Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy
Huang, YY (Huang, Yangyang)[ 1 ] ; Li, T (Li, Ting)[ 1 ] ; Gao, WT (Gao, Wentao)[ 2 ] ; Wang, Q (Wang, Qi)[ 1 ] ; Li, XY (Li, Xiaoyun)[ 1 ] ; Mao, C (Mao, Chun)[ 1 ]*(毛春); Zhou, M (Zhou, Min)[ 2 ]*; Wan, MM (Wan, Mimi)[ 1 ]*(万密密); Shen, J (Shen, Jian)[ 1 ]
[ 1 ] Nanjing Normal Univ, Natl & Local Joint Engn Res Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Nanjing 210023, Peoples R China
[ 2 ] Nanjing Univ, Med Sch, Affiliated Hosp, Dept Vasc Surg,Nanjing Drum Tower Hosp, Nanjing 210008, Peoples R China
JOURNAL OF MATERIALS CHEMISTRY B,202007,8(26)5765-5775
Atherosclerosis can lead to thrombosis, blood supply disorders, and even serious consequences such as lumen occlusion or wall rupture and bleeding, so it is urgent to develop an effective comprehensive therapy. Here, a novel kind of drug-coated balloon, where drug-loaded porous nanomotors with autonomous motion ability are used as the coating of the balloon, is reported. The drug-loaded porous nanomotors based on Janus aminated mesoporous silica (JAMS) that was obtained by asymmetric modification of platinum (Pt) nanoparticles are prepared and characterized. The platelet membrane is used to wrap the nanomotors to reduce the leakage of drugs before reaching the plaque. The motion ability of the nanomotor under the irradiation of near-infrared light, the sustained release behavior and effect of the loaded drugs (anti-proliferative drug paclitaxel and the anti-vascular cell adhesion molecule-1 antibody) are investigated in detail. The biomimetic effect and encapsulation effect on drug loading of the platelet membrane, and the elimination of inflammatory macrophages under the photothermal effect produced by Pt are also characterized. The results indicate that the drug-loaded porous nanomotors proposed for drug balloon coating in this work can penetrate into the plaque and enhance the drug retention efficiency, realizing short-term photothermal elimination of inflammatory macrophages and long-term anti-proliferation effect of the drug, providing a possible choice for drug balloon coating with high efficiency in the treatment of atherosclerosis.
文章链接:
https://pubs.rsc.org/en/content/articlelanding/2020/TB/D0TB00789G#!divAbstract
版权与免责声明:本网页的内容由收集互联网上公开发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:sales@allpeptide.com