14), as well as the observations by Feinerman et al. (21), as to
speed/sensitivity/specificity and the digital/analog responses with
variation of key effector concentrations. The stochastic version
of our model rounds transitions in the deterministic model but is
otherwise very similar.
Our model accounts for previously unexplained observations.

In particular, we reanalyze the counterintuitive collapse of the
response at high ligand concentrations for weak agonists and tie
it to the activity of the phosphatase SHP-1 (14). We further show
and explain why increasing the SHP-1 concentration also results
in the loss of response at high agonist concentrations (21). Finally,
we use our model mathematically to characterize antagonistic
effects, identifying a tradeoff for antagonism between antagonist
lifetime and concentration. These predictions are experimentally
tested and verified.
We model the phenotype rather than every protein and

phosphorylation state, and thereby obtained a model simple
enough to solve algebraically yet able to fit all available data with
each parameter plausibly linked to one or a few molecular
components. Simplified models are sometimes more predictive
than elaborate ones when data are sparse and have the added
benefit of transparency.

Results
Model Based on KPR with Feedback. The KPR scheme proposed by
McKeithan (17) assumes a cascade of phosphorylations of the
antigen–receptor complex, with the level of the last component
of the cascade controlling the response and activation (Fig. 1B,
blue box with the definition of parameters).The sequence of
phosphorylated complexes Ci can be biologically interpreted as
surrogates for the numerous ITAM phosphorylations (2, 26) by
kinase Lck (recruited by coreceptor CD8). We assume a forward
phosphorylation rate ϕ and a default dephosphorylation rate b. On
ligand unbinding (rate υ ¼ 1=τ), the complex is assumed to be in-
stantaneously dephosphorylated into unoccupied receptor [if de-
phosphorylation is not instantaneous, fast binders would
reassociate before dephosphorylation of the whole cascade, which
could explain the longer effective binding times observed by
Govern et al. (10) and Aleksic et al. (11)]. We assume that consti-
tutive phosphatases (e.g., CD45) control these dephosphorylations.
The analytical calculation of the steady-state concentration

for the KPR model is recalled in SI Appendix. In the limit of
unsaturated receptors and strong dissociation rate of the anti-
gen–receptor complex, one finds that the last layer of the cascade
CN ∝Lrðυ;ϕ; bÞN , where rðυ;ϕ; bÞ, is the solution of the charac-
teristic Eq. S15 in SI Appendix (see also Eq. S28) and L is the
number of antigenic ligands. The geometric exponent N corre-
sponds to the number of phosphorylation steps in the cascade:
The more steps there are, the more sensitive rðυ;ϕ; bÞN is to
differences in dissociation times among ligands, which can then
be used for their discrimination. However, as already mentioned
in the introductory section, KPR alone is insufficient to capture
all the dynamical properties of the ligand discrimination system.
Indeed, as discussed by Altan-Bonnet and Germain (14), the
value of N necessary to achieve the observed discrimination

among antigens is relatively large. This would lead to large ratios
between the activation time and τ, as well as to the fact that many
agonists L would be required to have the final effector CN of
order unity. Rapidity and sensitivity of response would thus be
lost at the expense of specificity. Finally, the response of KPR far
from receptor saturation is linear in ligand concentration, which is
not compatible with the experimental observation of antagonistic
effects (18) and dose–response curves (protocol S1 in ref. 14).
To capture the dynamics of T-cell signaling and still retain

a simple model, we add a single component (Fig. 1B, red box)
accounting for the effect of negative feedback on proofreading.
This feedback could have multiple molecular origins in the real
network. Following Altan-Bonnet and Germain (14), SHP-1
provides one example of a phosphatase that has the properties
required for the feedback discussed in our model. In the interest
of concreteness, we shall henceforth refer in the sequel to SHP-1
as the main effector, even though the molecular implementation
of the feedback might actually be more elaborate. We further
assume that concentration of SHP-1 is fixed on the T-cell early
response time scales and that the first phosphorylated complex
C1 in the cascade phosphorylates SHP-1 and activates it. Similar
behaviors are obtained when activation comes from other layers
Ci with i > 1 or combinations thereof (data not shown). Activated
SHP-1 associates with the TCR complex via Lck, triggering
rapid dephosphorylation (19), but its precise mode of action is
not quite clear yet (28). We simplify this whole process by
assuming the dephosphorylation rate of each complex in the
cascade increases linearly with S (activated SHP-1).
Downstream signaling of the previous phosphorylation cascade

includes several positive feedbacks. Double-phosphorylated
ITAMs eventually drive the phosphorylation of ERK, via binding
and activation of zeta-chain-associated protein kinase 70 (ZAP70)
and other kinases. Phosphorylated ERK is essentially bimodal in
a cell population (20), and we use it as a proxy for T-cell activation.
It acts indirectly by preventing SHP-1 from applying a brake on the
cascade, and therefore amplifies the primary trigger.We choose to
break up this process fully modeled in the studies by Altan-Bonnet
and Germain (14) and Lipniacki et al. (20). As we shall see below,
ERK phosphorylation does not add to our phenotypic model, and
is therefore not considered. For the same reason, we do not in-
clude other known downstream positive regulations, such as bist-
ability due to Son of Sevenless (SOS) signaling, which plays a role in
digitalizing the response (27, 29). Instead, we simply assume that if
the steady-state concentration of the last complex of the cascade,
CN , is higher than a threshold (which is a fixed parameter K of our
model), response (and thus phosphorylated ERK) is turned on,
similar to classical KPR. In other words, we coarse-grain binding
of ZAP70 to double-phosphorylated ITAMs and subsequent sta-
bilization and digitalization of response.
Details of our model, as well as mathematical derivations, are

presented in SI Appendix. Interestingly, the steady state of the
system is simple enough to be completely computed analytically,
which considerably enhances our understanding, as detailed
below. Variables in the model are the phosphorylated complexes
Ci and the active form of the SHP-1 phosphatase (S). We add
only four parameters relative to the KPR scheme to account for
phosphatase influence and dynamics. At steady state, which is
sufficient to understand most properties of the system, only two
extra parameters matter, the typical concentration of phosphor-
ylated complex to activate SHP-1 (which we call Cs) and the
rescaled concentration of SHP-1 (γST).
Table 1 presents typical parameters we used. Following Altan-

Bonnet and Germain (14), the numbers of receptors (R) and
SHP-1 phosphatases (STÞ are assumed to be of the order of
30,000 and 600,000, respectively. The number of steps, N, in the
cascade does not need to be large to see most of the effects
described here (N = 2 is sufficient; see below); however, a larger
N gives more parameter flexibility, and we take N = 5. Kinetic
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parameters are unknown, but given that the order of magnitude
of the discrimination threshold for dissociation time is ∼3 s, it is
consistent to assume that all relevant time scales of the system
are roughly of this order, including the product κR maximum
(de-)phosphorylation rates. We also make the conservative as-
sumption that all ligands have comparable binding strength κ (as
explained above, it is expected that ligands with much bigger κ
would yield more response). A single ligand can trigger response
(7); thus, our effective threshold for activation of K has to be
lower than one molecule per cell, and we take it equal to 0.2
molecule per cell. From a practical standpoint, this means that
the full real system must perform some noise smoothing/filtering,
as we discuss in the section on the stochastic dynamics. The
deterministic model is nevertheless informative, and we present
it first because it is amenable to analytical solution, is more in-
tuitive, and gives similar qualitative results. We expect kinetic
parameters to vary quite significantly among immune cells be-
cause of their intrinsic variability. Indeed, we shall show that
parameter variation yields variability in the behavior at the
population level that our model can recover.
We first present in Fig. 1 the deterministic behavior of our

model for varying concentrations of ligand L and a range of
different dissociation times τ (Fig. 1C). The behavior is con-
trasted with pure KPR (Fig. 1D) to visualize better the crucial
role of feedback effects. Numerical integration of the ordinary
differential equations of the model (solid lines, Fig. 1C) is also
compared with the analytical approximation computed in Eq.
S28 (crosses) in SI Appendix. The agreement is perfect for
nonsaturating ligand concentrations.
For very low concentration of ligands L, the concentration CN

is linear in L with a slope depending on the dissociation time τ (SI
Appendix). The behavior of the whole system is identical to clas-
sical KPR (Fig. 1 C andD) simply due to the number of ligands in
Fig. 1C being too low to activate the SHP-1 negative feedback
significantly. As the ligand concentration increases, SHP-1 gets
activated (Fig. 1E). Steady-state concentration of SHP-1 activity
is a Michaelis–Menten function of the first phosphorylated
complex C1 and roughly increases linearly with ligand concen-
tration (Fig. 1E), before saturating. Increase of SHP-1 is the cause
of the observed differences between our model and classical KPR
(Fig. 1D). Specifically, SHP-1 acts qualitatively as a brake on
CN accumulation, resulting in overall flattening of the response
over several orders of magnitude in L. Thus, for very strong
antigens (high τ), CN concentration first goes through a maximum
before decreasing for ligands higher than 100 (Fig. 1C), although
still remaining above threshold. Fig. 1 C and D make it clear that
the nonmonotonic behavior of CN is only due to the SHP-1
negative feedback, with no appreciable effect of receptor satura-
tion (which happens at concentrations above tens of thousands).

For the sake of our discussion, we can actually consider that
receptors are never saturated (as confirmed by Fig. 1 C and D).
Our simple model explains both the sensitivity and specificity

of early T-cell response. For instance, in Fig. 1D, we clearly see
that the range of discrimination between antigens with τ = 10 s
(activated by 10 ligands) and τ = 3 s (activated by 600 ligands) is
less than two orders of magnitude for a KPR model. On the
contrary, in Fig. 1C, the flattening of the curve at high ligand
concentration due to the SHP-1 feedback activation maintains
the concentration of CN for τ = 3 s below the threshold of ac-
tivation K (chosen slightly higher than this “plateau” value). The
consequence is that even a large number of ligands with τ = 3 s
will not elicit T-cell activation because of SHP-1 inhibition.
Conversely, for τ = 10 s, the system is in the KPR regime at low
concentration and triggers an early response. Thus, our model is
extremely sensitive to ligands with τ = 10 s (or larger) and does
not respond to ligands with τ = 3 s (or smaller), almost irre-
spective of their concentration, as in the ideal scheme of Fig. 1A.
Note that because CN is necessarily smaller than the number of
ligands presented, agonist detection at minute concentration con-
strains our threshold of activation K to be, at most, of the order of
a few ligands per cell. We checked that parameters could be
changed consistently to give similar qualitative behavior with values
of K up to this limit (stochastic simulations are discussed below).
The response diagram τ vs. L for our model is summarized in

Fig. 1F: Within half a decade of variation in τ, the minimum
number of ligands required to activate falls from infinity to 10. Full
dynamical simulations also show that the system quickly reaches
equilibrium, in tens of seconds, consistent with the observed speed
(SI Appendix, Fig. S1), the experimental data from Altan-Bonnet
and Germain (14), and in figure 4B of ref. 21. We conclude that
the simple addition of a negative feedback to KPR allows it to
reproduce crucial properties of specificity, sensitivity, and re-
sponse time of the early T-cell antigen discrimination process.

Digital vs. Analog Behavior as a Consequence of Decreasing Response
at High Ligands. We have shown above that our model predicts
a specific nonmonotonic behavior of the effector CN , with
a “bump” of maximum activity at intermediate ligand concen-
tration, followed by a decrease and a final increase at very high
concentration. This behavior is schematized in Fig. 2 by dis-
tinguishing three regimes of low, middle, and high ligand con-
centration that we analyze in more detail hereafter.
As explained earlier, at low ligand concentration per cell, the

system behaves like a classical KPR scheme (blue slopes in Fig. 2A).
The level of the last component of the phosphorylation cascade CN
is linear in ligand number, and the coefficient of proportionality is
an increasing function of phosphorylation rate ϕ and binding time τ.
At intermediate ligand concentration, the system turns on the

Table 1. Summary of reference parameters used

Parameter name Value Description

R 30,000 Receptors per cell
κ 10−4·s−1 Ligand/receptor association rate
ν 0.1–1 s−1 Dissociation rate (inverse of dissociation time) for

agonist and antagonist regimes
N 5 Number of phosphorylation steps
ϕ 0.09 s−1 Phosphorylation rate
b 0.04 s−1 Spontaneous dephosphorylation rate
K 0.2 Threshold for activation of response
CS 500 Threshold for 50% activation of phosphatase
γ 1.2 × 10−6·s−1 Phosphatase efficiency
ST 600,000 Phosphatase per cell

Numbers used are similar to those used by Altan-Bonnet and Germain (14). Note that there is no concentration unit: All parameters
are expressed in actual molecules number per cell [e.g., κ =10−4 ðmolecule·sÞ−1].

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1300752110 François et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300752110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300752110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300752110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300752110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300752110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300752110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1300752110


negative feedback (Fig. 1E). In SI Appendix, we show mathemati-
cally that the net result of the competition between ligand increase
and SHP-1 activation is the decrease of CN . The magnitude of this
decrease can be solved exactly with the help of the simplifying
assumptions detailed in SI Appendix (Fig. S2 and Eq. S48),
and the resulting scaling law is CN ∝

�ϕCS
ST

�N=2
L1−N=2. In a log-

log plot, this gives a slope 1− N
2 at high ligand concentration

(red slope in Fig. 2A), which is a decreasing function of L if N > 2
(i.e., if the TCR–ligand complex can be phosphorylated more
than twice). Interestingly, this asymptotic negative feedback re-
gime is independent of the dissociation time (SI Appendix). Fi-
nally, at high ligand concentration, activation of the phosphatase

A

B E

C F

D G

Fig. 2. Summary of parameter dependencies
and digital/analog response for the deter-
ministic system. (A, B, and E) Blue slope sym-
bolizes the KPR regime of the response, the
red slope symbolizes the negative feedback
part of the response where phosphatase is
activated, and the green slope symbolizes the
saturated regime for the negative feedback.
The dotted line indicates the threshold of ac-
tivation of response by CN . Blue stars indicate
the position of first activation of response,
and red stars indicate the position of de-
activation of response. All simulations are for
agonist dissociation time τ = 10 s (A) Schematic
of the three regimes at low, intermediate, and
high antigen concentrations. The solid yellow
lines indicate the interpolation for three dif-
ferent values of dissociation times. (B) Quali-
tative effect of phosphatase increase. The KPR
part of the response (blue) is unchanged,
whereas the negative feedback slopes move
toward the left and the saturated regime
on the right disappears. As the phosphatase
increases, the response gets deactivated at
higher concentration. (C) Numerical integra-
tion of the model with increasing SHP-1 con-
centration (solid lines; blue to orange indicate,
respectively, γST = 50%, 100%, 200%, 400%,
and 800% of reference value used for inte-
grations of Fig. 1). The oblique dashed lines
indicate the theoretical asymptotic slope for
the negative feedback computed in SI Ap-
pendix, showing that the behavior gets closer
to it as phosphatase increases. The dashed line
is the threshold of activation. (D) Phase dia-
gram computed numerically shows the anti-
gen concentration triggering response as a
function of relative SHP-1 concentration (with
Fig. 1 being the reference). The response is
abolished for a fourfold increase of SHP-1. (E)
Qualitative effect of phosphorylation rate
ϕ increase. Both the KPR part of the response
and the negative feedback part of the re-
sponse increase. (F) Numerical integration of
the model with increasing ϕ (solid lines; blue
to red indicate, respectively, ϕ= 50%, 100%,
200%, and 400% of reference value used for
integrations of Fig. 1). (G) Phase diagram
computed numerically shows the antigen
concentration triggering response as a func-
tion of relative phosphorylation rate (with Fig.
1 being the reference). As phosphorylation
rates increase, the minimum antigen concen-
tration for activation decreases continuously.
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saturates and the system reaches a new KPR regime, with
a maximum backward rate bþ γST , and therefore a downward
shift in log-log plots with respect to the low ligand regime (green
slope in Fig. 2A). This regime is actually barely attained in our
simulations (for high dissociation times) and, given the typical
number of receptors, is dampened by receptor saturation.
Summarizing the previous paragraphs, the full behavior of CN

essentially interpolates between three successive regimes (Fig.
2A). The position of the bump in CN , corresponding to the
maximum of the response, is expected to be roughly where the
first two regimes [KPR regime (blue slope in Fig. 2) and the
negative feedback regime (red slope in Fig. 2)] meet. Because
the KPR regime is lifted up for ligands with high dissociation
times, the negative feedback regime is met only for these ligands,
explaining the flattening of the response curve. (More quanti-
tatively, in SI Appendix, we show that all parameters being the
same, the ligand concentration corresponding to the maximum
response is inversely proportional to ST ; the phosphatase
SHP-1 concentration).
An important consequence of the previous arguments relates

to the effect of ST . When we increase it, keeping all other
parameters fixed, there are two effects: first, the fully activated
regime for the phosphatase shifts toward very high ligand con-
centration, and therefore essentially disappears; second, because
of the increase of available phosphatase, the negative feedback
gets stronger and closer to its asymptotic behavior as computed
above. As detailed earlier, CN is a decreasing function of ligand
concentration in the negative feedback regime. Therefore, in
the high ligand region, where the effect of negative feedback is
maximal, an increase of ST can push the response below thres-
hold, until response is totally abolished [red stars in Fig. 2B
(moving from right to left) and Fig. 2C]. On the contrary, at low
ligand concentration, the system remains in its KPR regime
irrespective of phosphatase concentration, such that the mini-
mum ligand concentration activating the response (blue star in
Fig. 2B) is unchanged.
It follows that in a population of T cells with variable SHP-1

concentrations, we expect that cells trigger a response roughly
for the same agonist concentration (with all of them being in the
KPR regime), but response disappears at high ligand concen-
tration for cells with high SHP-1 (Fig. 2 B and C). The combi-
nation of these two properties is a characteristic of our model
and a direct consequence of the CN decrease due to the negative
feedback at high ligand concentration. Strikingly, this corre-
sponds exactly to the digital effect observed experimentally in
cells with increasing SHP-1 concentration (21): Agonist con-
centration for activation does not change, but the proportion of
responding cells gradually decreases until response is abolished
(stochastic simulations confirming this effect even in the pres-
ence of molecular noise are discussed below). Fig. 2D shows the
ligand concentration triggering response for agonist τ = 10 s with
varying phosphatase concentrations. The low agonist boundary is
flat (i.e., independent of SHP-1), whereas the response is very
abruptly abolished above a threshold SHP-1 concentration.
The previous digital behavior was contrasted by Feinerman

et al. (21) to the analog response when varying CD8 coreceptor
concentration. CD8 recruits the kinase Lck; thus, it is natural to
assume that the phosphorylation rate ϕ increases with CD8 in
our model. Varying this parameter shifts up the whole response
curve, modifying the position of the leftmost KPR slope (Fig. 2 E
and F) and smoothly changing the agonist threshold for activa-
tion (blue star moving from right to left in Fig. 2E). Fig. 2G
shows the ligand concentration triggering response for agonist
τ = 10 s continuously varying with ϕ in our model, confirming the
analog effect observed by Feinerman et al. (21). Moreover, our
model predicts that the immune response for weak agonists
(close to the activation threshold) should disappear at high ag-
onist concentration (red star in Fig. 2E). This effect, which is

caused by the decrease of CN due to the negative feedback, was
indeed experimentally observed in figure 4 B and C of ref. 14, yet
no explanation was provided (stochastic simulations confirming
this effect are discussed below).

Antagonism. Previous sections have dealt with the response to
a single type of ligand. We move now to mixtures of different
antigens. It is indeed experimentally known that the response to
agonists is inhibited (antagonized) when cells are exposed to
a mixture of agonists and a high concentration of ligands with
dissociation time below the threshold for activation (antagonists)
(18). For instance, Altan-Bonnet and Germain (14) showed that
the minimum amount of agonist needed to trigger response in
the presence of 1–10 μM antagonists shifts from 1 to more than
1,000. A naive hypothesis is that antagonism is due to ligands
competing for receptors. However, experiments show that an-
tagonism is present even without cross-inhibition at the receptor
level (18, 30) and that SHP-1 is an important effector of antag-
onism (19).
Let us proceed to a quantitative description of antagonistic

effects in our model.
Two different ligands L1(agonist) and L2 (antagonist) with

different binding times τ1 and τ2 are introduced. Both bind to
(and possibly compete for) the same receptor R, forming mul-
tiply phosphorylated complexes denoted as Ci and Di, re-
spectively (details are provided in legend for Fig. 3 and SI
Appendix). This description gives two sources of cross-talk be-
tween the ligands. The first is the sequestration and competition
for the receptors. In agreement with experiments, we show below
that this effect is negligible. The second, which turns out to be
the source of antagonism, is that the phosphatase SHP-1 is ac-
tivated in a symmetrical way by both C1 and D1and feeds back
identically on both types of complexes, Ci and Di. The activation
of the downstream immune response is driven by the combined
effect of both final complexes (i.e., CN þDN) (Fig. 3A).
In our model, if a cell is independently exposed to a few

agonists L1 (complexes Ci) or thousands of antagonists L2
(complexes Di), we clearly have, from Fig. 1C, CN � DN because
agonists trigger response, whereas antagonists do not. On the
contrary, we have C1 � D1 or, similarly, from Fig. 1E, much
more SHP-1 becomes activated for a cell exposed to thousands
of antagonists than for a cell exposed to a few agonists. When
a single cell is simultaneously exposed to few agonists and
thousands of antagonists, coupling occurs via SHP-1, which is
then essentially controlled by antagonists. From Fig. 3 (and an-
alytical calculations in SI Appendix), it is then possible to grasp
the basic mechanisms shaping antagonistic effects. The concen-
tration of the activated phosphatase is higher for an antagonist
with binding time τ2 ’ 3 s than for τ2 ’ 1 s. Because SHP-1 acts
as a “brake” on phosphorylation, negative feedback is stronger
for the former than for the latter (Fig. 3 B and C). This explains
the striking observation reported by Altan-Bonnet and Germain
(14) that antagonism gets stronger as the binding time of the
antagonist increases (still remaining, of course, below the
threshold of activation).
Using our phenotypic model, we predicted one additional

quantitative effect for τ2 closer to the agonist dissociation time.
In the absence of agonist, the concentration of DN (even though
still smaller than the threshold of activation) is higher for τ2 ’ 3 s
than for τ2 ’ 1 s at high antagonist L2 concentrations (Fig. 3 B
and C). Thus, the response curve for τ2 ’ 3 s starts higher at low
agonist levels but rises with L1 less rapidly (because activated
SHP-1 is higher) than the curve for τ2 ’ 1 s. The winner of this
race depends, in general, on the parameters of the dynamics and,
most importantly, on the amount of antagonist present.
For small amounts of antagonists L2 (Fig. 3B), the level of

CN þDN in the absence of agonist is far away from the threshold
and is dominated by SHP-1 activity. This explains why ligands
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with a longer dissociation time antagonize more than those with
a shorter dissociation time. When the amount of antagonist is
increased (Fig. 3C), the threshold is approached even in the
absence of any agonist and even high SHP-1 activity can no longer
prevent response if there are too many nonagonist ligands. This
effect is illustrated in Fig. 3D. As the concentration of antagonists
gets higher, the agonist level that elicits a response is no longer
monotonously increasing with the binding time τ2; this is also
a prediction of our model that was unexplained by Altan-Bonnet
and Germain (14). Thus, the relative strength of antagonists
cannot be ranked simply by their binding time without reference
to their concentration.

Stochastic Simulations and Experimental Comparison. In the pre-
vious sections, we have been working with deterministic differ-
ential equations and have set a threshold for activation, which is
then digital, with a sharp transition from none to full response.
Experimentally, the response is smoothed out at the population
level. A number of reasons are potentially responsible for the
smoothing, ranging from the diversity in the population to mo-
lecular noise effects in the dynamics (31). In fact, noise sensitivity
motivated the proposal that dimerization between agonists and
endogenous ligands was required to amplify response at con-
centrations of a few agonists per cell (22). The purpose of this
section is twofold. First, we discuss the results of numerical
simulations with the Gillespie algorithm (32). The Gillespie al-
gorithm (32) is a computational method to simulate stochastic
chemical systems and is needed when the number of molecules
involved in the reactions is limited. Because these situations are
rather frequent in biology, the algorithm has become the stan-
dard tool for the simulation of noisy biological systems. Here, we
use the method to show that properties of our model are essen-
tially unchanged when molecular noise is taken into account.
Second, we present previous and new experimental data to com-
pare predictions of our model with experiments.
When our model of receptor activation is made stochastic, the

steady-state limit no longer applies and the fraction of responding
cells depends on the time of observation, whose precise value is
not very important provided it is several times larger than the
relevant inverse rates in Table 1. It is plausible and we will ex-

plicitly show that the proximity of the deterministic CN to the
activation threshold K controls both the mean response time and
the fraction of cells that respond in a given time. Thus, the
stochastic model will round transitions but will not result in any
new qualitative behavior.
Molecular noise is most relevant for species present in the

smallest numbers (i.e., Cis, which are all bounded by the number
of ligands, and CN, which activates at a mean concentration K of
the order of one per cell or less). The number of receptors up-
stream or the number of Zap70 kinases immediately downstream
is much larger (30,000 or 106), and can be safely taken to be
deterministic. The components downstream of Zap70 account
for most of the complexity of the network in the studies by Altan-
Bonnet and Germain (14), Lipniacki et al. (20), and Das et al.
(27), and they both amplify and digitize (via ERK and SOS
feedbacks) the signal. However, ligand discrimination is based on
the signal from the receptors, and that is where our model ter-
minates. Because the number of SHP-1 molecules is also very
large, we assume a quasiequilibrium value of S ¼ ST

C1ðtÞ
C1ðtÞþCS

, where
the parameter CS is the typical concentration of phosphorylated
complex to activate SHP-1. Our integration scheme is analogous
to the one by Cao et al. (33). Further details of the stochastic
simulations are reserved for SI Appendix.
To capture the essential effects and parameters, we assume

then that the activation decision is based on imposing a threshold
on the (running) average in time of the fully phosphorylated
complexes (e.g., CN; details are provided in SI Appendix). There
is no shortage of modules that could be performing such a time
integration in the multiple pathways downstream of Zap70.
In our deterministic model, we set our activation threshold at
K = 0.2 molecules of CN per cell [this low value gives the best
agreement with our stochastic simulations under the assumption
that one single ligand can trigger response (7)]. We posit that CN
acts as an enzyme, phosphorylating Zap70; thus, it does not
matter that this value is small as long as its activity gets integrated.
Time integration is further needed to smooth out the huge level
of fluctuations expected from such a small number of triggering
ligands. With our current parameters, activation would indeed
occur if at least one CN molecule is present for 20 s. This value is
compatible with the observed time scales and phenomenology.

A

B C D

Fig. 3. Scheme of our model for the response to
mixtures of antigens; antagonistic effects. (A)
Schematic of the interactions with two types of
ligands L1 and L2, with different dissociation times.
Ligands are engaged in parallel at the same time in
the same cell. Both activate the negative feedback
symmetrically and contribute to the triggering of
response. (B) Total response CN þ DN as a function
of agonist concentration L1 (τ=10s) in the presence
of 103 antagonists L2with dissociation times of 0.5,
1, 1.5, 2, and 2.5 s (light blue to orange). Dark blue
indicates the response without any antagonist.
Crosses indicate the analytical approximation de-
tailed in SI Appendix showing perfect agreement.
Other parameters are as in Fig. 1. (C) Same as B, but
with L2 ¼ 104 antagonists, shows a strong de-
pendency of antagonism on the antagonist con-
centration. (D) Agonist concentration L1 triggering
response as a function of antagonist concentrations
L2 and dissociation time. Dark blue, light blue, yel-
low, and red correspond to 1,000, 5,000, 10,000, and
50,000 L2 ligands, respectively. As the quantity of
antagonists increases, the maximum dissociation
time for response decreases. It should be noted that
the maximum concentration L1 triggering response
goes through a maximum shortly before its sharp
collapse; this explains why antagonism is maximum
for dissociation times just below the agonist regime.
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We use our stochastic simulations to confirm, recapitulate,
and extend experimental predictions of our deterministic model.
Results of simulations computing the fraction of activated T cells
vs. ligand level are shown in Fig. 4A for a set of ligand binding
times that span the whole range from strong agonist to antago-
nist. We also show the average time of activation for activated
cells in Fig. 4B. There is a good correspondence with the de-
terministic model in Fig. 1, namely, between the concentration
for 50% activation in the stochastic model and the ligand con-
centration, such that CN passes the deterministic threshold of
activation. Note that no extra multimerization is necessary to
explain the sensitivity and specificity of the system, contrary to
the findings of Wylie et al. (22). Thus, even in the presence of
noise, our model is still sensitive and specific (1).
The counterintuitive effect observed by Altan-Bonnet and

Germain (14), that there is a decrease of the proportion of
responding cells at high ligand concentrations for a weak agonist
(in our parameters, τ2 ’ 5 s), is confirmed even in the presence
of noise (Fig. 4A). Our model also explains the nonmonotonic
characteristic of average activation time observed in figures 3 A
and C of ref. 14 but left unexplained, with a minimum for agonist
concentrations around 400 (Fig. 4B). Again, these extrema for
response to weak agonists and response time at middle range
concentration reflect the maximum in CN seen for similar ligand
levels in Fig. 1, itself a consequence of the decreasing negative
feedback regime detailed in Fig. 2.
Stochastic simulations for increased phosphatase concentra-

tion ST are presented in Fig. 4C. The drop in the percentage of
responding cells at high agonist concentration clearly corre-

sponds to the shutting down of the response in the deterministic
model (Fig. 2 B and C). Stochastic simulations for the activation
curves at variable ST levels are shown in Fig. 4C. Increasing ST
leaves the inflection point on the rising portion of the curves
largely invariant, although greatly attenuating the response for
agonist levels beyond the inflection. This explains what was
termed the digital response to SHP-1 concentration by Feinerman
et al. (21). The pronounced maximum, and then drop off, in re-
sponse is a consequence of the existence of a maximum in the
deterministic CN curves as in Fig. 2, which just grazes the activation
threshold for ST larger than four times reference. This counter-
intuitive effect was actually seen in figure 2B of ref. 21, which we
redraw in Fig. 4D. Calibration reveals that 10−2 μmol corresponds
to roughly 3,000–10,000 ligands per cell (21); thus, the absolute
position of the maximum response agrees well with theory.
Fig. 5A presents the simulation results for the proportion of

responding cells in the presence of different antagonists, with
corresponding new experiments in Fig. 5B confirming the be-
havior found in figures D and E of ref. 14. In our simulations, the
minimum agonist concentration to trigger response shifts from
1 to more than 1,000 in the presence of strong antagonists is
similar to what was found by Altan-Bonnet and Germain (14).
This shift is more modest in our new data (Fig. 5B); the quan-
titative discrepancy between earlier and new data is attributed to
the difference in SHP-1 concentration between experiments.
Lower SHP-1 clearly yields less antagonism in our simulations,
as shown in Fig. 5C.
The correspondence with Fig. 3 is clear: High concentration of

strong antagonists (corresponding to τ2 ’ 2 s) results in de-

A B

C D

Fig. 4. Comparison between stochastic simu-
lations, assuming quasistatic SHP-1 concentration,
and experimental results. Parameters are as in Table
1. The percentage of active cells is computed over
a total number of 1,000 realizations for each of
the binding times and ligands. (A) Percentage of
responding cells as a function of antigen number;
different colors correspond to different dissociation
times following the conventions of Fig. 1B. (B) Av-
erage response times (seconds) of responding cells
for simulations of A show a minimum response time
for ligands between 100 and 1,000 [as observed by
Altan-Bonnet and Germain (14)]. (C) Percentage of
responding cells as a function of increasing SHP-1
concentration. Conventions follow Fig. 2C. As SHP-1
increases, fewer and fewer cells are responding at
high concentration. (D) Percentage of responding
cells with increasing SHP-1 concentration, redrawn
from the study by Feinerman et al. (21), shows col-
lapse of response. In these experiments, total SHP-1
concentration varies from 0.1-fold (blue) to 2.5-fold
reference (red). Calibration reveals that 10−2 μmol
corresponds roughly to 3,000–10,000 ligands per cell
(21). Thus, the agreement on the position of the
decrease in response at high ligand concentration
between simulations and experiments is very good.
The strength of collapse is weaker than in C, which
could be because of either a lower SHP-1 reference
concentration or response smoothening due to other
forms of noise (e.g., on parameters).
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terministic levels CN very close to the activation threshold even
in the absence of the agonists. If we include stochastic effects,
more cells are going to “leak” through the threshold and become
activated even at low agonist concentration. Our full stochastic
simulations confirm this effect: At low agonist concentration,
10% of cells exposed to 104 ligands with τ2 ’ 2 s respond,
whereas cells exposed to the same quantity of ligands with τ2 ’
0.5 s do not (Fig. 5 A and C). On the contrary, at intermediate
ligand concentration, activity of the negative feedback dominates
and is higher for ligands with τ2 ’ 2 s. This explains the very
characteristic crossing between curves in Fig. 5 A and C, which is
checked experimentally in Fig. 5B: Blue curves (corresponding to
longer τ2) start higher than green curves at low ligand levels, but
green curves increase much faster and get above blue curves at
intermediate agonist levels. This is equivalent to saying that the
stronger the antagonist, the higher is the fraction of responding
cells at high antagonist concentrations, or that strong antagonists
behave as weak agonists. This counterintuitive correlation is
a characteristic of our model due to the fact that high concen-
tration of ligands with dissociation times just below τ2 ’ 3 s is
close to activation threshold but, at the same time, maximally
activates SHP-1 negative feedback (Figs. 1E and 3 B and C). As
a consequence, there is a subtle balance due to the competition
between the activity of ligands close to threshold and the nega-
tive feedback (Figs. 3D and 5), and antagonism is not an
absolute property.

Discussion
We have proposed a simple analytical model for TCR antigen
recognition, based on a KPR scheme modulated by a negative
feedback loop. As detailed above, the model consistently reca-
pitulates previous experimental observations (14, 21). Our phe-
notypic model predicts a crucial influence of the phosphatase
SHP-1 controlling the negative feedback. In normal cells, acti-
vated SHP-1 controls the flattening of CN for an intermediate
range of ligands, which is necessary for sensitivity and specificity.
If the concentration ST of SHP-1 is too small, the efficiency of
antigen discrimination is severely reduced and the response

tends to become promiscuous at high antigen concentration.
Conversely, if the concentration of SHP-1 ST is too large, the
strength of the negative feedback strongly increases with ligand
concentration and we predict that the immune response then
disappears for high agonist concentration, as confirmed experi-
mentally in Fig. 4D, redrawn from the study by Feinerman et al.
(21). Proper immune recognition therefore requires rather pre-
cise control of SHP-1 concentration. It is likely that this SHP-1
tuning is exploited in the immune system during thymic selection
to control response as a function of the maturation stage and
localization in the body of the T cells.
We analyzed antagonistic effects for mixtures of ligands and

identified SHP-1 feedback as the key element in our model. We
showed that decrease of SHP-1 results in less antagonism, as
illustrated in our simulation and data in Fig. 5. Our model fur-
ther predicts that the strength of antagonism is not an absolute
property of the antagonist binding times but depends on the
antagonist concentration as well.
Our model is deliberately both simple and conservative. The

negative feedback integrates into a single effective linear term
many elements, such as the interaction with Lck and the action
of the phosphatase SHP-1. The final phosphorylations of ZAP-
70 that trigger the response are conservatively modeled by
a simple threshold, very similar to the original KPR (17). Ex-
perimental data that we analyzed are further downstream of the
last phosphorylated complex CN that we explicitly kept in our
model. The ERK pathway and its positive feedback were, in fact,
previously considered in great detail in the studies by Altan-
Bonnet and Germain (14) and Lipniacki et al. (20), and it is
known that they lead to discretization of the response via bist-
ability (20). This was our rationale for truncating the network at
the level of CN and imposing a simple threshold of activation.
Resulting simplifications have allowed us to reconsider and
capture some puzzling qualitative effects left unexplained by
Altan-Bonnet and Germain (14), such as the relation between
the response time being minimum at intermediate ligand con-
centration and the nonmonotonic behavior of CN , as illustrated
in Fig. 4. Even when stochasticity is included, the model requires

A B C

Fig. 5. Comparison between stochastic simulations and experimental results for antagonism. (A) Simulation of the percentage of responding cells for the
standard parameters in Table 1 and an agonist with τ1 = 10 s (red); then, the same agonist with 10,000 antagonistic ligands with τ2 = 0.5 s (green) and τ2 = 3 s
(blue). We see the same trends as in Fig. 3, with more responding cells for the strong antagonist at low ligand concentration and the reverse relation at larger
agonist levels. (B) Percentage of responding cells after 5 min as a function of ligand concentration for ovalbumin (OVA) ligands alone (red), OVA + 10 μmol of
E1 ligands (green), and OVA +10 μmol of G4 ligands (blue). The trends are the same as in the simulation in A, and the fraction of cells responding when G4 is
present follows the strong antagonist simulations. Antagonistic effects for these cells are less dramatic than in A and previously published data (notably ref.
14), suggestive of smaller SHP-1 concentration. (C) Stochastic simulation similar to A with half of the SHP-1 concentration in Table 1 and using a dissociation
time of 2 s for strong antagonist gives better quantitative agreement with the experiments in B.
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neither amplification nor ligand heterodimerization to work, and
we therefore refrained from including any.
Further experiments will be needed to quantify fully the total

loss of response at the high agonist concentration that we pre-
dicted here for high ST . The difficulty to overcome is the cur-
rent lack of an appropriate SHP-1 antibody. It should also be
possible to have direct experimental information on the phos-
phorylation state of the receptor complexes as a function of li-
gand concentration [via ZAP70 or linker for activation of T cells
(LAT)]. No data are available at the current time, however,
because they require a very good antibody to resolve the low
concentrations at the threshold of activation.
Biological networks are manifestly very complicated. Our

analysis provides a clear example of the interest of phenotypic
models, simple enough to be studied mathematically but not
oversimplified to the point of losing contact with experimental
data. Covariation of levels of pathway components (e.g., via
transcriptional coregulation and thymic selection) (21) certainly
complicates the analysis for primary cells, but we predict that the
main behavior can be understood via corresponding covariation
of a small number of parameters. Then, we can connect these
parameters to actual effectors of the system: phosphorylation
rate ϕ to CD8 or Lck concentration and strength of the negative
feedback S to SHP-1 concentration. Our model can, of course,
be further refined; for example, it is possible that hetero-
dimerization indeed contributes to amplification (23), but our
study demonstrates that it is not required a priori, even in simple
models with few components. It has also been shown very re-
cently that only a few components (Lck, ZAP70, and CD45) are
sufficient to recreate receptor triggering artificially without the
need of receptor dimerization (34). This confirms the relevance
of simple models with a small number of variables but leaves

open the question of whether performance for sensitivity and
specificity of synthetic systems matches natural ones.
Our approach is rather general and could potentially be ap-

plied to other phosphorylation cascades widespread in signaling
pathways. We expect that some of the counterintuitive properties
of the feedback by phosphatases that we exhibited and explained
here should be shared with other signaling systems, opening the
way to their unified theoretical description.

Experimental Procedures
Primary Cells. Splenocytes and lymphocytes were isolated from C57BL/6Nmice
(Taconic Farms) or OT-1 TCR transgenic mice (National Institute of Allergy and
Infectious Diseases contract colony; Taconic Farms) on a recombination ac-
tivating gene (RAG2)−/− C57BL/6N background and used to prepare cultures
of primary cells. All mice were bred and maintained in accordance with the
protocol (MSKCC 05-12-031) approved by the Institutional Animal Care and
Use Committee of Memorial Sloan–Kettering Cancer Center.

Cell Line. RMA-S cells [transporter for antigen presentation (TAP)−/− T-cell
lymphoma expressing H-2Kb] were used as APCs.

Antigen Peptides. The agonist ovalbumin peptide SIINFEKL (OVA) and its
variants EIINFEKL (E1), SIIGFEKL (G4), SIITFEKL (T4), and SIIQFEKL (Q4) were
obtained from Genscript.

Antibodies and other reagents are described in SI Appendix, Supple-
mentary Experimental Procedures.

OT-1 T-cell cultures were used for the experiments. Their preparation,
stimulation, and activation, as well as the antibody staining, are detailed in
SI Appendix, Supplementary Experimental Procedures.
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