Encapsulation of Ni3Fe Nanoparticles in N-Doped Carbon Nanotube-Grafted Carbon Nanofibers as High-Efficiency Hydrogen Evolution Electrocatalysts
Li, TF (Li, Tongfei)[ 1 ] ; Luo, G (Luo, Gan)[ 1 ] ; Liu, KH (Liu, Kunhao)[ 1 ] ; Li, X (Li, Xin)[ 1 ] ; Sun, DM (Sun, Dongmei)[ 1 ] ; Xu, L (Xu, Lin)[ 1 ]*(徐林) ; Li, YF (Li, Yafei)[ 1 ]*(李亚飞) ; Tang, YW (Tang, Yawen)[ 1 ]*(唐亚文)
[ 1 ] Nanjing Normal Univ, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
ADVANCED FUNCTIONAL MATERIALS,201812,28,51
The exploration of cost-effective yet high-efficiency inexpensive electrocatalysts for the hydrogen evolution reaction (HER) is of critical significance for future renewable energy conversion technologies. A feasible electrospinning strategy to construct a novel 1D hierarchical nanoarchitecture comprising Ni3Fe nanoalloy-encapsulated carbon nanotubes grown onto N-doped carbon nanofibers (abbreviated as Ni3Fe@N-C NT/NFs) is demonstrated here. Benefiting from the abundant firmly immobilized Ni3Fe nanoparticles for catalytic sites and hierarchical fibrous nanostructures for effective electron transport and mass diffusion, the resultant Ni3Fe@N-C NT/NFs display an extraordinary HER activity with a low overpotential of 72 mV to reach a current density of 10 mA cm(-2) in KOH medium and a remarkable stability for 40 000 s. Theoretical studies corroborate that the resultant Ni3Fe@N-C NT/NFs exhibit a favorable Gibbs free energy of hydrogen adsorption (Delta G(H*) = -0.14 eV), further manifesting their superior HER activity. The present work will advance the development of highly efficient nonprecious electrocatalysts for energy conversion.
文章链接
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201805828
版权与免责声明:本网页的内容由收集互联网上公开发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:sales@allpeptide.com