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FIG. 2. Cell toxicity testing for MT-2 cells when exposed to
peptides (a) JF7B, (b) JF9, and (c) JF10 for 1, 2, 3, 4, 6, and 8
days and then assessed by the dehydrogenation of the tetra-
zolium salt, MTT, to its formazan product by absorbance at
520 nm.

reduction of 68% at 100 µg/ml and 32% at 10 µg/ml, 6 days PI
(Fig. 3a). This pattern of inhibition was consistently observed.
In contrast, there was an enhancement of virus production with
JF9 at higher doses (Fig. 3b). This enhancement was also
consistently observed (results not shown). Some inhibition over

controls was observed with lower doses of JF9 (1 µg/ml) but
never as marked as that seen for peptide JF7B. Peptide JF10
showed results similar to control values (Fig. 3c), except on day
6 PI. These results, a non-dose-dependent inhibition, were not a

consistent finding (results not shown).
Direct comparison of RT activity with virus antigen produc¬

tion revealed the same results for all three peptides, with peptide
JF7B showing marked inhibition of virus replication (32%
reduction by RT activity and 60% by antigen EIA at 10 µg/ml,
day 6 PI). An additional peptide (JF25), derived from the
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FIG. 3. Virus replication in the presence of test peptides (a)
JF7B, (b) JF9, (c) JF10, and (d) JF25 at 100, 10, and 1 µg/ml as
assessed by RT activity (cpm/ml) on days 2, 4, 6, and 8 PI with
HIV-1 isolate 228200 at 1000 TCID50. Each sample was tested
in quadruplicate with standard error bars shown. For peptide
JF7B, these results are representative of data obtained from 16
experiments.

ICAM-1 amino acid sequence, was also tested as a control for
peptide JF7B, due to variable results with peptide JF10. Here
results were essentially the same as the controls (Fig. 3d). To
demonstrate the specificity of inhibition by peptide JF7B, we

also tested a synthetic peptide with identical amino acid compo-
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sition but scrambled in sequence with respect to the JF7B
peptide (SVINGTVASVSGRLCVLKQPPST). This peptide
showed no cytotoxicity and no inhibition of virus replication
when tested under identical conditions used for testing peptide
JF7B at 100 µg/ml (data not shown).

To accurately determine a 50% inhibitory dose for JF7B, a

block titration of peptide concentration versus virus inoculum
was performed. This allowed selection of a window where
maximum virus production was observed. Viral inocula of 1000
and 100 TCID50 clearly showed production of virus as indicated
by RT activity (Fig. 4a and b) in the window tested with activity
peaking at day 6 PI with 1000 TCID50. The lowest inoculum
tested (10 TCID50) showed low RT activity by day 8 PI and was

excluded from 50% inhibitory dose calculations. The 50%
inhibitory dose of RT activity for JF7B calculated from nonlin¬
ear regression analysis was between 20 and 28 µg/ml for 1000
and 100TCID5O, respectively. The inhibition observed for these
experiments was up to 78% (1000 TCIDJ0) on day 6 PI with 50
µgof peptide/ml.
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FIG. 4. Virus replication in the presence of peptide JF7B at
50, 40, 30, 20, and 10 µg/ml as assessed by RT activity
(cpm/ml) on days 2,4, 6, and 8 PI with virus at (a) 1000 TCID50
and (b) 100 TCID50. Each sample was tested in quadruplicate
with standard error bars shown. These results are representative
of data obtained from 16 experiments.

Virus syncytium formation
With HIV-1 isolate 228200-infected MT-2 cells, syncytium

formation was almost completely inhibited up to day 6 PI
compared to control cells with peptide JF7B at 10 µg/ml
(Fig. 5). This supported the observation of reduced RT activity
(Figs. 3a and 4) and soluble antigen production (not shown) at
day 6 PI. No obvious reduction in syncytium formation was

observed with the other three peptides at concentrations up to
100 µg/ml in MT-2 cell infection (results not shown). In MT-2
cells infected with HIV-1 isolate 228200, once cells form
syncytia they tend to lift off the cell culture plates (Fig. 5A).21
However, when cells were treated with peptide JF7B they did

FIG. 5. MT-2 cell morphology at day 6 PI after infection with
1000 TCID50 of HIV-1 isolate 228200 in the (A) absence or (C)
presence of peptide JF7B (10 µg/ml) with (B) mock-infected
cells exposed to peptide JF7B ( 10 µg/ml) alone. (Magnification,
X400.)



738 FECONDO ET AL.

not become detached from culture plates until late in syncytium
formation, when giant cells did eventually develop (results not

shown).

DISCUSSION

The present studies were prompted by the observation that
LFA-1 is involved in HIV-1-induced syncytium formation.22-24
This suggested to us that syncytium formation may involve the
interaction of LFA-1 with its ligand, ICAM-1. This was sup¬
ported by the demonstration by Gruber et al.25 that an anti-
ICAM-1 monoclonal antibody also inhibited syncytium forma¬
tion. Thus, we sought to test the capacity of an anti-ICAM-1
antibody and synthetic peptides derived from the ICAM-1
sequence to inhibit the HIV-1 infection process.

We have shown that the W-CAM-1 monoclonal antibody and
peptide JF9, which both block normal LFA-l-ICAM-1 interac¬
tions,1'5 cause a modest and probably insignificant reduction in
virus production (see Figs. 3b and 6) This was accompanied by
an enhancement of virus production associated with increased
cell numbers at highest doses of peptide JF9 (see Figs. 2b and
3b). The absence of blocking effect by W-CAM-1 may be
explained by the epitope analysis of ICAM-1, which identified a

binding site for W-CAM-1 in the vicinity of residues 72 to 75,33
about 50 residues from the inhibitory sequence [peptide JF7B,
ICAM-1(1-23)].

The surprising finding of this study was that peptide JF7B, a

peptide based on the N-terminal sequence of ICAM-1, was a

potent suppressor of virus replication as measured by RT
activity, soluble antigen production, and particularly syncytium
formation. With HIV-1 infection of MT-2 cells, the results
indicate that the peptide was toxic only at 100 µg/ml (Fig. 2) at
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FIG. 6. Virus replication in the presence of W-CAM-1
monoclonal antibody (10 µg/ml) added before (A/—), after
(—/A), or before and after (A/A) exposure to virus (1000
TCID50) as assessed by production of soluble virus antigen
(pg/ml) at 2, 4, 6, and 8 days PI. The controls used were
non-infected cells alone (—VE) and virus-infected cells alone
(+VE) and infected cells with an isotype antibody added before
and after infection (A/A CONT). Each sample was tested in
quadruplicate with standard error bars shown.

day 6 PI with a calculated 50% reduction of RT activity at 20
µg/ml. The predicted 50% effective dose (50% toxicity/50%
inhibition) would be 45, that is, the observed toxicity is at a

much higher dose of peptide relative to the inhibition of virus
replication. If peptide JF7B had a nonspecific inhibitory effect
below toxic levels on the host cell, it would be expected that a

delay in virus production rather than a suppression of virus
production would occur. We have shown that when cell cycling
and growth of 228200-infected MT-2 cells is suppressed by
treatment with hydroxyurea, viral production was delayed for
over 48 hr.33a These observations implicate a specific inhibitory
effect by peptide JF7B on virus replication. This notion is further
supported by our experiments with a scrambled sequence analog
of peptide JF7B, which showed no cytotoxicity or inhibition of
virus replication when tested under identical conditions.

By contrast, peptide JF7B has almost no effect on normal
LFA-l-ICAM-1 interactions.1 However, total inhibition of
virus replication was never observed. These results are consis¬
tent with the data of Pantaleo and others24 with an anti-ICAM-1
monoclonal antibody (84H10), which showed up to 65% inhi¬
bition of syncytium formation. In contrast, we observed up to
78% inhibition of RT activity, with a similar reduction in soluble
antigen production, and marked inhibition of syncytium forma¬
tion (Fig. 5) with the synthetic peptide analogs.

This study poses some intriguing questions about the mecha¬
nism of the HIV-1 infection process. Although it has been well
established that the primary receptor for HIV-1 is the CD4
molecule, these studies may imply that either or both LFA-1 and
ICAM-1 are involved in the spread of virus. There are a number
of possible mechanisms that may account for the inhibitory
effect of the peptide JF7B, including the following: (1) the
peptide may bind to LFA-1 on uninfected cells, thereby prevent¬
ing binding of HIV-1 or HIV-1-infected cells to LFA-1; (2) the
peptide may bind to LFA-1, triggering LFA-1-associated acti¬
vation events in the cell; (3) the peptide may bind directly to the
virus, thus preventing binding to ICAM-1; (4) the peptide may
block an HIV-1 infection process dependent on LFA- 1-ICAM-1
interaction; (5) the peptide conformation may mimic other
structures, for example, those involved in the interaction be¬
tween gpi20 with CD4; or (6) a combination of the above
mechanisms may be involved.

Previous studies of HIV-1 infection of MT-2 cells have shown
that only 2 to 3% of cells are infected by the cell-free route, even

on exposure of cells to 1 infectious unit/cell21 ; this indicates that
the major route of spread was via direct cell-to-cell contact

(syncytium formation). It could be envisaged that the LFA-l-
ICAM-1 adhesion interactions might facilitate such a mode of
spread and would explain the effect of anit-LFA-1 antibodies in
this process. However, whereas W-CAM-1 antibody and pep¬
tide JF9 (which both markedly affect cell-cell adhesion) had
little or no effect on virus syncytium formation, peptide JF7B
had a marked inhibitory effect. Additionally, preliminary ex¬

periments using a soluble recombinant ICAM-1 molecule
(sICAM-1) show no inhibition of virus replication at 10 µg/ml
(data not shown). To achieve a molarity of sICAM-1 compara¬
ble to the effective concentration (8.6 µ ) of peptide JF7B, 710
µg of sICAM-1/ml would be required. These results imply that
a more complex protein-protein interaction involving the N-ter¬
minal region of the ICAM-1 molecule could be postulated.
Certainly, site-directed mutagenesis studies of the ICAM-1
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molecule indicate that the first domain is important in interac¬
tions with LFA-1,34 These preliminary results do not allow the
mechanism of the inhibition observed in this work to be
determined, although providing qualified support for the in¬
volvement of LFA-1 and/or ICAM-1 in the HIV-1 infection
process.

Irrespective of the precise mode of action of peptide JF7B, it
is of interest to compare its effect with that of soluble recombi¬
nant CD4 antigen and CD4 synthetic peptide analogs. Peptide
JF7B showed 50% reduction in virus production at 20 µg/ml
(8.6 µ ) and virtually complete inhibition of syncytium forma¬
tion early in MT-2 cell infection. These results contrast with
higher concentrations of CD4 peptides or chemically modified
CD4 peptides required to induce similar inhibition of syncytium
formation (>53.6 µ ,35 32 µ ,36 and 31 µ 37). Even the
entire extracellular region of CD4 as a recombinant molecule is
only active at 10 µg/ml (—200 nM).38"42 These results suggest
that agents based on the structure of peptide JF7B may be useful
alone or in combination with other agents in a novel antiviral
therapy for the treatment of HIV infection, particularly on

syncytium formation.
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