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Abstract
Background: We report the expression pattern of 5S rDNA in the eggs of water frogs Rana
lessonae, Rana ridibunda and Rana esculenta using the quantitative real-time PCR. This kind of
research had never been performed before.

Results: 5S rDNA relative expression of the Rana ridibunda oocytes is approximately six times
higher in comparison to the Rana lessonae oocytes. The oocytes of the investigated Rana esculenta
frogs, in respect of 5S rDNA relative expression ratio, were very similar to the Rana ridibunda
oocytes.

Conclusion: We suggest the possibility of using 5S rDNA as the internal control gene, in the
studies of relative mRNA quantitative assays in water frog oocytes, because of its characteristic
specific expression pattern in the Rana lessonae, Rana ridibunda and Rana esculenta oocytes.

Findings
An amphibian egg contains all the information required
for its early post-fertilisation proliferation and differentia-
tion. During the initial stages of development, all trans-
lated mRNAs, as well as ribosomes – the cellular
organelles responsible for protein biosynthesis – originate
from the mother. They play a crucial role in the success of
early embryonic development, allowing the first cleavages
to occur, before the activation of embryonic genome after
the midblastula transition (MBT) [1,2].

The eucaryotic ribosome is a macromolecular structure
composed of a large (60S) and a small (40S) subunits.
Biochemically, it is composed of four ribosomal RNA
molecules (rRNAs) and over 70 ribosomal proteins [3]. In
eukaryotes, two distinct classes of ribosomal DNA (rDNA)
genes can be distinguished. Each is composed of tan-
demly repeated units of hundreds to thousands of copies.

The transcripts of the minor class (5S rRNA) are made
from one region of the genome, the transcripts of 28S, 18S
and 5.8S rRNAs (the major class; 45S rDNA) from
another. The 5S rDNA array consists of multiple copies of
a highly conserved 120 bp coding sequence, which are
separated by the variable nontranscribed spacers (NTS)
[4]. The Xenopus genome contains two sets of 5S rDNA:
the oocyte-type, active only in oocytes (20,000 tandemly-
repeated copies per haploid genome), and the somatic-
type, active in every cell (400 copies per haploid genome).
The synthesis of ribosomal RNAs in amphibian oocytes
takes place during the prolonged diplotene stage of the
first meiotic division [5].

Rana esculenta (genotype RL), a common water frog of
Europe, is not a conventional species. It arises by the
hybridisation between two Mendelian species: Rana lesso-
nae (genotype LL) and Rana ridibunda (genotype RR), and
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normally reproduces by hybridogenesis [6,7]. Prior to
meiosis, the lessonae genome is eliminated, so that RL
females produce eggs that contain only the ridibunda
genome. The somatic hybridity of RL is restored in the off-
spring through mating with LL [7]. Until now, however,
the mechanism of hybridogenesis in RL is not known.

Quantitative real-time RT PCR (Q-PCR) is an established
method for quantifying mRNA in biological samples. To
analyse the expression level of a particular gene, its level
of expression is compared to the expression of a reference
gene. For this to be effective, the reference genes should be
expressed at a constant level in certain tissues, at all stages
of development, throughout the cell cycle, and without
effects caused by experimental treatment. To date, the
most commonly used reference genes include β-actin,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
hypoxantine-guanine phosphoribosyl transferase (HPRT)
and 18S rRNA [8,9]. Unfortunately, several recent studies
have shown that the expression of reference genes differed
depending on kind of tissues, developmental stages and
experimental conditions [8,9].

In the present study, for the first time in the research on
amphibians, we examined the expression level of 5S
rDNA in oocytes of water frogs. We used 18S rDNA as a
reference gene. The specificity of the RT-PCR products was
confirmed by sequencing reactions. Alignment of the 5S
rDNA sequences of LL, RR, R. catesbeiana ([Gen-
Bank:X58367]; [10]) and R. pipiens ([GenBank:X58368];
[10]) is shown in Fig. 1, whereas comparison of a highly
conserved region of the 18S rDNA of LL, RR and R. amu-
rensis ([GenBank:AF542043.]; [11]) is shown in Fig. 2.
The analysed 5S rDNA of LL ([GenBank:FJ572051]) and
RR ([GenBank:FJ572052]) showed 95% and 93%
sequence homology to the respective 5S rDNA of R. cates-
beiana and R. pipiens. The LL ([GenBank:FJ572053]) and

RR ([GenBank:FJ572054]) 18S rDNA nucleotide
sequences showed 96% and 93% sequence identity to R.
amurensis 18S rDNA, respectively.

By using Q-PCR, we analysed the relative expression of 5S
rDNA. Each sample was first normalized according to the
amount of template added and to the expression level of
the endogenous control 18S rDNA. The obtained values
were further normalized with relation to a calibrator. In
our studies, we used LL rather than RR as the calibrator
because in nature, LL arises only from the LL x LL matings,
whereas RR can arise from RR x RR, RR x RL and RL x RL
matings. Usually, RL x RL matings lead to inviable off-
spring, probably because they are homozygous for delete-
rious mutations in the clonal ridibunda genomes [12,13],
although occasionally RL x RL matings lead to some viable
offspring and fertile RR females.

The expression levels of 5S rDNA in the oocytes of the two
Mendelian species are significantly different, approxi-
mately six times higher in RR oocytes than in LL oocytes.
5S rDNA expression in oocytes of RL frogs investigated,
was similar to that of RR oocytes and much higher than
that of LL oocytes (Fig. 3).

It is not surprising, that the oocytes produced by RL are
similar to the RR oocytes. The lessonae chromosome set is
absent in the RL ova, which contain only the ridibunda
chromosome set [7]. It is expected that in the RL oocytes,
as a result of hybridogenetic mode of the RL reproduction,
the ridibunda characteristic pattern of the gene expression
should be restored. Our research confirmed that fact.

Behavioural studies and field observations indicate that
the hybridisation that produces RL always occurs between
RR females and LL males [15,16]. This directionality of
interspecific mating depends on the body size preferences
shown by males. The combination of a large female with
a small male is strongly preferred in water frogs [16]. Both
in nature and in laboratory conditions, males consistently

Comparison of the nucleotide sequence of 5S rDNA between the R. lessonae, R. ridibunda, R. catesbeiana and R. pipiensFigure 1
Comparison of the nucleotide sequence of 5S rDNA 
between the R. lessonae, R. ridibunda, R. catesbeiana 
and R. pipiens.

R. catesbeiana GCCTACGGCCACACCACCCTGAAAGCGCCC - G -ATCTCGTCT 
R. pipiens GCCTACGGCCACACCACCCTGAAAGCGCCC - G -ATCTCGTCT 
R .lessonae GCCTACGGCCACACCACC - TGAAACACGCCCGTATCTCGTCT 
R. ridibunda GCCTACGGCCACACCACC - TGAAACACGCCCGTATCTCGTCT 

R. catesbeiana GGTCGGGCCTGGTTAGTACCTGGGATCTCG-  GAGGC TAAGCAG 
R. pipiens GGTCGGGCCTGGTTAGTACCTGGGATCTCG-  GATGC TAAGCAG 
R. lessonae GGTCGGGCCTGGTTAGTACCTGGGATCTCGAGAAGCTAAGCAG
R. ridibunda GGTCGGGCCTGGTTAGTACCTGGGATCTCGAGAAGCTAAGCAG

R. catesbeiana ATGGGAGACCGCCTGGGAATACCAGGTGTCGTAGGC 
R. pipiens ATGGGAGACCGCCTGGGAATACCAGGTGTCGTAGGC 
R. lessonae ATGGGAGACCGCCTGGGAATACCAGGTGTCGTAGGC 
R .ridibunda ATGGGAGACCGCCTGGGAATACCAGGTGTCGTAGGC 

Comparison of the nucleotide sequence of 18S rDNA frag-ment between the R. lessonae, R. ridibunda and R. amurensisFigure 2
Comparison of the nucleotide sequence of 18S rDNA 
fragment between the R. lessonae, R. ridibunda and R. 
amurensis.

R. amurensis TTTCTGCG –CCTACCAT - - GGTGACCACGGG- -  TAACGGGGAAT 
R. lessonae TTTCTGCGACCTACCATGGGGTGACCACGGGGTTAACGGGGAAT
R. ridibunda TTTCTGCG - CCTACCATGCGCTGACCACGCGTGTAACGGGGAAT

R. amurensis CAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCA 
R. lessonae CAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCA 
R. ridibunda CAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCA 

R. amurensis  CATCCAAGGAAGGCA 
R. lessonae CATCCAAGGAAGGCA 
R. ridibunda CATCCAAGGAAGGCA 
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avoid females smaller than themselves, so the opposite
mating is not observed. Similarly to RR females, the RL
females also preferentially reproduce via hybridogenesis
with smaller LL males [16]. The RL oocytes contain the
unrecombined ridibunda genome, and those proteins
that have been investigated in oocytes are of the ridibunda
type [17,18]. Our data demonstrate that the RL eggs, in
respect of the 5S rDNA expression, also resemble the rid-
ibunda type.

It is generally accepted that a carefully selected stable
internal control gene should normalize the gene-expres-
sion level. To find a true reference gene with a constant
and stable transcription in specific tissue or cells would be
extremely useful, but such a gene has not been identified
yet [9]. The results of our study suggest the possibility of
using 5S rDNA as the internal control gene in relative
mRNA quantitative assays in LL, RR and RL eggs, because
they have the specific expression levels.

Conclusion
The oocytes of two Mendelian species (LL and RR) differ
from each other with respect to the relative expression
level of 5S rDNA. The oocytes of the hybridogenetic RL
species are similar to the RR eggs in level of 5S rDNA
expression, which results from the RL hybridogenetic
mode of reproduction.

Methods
All procedures were approved by the Local Ethical Com-
mittee on Experiments on Animals in Poznañ, permit No.
51/2006.

Oocytes
Frogs oocytes were obtained from LL, RR and RL by the rou-
tine in vitro method [19]. Ovulation was induced by using
the salmon Luteinizing Hormone – Releasing Hormone
(LHRH; H-7525, Bachem Bioscience Inc.), which was
injected into the lymph sacs in the doses of approximately 1
μg/10 g body weight. Ovulation usually occurs within 24
hours, although, occasionally a second injection is necessary.

RNA extractions and cDNA syntheses
Total RNA was isolated from 10 oocytes/1 sample using
TRI Reagent (Sigma) according to the manufacturer's iso-
lation instructions. To purify the RNA probe from
genomic DNA contamination, we treated the samples
with RNase-free DNAse I (Fermentas), according to the
manufacturer's instructions. The quality of RNA was
checked on agarose gel.

1 μg of total RNA was reverse transcribed using 3 μl of spe-
cific primers in water in a total volume of 11 μl. The mix-
ture was incubated for 5 min at 70°C. After cooling on ice,
4 μl of reverse transcription buffer (5×), 2 μl of 10 mM
dNTPs, and DEPC-treated water to the volume of 19 μl
were added. Later, the mixture was incubated for 5 min at
37°C. After this time, 200 U of RevertAid M-MuLV Reverse
Transcriptase (Fermentas) was added, and the reaction mix-
ture was incubated for 60 min at 42°C. As negative con-
trols, the mixtures without RNA were prepared.

The specific primers used in the RT-PCR, sequencing and
Q-PCR reactions were:

- 5S rDNA: 5'-GCCTACGGCCACACCACC-3' and 5'-
AAGCCTACGACACCTGGTAT-3'

- 18S rDNA: 5'-CGTCTGCCCTATCAACTTTCG-3' and 5'-
TGCCTTCCTTGGATGTGGTAG-3'.

The 18S rDNA primers were designed based on the nucle-
otide sequence determined for region of 18S rDNA (from
353 nt to 448 nt) of Rana amurensis ([Gen-
Bank:AF542043.]; [11]).

Sequencing reaction
The RT-PCR products were sequenced on a Seq CEQ™
8000 Genetic Analysis System (Beckman Coulter) with a
Genome Lab™ DTCS – Quick Start (Beckman Coulter),
according to the manufacturer's instructions. The
sequences of the amplification products were compared
to the GenBank sequences with the BLAST sequences soft-
ware http://www.ncbi.nlm.nih.gov./blast.

Quantitative RT-PCR
The Q-PCR analysis was performed using the Finzymes's
DyNAmo™ HS SYBR® Green qPCR according to the manu-
facturer's instructions. The reaction mixture, in the final

Relative expression of 5S rDNA in LL, RR and RL oocytesFigure 3
Relative expression of 5S rDNA in LL, RR and RL 
oocytes. The error bars represent SEM (* statistically signif-
icant); p < 0.05. LL – R. lessonae, RR – R. ridibunda, RL – R. 
esculenta.
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volume of 20 μl, contained 5 μl of cDNA (500× diluted),
10 μl of master mix, 0.5 mM of forward and reverse spe-
cific primer, 0.2 μl of ROX, and 2,8 μl of H2O. The analysis
was carried out on the Rotor-Gene™ 6000 (Corbett Life
Science) with cycle conditions: initial 15 min of denatur-
ation and enzyme activation at 94°C, 40 cycles each of
94°C for 10 sec, 58°C for 15 sec and 72°C for 30 sec. A
melt curve was produced to confirm a single-specific peak
and to detect primer/dimmer formation by heating the
samples by 0.5°C increments from 72 to 95°C, with a
dwell time at each temperature for 10 seconds. During
that time, the continuous monitoring of the fluorescence
was being performed.

For the relative quantification of the 5S rDNA expression
in the LL, RR and RL oocytes, the ΔΔCt-method was used
[20].

Statistical analysis
Results were expressed as the mean ± SEM. Significance
was accepted for p < 0.05. Data were analysed using
GraphPad (Prism 4) software.
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