Graphene Oxide-Assisted and DNA-Modulated SERS of AuCu Alloy for the Fabrication of Apurinic/Apyrimidinic Endonuclease 1 Biosensor
Li, JY (Li, Junyao)[ 1 ] ; Heng, H (Heng, Hang)[ 2 ] ; Lv, JL (Lv, Jianlin)[ 1 ] ; Jiang, TT (Jiang, Tingting)[ 1 ] ; Wang, ZY (Wang, Zhaoyin)[ 1 ]*(王兆寅); Dai, ZH (Dai, Zhihui)[ 1,2 ]*(戴志晖)
[ 1 ] Nanjing Normal Univ, Coll Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Normal Univ, Ctr Anal & Testing, Nanjing 210023, Jiangsu, Peoples R China
SMALL,201911,15(48),特SI
Fabrication of high-performance surface-enhanced Raman scattering (SERS) biosensors relies on the coordination of SERS substrates and sensing strategies. Herein, a SERS active AuCu alloy with a starfish-like structure is prepared using a surfactant-free method. By covering the anisotropic AuCu alloy with graphene oxide (GO), enhanced SERS activity is obtained owing to graphene-enhanced Raman scattering and assembly of Raman reporters. Besides, stability of SERS is promoted based on the protection of GO to the AuCu alloy. Meanwhile, it is found that SERS activity of AuCu/GO can be regulated by DNA. The regulation is sequence and length dual-dependent, and short polyT reveals the strongest ability of enhancing the SERS activity. Relying on this phenomenon, a SERS biosensor is designed to quantify apurinic/apyrimidinic endonuclease 1 (APE1). Because of the APE1-induced cycling amplification, the biosensor is able to detect APE1 sensitively and selectively. In addition, APE1 in human serum is analyzed by the SERS biosensor and enzyme-linked immunosorbent assay (ELISA). The data from the SERS method are superior to that from ELISA, indicating great potential of this biosensor in clinical applications.
文章链接:
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201901506
版权与免责声明:本网页的内容由收集互联网上公开发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:sales@allpeptide.com