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Antigen-specific CD8+ T cells acquire peptide–major histocom-
patibility complex (MHC) clusters through T-cell receptor
(TCR)–mediated endocytosis after specific antigen stimula-
tion. We generated an antigen-presenting cell (APC) express-
ing human leukocyte antigen (HLA)-A*201 coupled to the
enhanced green fluorescent protein (GFP), which delivered
GFP to an antigen-specific T cell when pulsed with antigenic
peptide. We quantitatively identified human T-cell lym-
photropic virus type I (HTLV-I) Tax(11–19) peptide–specific T-
cell populations in peripheral blood mononuclear cells
(PBMCs) from patients with HTLV-I–associated neurologic dis-
ease and defined a new CD8+ T-cell epitope in the HTLV-I enve-
lope region. Acquisition of peptide–HLA-GFP complexes by
antigen-specific T cells could distinguish, with respect to phe-
notype and perforin production, T cells from the chronic viral
infections cytomegalovirus and HTLV-I. This approach will be a
powerful tool in understanding the role of antigen-specific T-
cell responses in health and disease.

Virus-specific T-cell responses are essential in host immune de-
fense and have an important role in the pathogenesis of virus-
mediated disorders. A crucial event in the initiation of an
immune response is the activation of T lymphocytes through
TCR recognition of the peptide-MHC, which initiates a pre-
cisely orchestrated cascade of molecular and cellular events.
The detection and quantitative analysis of epitope-specific T-
cell populations has been fundamental to our understanding
of the cellular immune response in health and disease1.
Peptide-MHC clusters are acquired by CD8+ T cells and inter-
nalized through the TCR2,3. Because this internalization is
based on the specificity of peptide-MHC-TCR recognition, we
postulated that acquisition of peptide-MHC molecules by T
cells could be used for the quantitative detection of virus-spe-
cific T-cell populations, identification of viral T-cell epitopes
and analysis of T-cell responses after antigen stimulation.

Here, we generate an APC expressing HLA-A*201 coupled to
GFP (HmyA2GFP cells) and show that the acquisition of pep-
tide–HLA-GFP complexes by antigen-specific T cells can quan-
titatively identify epitope-specific T cells and define new CD8+

T-cell immunodominant epitopes from bulk PBMCs. We also

use this system to characterize the phenotype and cytolytic
function of virus-specific T cells in two chronic viral infections.

Acquisition of peptide–HLA-GFP complexes by CTL clones
To show antigen-specific acquisition of HLA-GFP complexes
by CD8+ T cells, we used a CD8+ T-cell clone specific for the im-
munodominant HTLV-I Tax(11–19) peptide. HmyA2GFP cells
(Fig. 1a) were pulsed with Tax(11–19) peptide and incubated
with HTLV-I Tax(11–19)-specific cytotoxic T-lymphocyte
(CTL) clones (Fig. 1b). Within 5 min, HLA-GFP molecules
formed dense clusters at the T cell–APC contact site. After 
30 min, small aggregates of HLA-GFP appeared within HTLV-I –
specific CTL clones. The acquisition of peptide–HLA-GFP by T
cells was also monitored by flow cytometry (Fig. 1c). After 30
min, most HTLV-I–specific CTL clones were positive for HLA-
GFP but negative for the control human immunodeficiency
virus (HIV) Gag(77–85) peptide. We also showed peptide-spe-
cific acquisition of HLA-GFP molecules by T cells using CTL
clones specific for cytomegalovirus (CMV) pp65(405–503)
peptide (Fig. 1c). To assess the kinetics of peptide–HLA-GFP ac-
quisition by T cells, Tax(11–19)-specific CTL clones were incu-
bated with Tax(11–19)-pulsed HmyA2GFP cells at various time
points (Fig. 1d). After 30 min, most of the Tax(11–19)-specific
CTLs were positive for HLA-GFP. Fluorescence level remained
stable for 2 h and then declined. A dose-dependent titration of
HTLV-I Tax(11–19)-pulsed HmyA2GFP cells resulted in a lower
limit of detection of 100 pM peptide (data not shown).

Detection of virus-specific T cells from bulk PBMCs
Having observed that acquisition of peptide–HLA-GFP com-
plexes can be readily detected in antigen-specific T-cell clones,
we extended this system to identify and quantify antigen-spe-
cific T-cell populations from bulk PBMCs in patients with
virus-associated diseases. We used PBMCs from HTLV-I–in-
fected patients with an inflammatory disease of the central ner-
vous system, known as HTLV-I–associated myelopathy and
tropical spastic paraparesis (HAM/TSP)4,5. HLA-A*201–positive
patients show a high frequency of HTLV-I–specific CD8+ CTLs,
most of which recognize the HTLV-I Tax(11–19) peptide6–8. It
has been suggested that these HTLV-I–specific CTLs have an
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important role in the pathogenesis of this disease7,9.
HmyA2GFP cells were pulsed with either HTLV-I Tax(11–19) or
control HIV Gag(77–85) peptide and incubated with ex vivo
PBMCs. The percentage of GFP+CD8+ cells from total PBMCs, as
measured by flow cytometry, would then define the HTLV-I
Tax(11–19-specific T-cell population (Fig. 2). In HAM/TSP pa-
tient no. 4, relative to the control peptide, 25.13% of CD8+ cells
were GFP-positive when incubated with HmyA2GFP cells
pulsed with Tax(11–19) peptide (Fig. 2a). The frequency of
Tax(11–19)-specific T cells in PBMCs from this patient was
comparable to the frequency measured using HTLV-I
Tax(11–19)–HLA-A*201 tetramers (28.21%; Fig. 2b). We further
analyzed the frequencies of HTLV-I–specific T cells in PBMCs
from eight HLA-A*201–positive HAM/TSP patients, three HLA-
A*201–negative HAM/TSP patients and three HLA-A*201–posi-
tive healthy donors (Table 1). HTLV-I Tax(11–19)-specific T
cells were detected in PBMCs from all patients at a frequency
comparable with that of tetramers, but were not detected in
HLA-A*201–negative patients or in healthy donors. We also
used this A2GFP system for enumerating CMV-specific T cells
in HAM/TSP patient no. 5 (Fig. 2c), again at a frequency com-
parable to that measured using CMVpp65–HLA-A*201
tetramers (Fig. 2d).

Detection of new CD8+ T-cell epitopes
We extended this system to detect previously unidentified
antigen-specific CD8+ T cells by pulsing HmyA2GFP cells with a
panel of peptides. We searched for HTLV-I envelope (Env)–spe-
cific CD8+ T cells from PBMCs of HAM/TSP patients. We incu-
bated PBMCs from HLA-A*201–positive HAM/TSP patient no. 1

with HmyA2GFP cells pulsed with a series of 26 overlapping
peptides from the HTLV-I Env gp46 region10 and analyzed HLA-
GFP acquisition by CD8+ T cells using flow cytometry.
Significant HLA-GFP acquisition by bulk CD8+ T cells was ob-
served with the Env(291–305) peptide (Fig. 3a). To confirm this
observation, we sorted the HLA-GFP–positive CD8+ T cells, a
putative Env(291–305)-specific T-cell population, by flow cy-
tometry (Fig. 3b) and assessed them for cytotoxicity using a va-
riety of target cells (Fig. 3c). HTLV-I Env(291–305)-pulsed
targets were lysed to a significant degree compared to control
HTLV-I Env peptides. In addition, target cells infected with a
vaccinia virus expressing HTLV Env and an autologous HTLV-
I–infected CD4+ T-cell line (RS CD4) known to express HTLV-I11

were also lysed by the Env(291–305)-sorted CD8+ T cells. These
results showed that the sorted Env(291–305)-specific CD8+ T
cells detected by the A2GFP system were peptide-specific and
functionally cytolytic and indicated that the Env(291–305) re-
gion of HTLV-I might contain an immunodominant, HLA-
A*201–specific CTL epitope. This Env(291–305) region
contains a relatively strong HLA-A*201 binding motif12, based
on an estimation of the dissociation rate of the peptide-HLA
complex (http://bimas.dcrt.nih.gov/molbio/hla_bind/).

Characterization of HTLV-I– and CMV–specific T cells
Differentiation phenotype and perforin production of virus-
specific CD8+ T cells vary among persistent viral infections,
which may be a result of the different functional properties
necessary to control each virus during the chronic stage of in-
fection13,14. PBMCs from patients with HAM/TSP have high
HTLV-I viral loads in the presence of large numbers of HTLV-

a b

c d

Fig. 1 Peptide-specific acquisition of peptide–HLA-GFP complexes by
HTLV-I–specific CTL clones. a, Expression of HLA-A*201 molecule and
GFP on HmyA2GFP cells. HLA-A*201 molecule and GFP were not ex-
pressed on untransfected Hmy2.CIR cells (left), but were colocalized on
the transfected HmyA2GFP cells (center). The GFP signal on the trans-
fected HmyA2GFP cells was also readily visualized by fluorescence mi-
croscopy (right). b, Peptide–HLA-GFP complexes acquired by
HLA-A*201–restricted HTLV-I–specific CTL clone. The HmyA2GFP cells ex-
press GFP (green). The CTL clone is stained with an antibody against CD8
(blue). Within 5 min, HLA-GFP molecules formed dense clusters that
could be readily visualized at the T cell–APC contact site (left, arrowhead).
After 30 min, small aggregates of HLA-GFP appeared in the HTLV-I
Tax(11–19)-specific CTL clone (right, arrowheads) where the majority of
CD8+ cells that had acquired HLA-GFP were no longer in contact with the

HLA-GFP cells. c, Flow cytometric analysis of peptide-specific acquisition
of peptide–HLA-GFP complexes by antigen-specific CTL clones. Both
HTLV-I Tax(11–19)-specific (left) and CMV pp65–specific (right) CTL
clones were positive for HLA-GFP (solid lines) but negative for the control
HIV Gag(77–85) peptide (dotted line). d, Kinetics of peptide–HLA-GFP ac-
quisition by CD8+ T-cell clone. The HTLV-I Tax(11–19)-specific CTL clone
was incubated for the indicated periods with HmyA2GFP cells pulsed with
Tax(11–19) peptide (�) or HIV Gag peptide (�). HLA-GFP acquisition by
CTLs was directly analyzed by flow cytometry. HLA-GFP acquisition is ex-
pressed as mean fluorescence intensity (MFI).
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I–specific CTLs, suggesting that HTLV-I–specific T cells may be
insufficient to control a persistent HTLV-I infection7,9. In con-
trast, other chronic viral infections such as CMV elicit a highly
effective and efficient CTL response associated with rapid clear-
ance of the virus. This led us to compare the differentiation
phenotype and perforin expression of HTLV-I– and CMV-spe-
cific T cells using PBMCs from HAM/TSP patients. In addition,
T-cell responses after the recognition of peptide-HLA com-
plexes are important for immune regulation during the
chronic stage of viral infections. Therefore, we also analyzed
differentiation phenotype and perforin expression of T cells
after ex vivo peptide presentation by HmyA2GFP cells.

We first analyzed the distribution of the T-cell differentia-
tion markers CD27 and CD45RA on HTLV-I Tax(11–19)
tetramer–positive T cells and on CMV pp65 tetramer–positive T
cells using PBMCs from HAM/TSP patients (Fig. 4a and b).
CD27 and CD45RA molecules have been reported to distin-
guish phenotypic subpopulations of CD8+ T cells15. On the
basis of both phenotypic and functional maturation proper-
ties, four distinct T-cell subsets have been described15: CD27+

CD45RA+ (naive), CD27+ CD45RA– (memory), CD27– CD45RA–

(effector/memory), and CD27– CD45RA+ (effector). Although
virus-specific populations during persistent HTLV-I infection
were represented in each of the four phenotypic subsets, HTLV-
I Tax(11–19) tetramer–positive T cells showed a clear enrich-
ment for the CD27+ CD45RA– (memory) subset (Fig. 4a). By
contrast, CMV tetramer–positive T cells showed a substantial
enrichment for the CD27– CD45RA+ (effector) subset (Fig. 4b).

To study how virus-specific T cells with different phenotypes
respond to antigen stimulation, we analyzed alterations of
CD27 and CD45RA expression in HLA-GFP–acquiring HTLV-I–
and CMV tetramer–positive T cells after ex vivo peptide presen-
tation by HmyA2GFP cells (Fig. 4c and d). PBMCs from
HAM/TSP patients were incubated with HTLV-I Tax(11–19) or
CMV pp65 peptide–pulsed HmyA2GFP cells for 1 h, stained
with antibodies against CD27 and CD45RA and with HTLV-I or
CMV tetramers, and analyzed by flow cytometry. After stimula-
tion with Tax(11–19)-pulsed HmyA2GFP cells, there was a de-
crease in the CD27+ CD45RA– (memory) subset and an increase
in the CD27– CD45+ (effector) subset in HLA-GFP–acquiring
HTLV-I tetramer–positive cells (Fig. 4c). In contrast, in HLA-

GFP–acquiring CMV tetramer–positive T cells, there was no sig-
nificant change in the proportion of effector T cells after stim-
ulation with CMV pp65–pulsed HmyA2GFP cells (Fig. 4d).
There was, however, a substantial increase in the CD27–

CD45RA– (effector/memory) subset with a concomitant de-
crease in the CD27+ CD45RA– (memory) subset (Fig. 4d).

These phenotypically defined T-cell populations were fur-
ther characterized with respect to perforin expression and cy-
tolytic activity. Our results were consistent with previous
reports showing that terminally differentiated effector cells
contain more perforin than cells with a naive or memory phe-
notype14. We showed that CMV-specific CD8+ T cells had
higher levels of perforin than HTLV-I–specific CD8+ T cells ex
vivo (Fig. 4e). In contrast, there was no change in the amount of
perforin in HTLV-I–specific T cells after Tax(11–19) stimula-
tion, and there was a significant decrease in the amount of per-
forin in CMV-specific T cells after CMVpp65 peptide
stimulation (P = 0.0166 by paired T-test). These observations
were supported by assessments of cytotoxicity in sorted HTLV-

Table 1  Frequency of HTLV-I Tax(11–19)–specific, 
HLA-GFP–acquiring CD8+ T cells and tetramer–positive CD8+ T

cells in HAM/TSP patients and healthy donors

Patient % GFP acquisitiona % tetramera

A201+ HAM no. 1 11.89 16.15
A201+ HAM no. 2 1.66 1.87
A201+ HAM no. 3 15.44 20.40
A201+ HAM no. 4 25.13 28.21
A201+ HAM no. 5 3.91 4.77
A201+ HAM no. 6 1.18 1.18
A201+ HAM no. 7 2.50 2.76
A201+ HAM no. 8 1.69 1.78
A201– HAM no. 9 0.59 0.32
A201– HAM no. 10 0.48 0.15
A201– HAM no. 11 0.51 0.12
A201+ HD no. 1 0.43 0.12
A201+ HD no. 2 0.37 0.15
A201+ HD no. 3 0.33 0.13
aPercentage of HLA-GFP– or tetramer-positive CD8+ cells in total CD8+ cells within
PBMCs. HAM, HTLV-I–associated myelopathy and tropical spastic paraparesis; 
HD, HTLV-I–seronegative healthy donor; A201+, HLA-A*201–positive individual;
A201–, HLA-A*201–negative individual.

a b

c d

Fig. 2 Quantitative detection of virus-specific
CD8+ T cells from bulk PBMCs of HLA-A*201–posi-
tive HAM/TSP patients. a, Representative dot plot
of Tax(11–19)-specific HLA-GFP acquisition by
CD8+ T cells from bulk PBMCs of HLA-A*201–posi-
tive HAM/TSP patient no. 4, with negative control
HIV Gag(77–85) (left) or HTLV-I Tax(11–19) (right)
peptides. The percentages of HLA-GFP–positive
CD8+ T cells in total CD8+ cells are shown in red in
the upper right quadrant. b, The percentage of
HTLV-I Tax(11–19)–HLA-A*201 tetramer–positive
cells in total CD8+ PBMCs from HAM/TSP patient
no. 4 is shown in red in the upper right quadrant.
c, Representative dot plot of CMV pp65-specific
HLA-GFP acquisition by CD8+ T cells from bulk
PBMCs of HLA-A*201 HAM/TSP patient no. 5, with
negative control HIV Gag(77–85) (left) or CMV
pp65 (right) peptides. d, Percentage of CMV
pp65–HLA-A*201 tetramer–positive cells in total
CD8+ PBMCs from HAM/TSP patient no. 5 is shown
in red in the upper right quadrant.
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Fig. 3 Detection of a new CD8+

T-cell epitope from the envelope
region of HTLV-I. a, Frequency of
HLA-GFP–positive CD8+ cells from
bulk PBMCs that are reactive to
HTLV-I peptides. Each peptide is
designated by the position of its
amino acid sequence. b, After the
incubation of Env(291–305)-
pulsed HmyA2GFP cells with
PBMCs from HLA-A*201–positive
HAM patient no. 1, cells were
stained with a CD8-specific mono-
clonal antibody and HLA-GFP–ac-
quiring CD8+ T cells were sorted by
flow cytometry (inset, upper right quadrant). c, Sorted cells were exam-
ined for their functional capacity to lyse HTLV-I Env–expressing target
cells in a 4-h CTL assay. Target cells consisted of HLA-A*201–transfected
human B-cell line pulsed with Env(11–25) and Env(291–305); HLA-
A*201–transfected human B-cell line infected with recombinant vaccinia
virus expressing HTLV-I Env (Vaccinia Env) or control vaccinia expressing
influenza virus hemagglutinin protein (Vaccinia HA); and an autologous
HTLV-I–infected CD4+ T-cell line known to express HTLV-I (RS CD4).
Effector/target ratio was 3:1.
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I– and CMV tetramer–positive T cells. CMV tetramer–positive T
cells induced higher cell lysis than HTLV-I tetramer–positive T
cells (Fig. 4g); this was also observed in bulk, non-sorted PBMCs
from a HAM/TSP patient (Fig. 4h).

Discussion
Antigen-specific T-cell interactions are important components
of cellular immunity against microbial agents, self proteins and
tumor antigens. The detection and quantitative analysis of epi-
tope-specific T-cell populations has been important in under-
standing the cellular immune response in health and disease.
Quantitative detection of T-cell populations by tetramers has
proved useful for monitoring virus-specific T-cell immunity in
laboratory and clinical settings1. To generate the tetramers,
however, requires a priori identification of an immunodomi-
nant peptide known to bind the appropriate MHC. During
peptide-MHC recognition, membrane components of APCs
containing MHC class I molecules are acquired by CD8+ T cells
through the TCR2,3. In the present study, we have exploited
peptide-HLA acquisition by T cells for quantitative identifica-
tion of antigen-specific T-cell populations from bulk PBMCs.
Using the A2GFP system, HLA-A*201–restricted, HTLV-I– and
CMV-specific CD8+ T cells were detected from bulk PBMCs of
patients with HAM/TSP, at amounts and sensitivities compara-
ble to those in tetramer detection (Table 1; Fig. 2). This system
was also used to screen unknown CD8+ T-cell epitopes (Fig. 3).
The A2GFP system has clear advantages over other antigen-spe-
cific T-cell screening methods (such as tetramers, Elispot and in
vitro cytokine detection systems), as the HmyA2GFP cells stably
express HLA-A*201-GFP and can be easily pulsed with any pep-
tide in a 30-min incubation process. This straightforward
method for constructing stably transfected HLA-GFP cells is
also applicable with other HLA alleles. We feel this approach
will be useful in the analysis of other infectious agents, tumors
and auto-antigens and will further enhance our understanding
of antigen–host cell immunological interactions.

The acquisition of peptide–HLA-GFP by T cells specific for
HTLV-I or CMV was also used to define stages of T-cell differen-

tiation between two different chronic viral infections. To un-
derstand the T-cell immune response in persistent virus infec-
tions, virus-specific CD8+ T cells have been classified into
distinct differentiation phenotypes using a combination of cell-
surface markers such as CD27, CD28, CCR7, CD45RA and
CD45RO, although these distinctions are primarily defined
phenotypically and their correlations with function seem to be
evolving13–15. HIV-specific CD8+ T cells were enriched for T cells
with a memory phenotype (pre-terminally differentiated) in ad-
dition to expressing low levels of perforin, whereas CMV-spe-
cific T cells were predominantly of an effector phenotype
(terminally differentiated) with high levels of perforin13,14. These
results suggest that HIV-specific CD8+ T cells with an immature
phenotype and a lack of perforin are associated with a defect in
cytolytic activity that may contribute to the decline in CD8+ T-
cell–mediated suppression of HIV replication and HIV disease
progression13. In contrast, CMV-specific CD8+ cells with an ef-
fector phenotype and high perforin expression would be highly
effective in eliminating CMV-infected cells13. Similar to the case
in HIV, HTLV-I–specific T cells with a memory phenotype and
low perforin are enriched in patients with HAM/TSP, a disorder
in which immunopathogenic mechanisms have been pro-
posed9,16. In the same patients, CMV-specific T cells, which are
highly effective in eliminating CMV-infected cells13, were pre-
dominantly of an effector phenotype with high levels of per-
forin. In patients with HAM/TSP, high HTLV-I viral loads in
PBMCs have been seen in the presence of very high frequencies
of HTLV-I–specific CTLs (as high as 25% of total CD8+ cells)8.
Collectively, these results suggest that HTLV-I–specific T cells
may be insufficient to control persistent HTLV-I infection.

The newly described A2GFP system allowed us to assess the
response of virus-specific T cells after antigen recognition.
Although it has been shown that heterogeneity exists within
virus-specific T-cell populations13,14, little is known about how
virus-specific T cells with different phenotypes and levels of per-
forin expression respond to antigen when controlling viral in-
fections. After antigen stimulation with peptide-pulsed
HmyA2GFP cells, HTLV-I–specific CD8+ cells were enriched for

a b

c
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an effector phenotype without significant induction of perforin
or increased cytolytic activity. These cells may be insufficient to
control virus infection, resulting in increased viral load in
HAM/TSP patients17. In the same patients, CMV-specific T cells,
which are highly effective at eliminating CMV-infected cells13

after antigen stimulation, were enriched for cells with an effec-
tor or effector/memory phenotype, with high levels of cytolytic
activity and rapid exhaustion of perforin. The generation of a
recall antigen response is thought to be associated with the pro-
liferation of memory cells and their conversion to effector
cells18. It is therefore possible that terminally differentiated ef-
fector cells rapidly intervene after re-encountering antigen,
while precursor cells expand and ensure continuous replenish-
ment of the effector cell pool. Alternatively, differences in per-
forin expression between HTLV-I– and CMV-specific CD8+ T
cells may be linked to their antigenic history in vivo. Various
priming conditions (such as the abundance of antigen, the du-

ration of antigenic stimulation and the type of cytokine pre-
sent)13,14,18 may be related to differences in the virus-specific T-
cell phenotype and cytolytic function that are necessary to
control chronic viral infection and disease outcome.
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Methods
Generation of HmyA2GFP cells. The full-length HLA-A*201
cDNA construct was obtained from the RSV-HLA-A2 vector19.
The HLA-A2-GFP expression vector was generated by insertion
of the HLA-A*201 cDNA with a stop codon mutated into the
pEGFP-N3 vector (Clontech, Palo Alto, California). The HLA-A
and HLA-B locus–defective immortalized B-cell line (Hmy2.CIR)
was transfected with the HLA-A2-GFP vector using Trans-IT
(Mirus, Madison, Wisconsin), according to the manufacturer’s
instructions. The cells were incubated for 48 h at 37 °C and
placed in fresh selection medium DMEM (Gibco-BRL, Grand
Island, New York) supplemented with 10% FBS (Atlanta
Biologicals, Norcross, Georgia), 2 mM L-glutamine, 40 U/ml
penicillin, 40 µg/ml streptomycin (all from BioWhittaker,
Walkersville, Maryland) and 400 µg/ml of G418 sulfate (Cellgro,
Herndon, Virginia)) to establish a stable cell line (HmyA2GFP)
expressing the HLA-A*201-GFP fusion protein (Fig. 1a).

Subjects. We used Ficoll-Hypaque (BioWhittaker) centrifugation
to separate PBMCs from 8 HLA-A*201–positive HAM/TSP pa-
tients, 3 HLA-A*201–negative HAM/TSP patients and 
3 HLA-A*201–positive HTLV-I–seronegative healthy donors.
HAM/TSP was diagnosed according to the World Health
Organization’s guidelines20. Blood samples were obtained after
informed consent as part of a clinical protocol reviewed and ap-
proved by the National Institutes of Health institutional review
panel. HTLV-I infection was confirmed by ELISA (Abbott
Laboratories, Chicago, Illinois) and western blot analysis
(Genelabs, Singapore).

Peptides. HTLV-I Tax(11–19) (LLFGYPVYV), HIV Gag(77–85)
(SLYNTVATL) and CMV pp65 (495–503) (NLVPMVATV) pep-
tides were synthesized and 95% purified by high-performance
liquid chromatography (New England Peptide, Fitchburg,
Massachusetts).

Generation of virus peptide–specific CTL clones. Previously
characterized CD8+ CTL clones21 were used in these studies.
They were maintained by weekly stimulation with peptide-
pulsed (1 µM) irradiated HLA-A*201–allogeneic PBMCs at a CTL
clone/PBMC ratio of 1:10. Human recombinant interleukin-2
(40 U/ml; Roche Diagnostic, Indianapolis, Indiana) was added
on the next day of stimulation. CTL culture medium was Iscove’s
modified Dulbecco’s medium (Gibco-BRL) supplemented with
10% human serum, 2 mM L-glutamine, 40 U/ml penicillin and
40 µg/ml streptomycin.

Immunofluorescence staining. HmyA2GFP cells were pulsed
with HTLV-I Tax(11–19) peptide at a concentration of 10 µM for
30 min, and cultured with an HTLV-I Tax(11–19)-specific CD8+

T-cell clone for indicated periods on poly-D-lysine–treated glass
coverslips at 37 °C. The cells were fixed in 4% paraformaldehyde
and stained with monoclonal antibody against CD8 (DAKO,

Glostrup, Denmark) in combination with Alexa Fluor 350–conju-
gated goat antibodies against mouse IgG1 (blue; Molecular
Probes, Eugene, Oregon). Images were examined with a Zeiss
Axiovert 200M microscope.

Flow cytometric analysis. HmyA2GFP cells were pulsed with each
peptide and incubated in a round-bottom 96-well culture plate for
30 min at 37 °C. The cells were washed twice to remove any free
peptide, mixed with CTL clones (at a 1:5 HmyA2GFP cell/CTL
ratio) or PBMCs (at a 1:1 ratio) in a round-bottom, 96-well culture
plate, centrifuged at 200g for a few seconds to provide immediate
cell contact and incubated for 30 min at 37 °C. Cells were then
stained with a variety of antibodies (see below) and the acquisition
of HLA-GFP by T cells was assessed by flow cytometry. CTL clones
were stained with phycoerythrin-labeled monoclonal antibody
against CD8 (Caltag, Burlingame, California) to detect HLA-GFP
molecules. PBMCs were stained with Tri-Color–labeled mono-
clonal antibody against CD8 (Caltag) and phycoerythrin-conju-
gated Tax(11–19) peptide–loaded HLA-A*201 tetramer (National
Institutes of Health AIDS Research and Reference Reagent
Program) or CMV pp65 peptide–loaded HLA-A*201 tetramer
(Beckman Coulter, Fullerton, California). For phenotypic analysis
of PBMCs, cells were stained with phycoerythrin-conjugated
Tax(11–19) peptide–loaded HLA-A*201 tetramer, monoclonal an-
tibody against CD27 and allophycocyanin-labeled monoclonal
antibody against CD45RA. Peridinine chlorophyll protein–labeled
rat antibody against mouse IgG1 was used as a secondary reagent
for CD27-specific antibody (all from Pharmingen, San Diego,
California). Cells were stained with saturating concentrations of
antibody at 4 °C for 30 min and washed twice before analysis on a
FACS Calibur (Becton Dickinson, San Jose, California). For intracel-
lular perforin staining, cells were fixed and permeabilized with the
Cytofix/CytoPerm kit (Pharmingen) and stained with monoclonal
antibody specific for perforin (Pharmingen). Data were analyzed
with CellQuest software (Becton Dickinson).

Cell sorting and CTL assay. Effector cells were sorted by a FACS
Vantage SE (Becton Dickinson). The sorted cells were incubated
in CTL culture medium (see ‘Generation of virus peptide–specific
CTL clones’ above) overnight. The 4-h CTL assay was done using
europium (Aldrich Chemical, Milwaukee, Wisconsin) as de-
scribed previously21. Effector cells were incubated with target
cells at indicated effector-to-target ratios. Target cells were from
an HLA-A*201–transfected human B-cell line pulsed with 100
nM each Env(11–25), Env(291–305), Tax(11–19) and CMV
pp65 peptide; an HLA-A*201–transfected human B-cell line in-
fected with vaccinia recombinant viruses expressing HTLV-I Env
or control vaccinia expressing influenza virus hemagglutinin
protein; or an autologous HTLV-I–infected CD4+ T-cell line
known to express HTLV-I (RSCD4)11. The percent specific lysis
was calculated as (experimental release – spontaneous release) ÷
(maximum release – spontaneous release) × 100. The assay was
done in triplicate.
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