Aerobic Baeyer-Villiger oxidation of ketones over mesoporous Mn-Ce and Mn-Co composite oxides in the presence of benzaldehyde: The effect of valence state
Liu, G (Liu, Gui)[ 1 ] ; Sun, L (Sun, Lei)[ 1 ] ; Luo, W (Luo, Wei)[ 1 ] ; Yang, Y (Yang, Yue)[ 1 ] ; Liu, JH (Liu, Junhua)[ 1 ]*(刘俊华) ; Wang, F (Wang, Fang)[ 2 ]* ; Guild, CJ (Guild, Curtis J.)[ 3 ]
[ 1 ] Nanjing Normal Univ, Coll Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Tech Univ, Coll Chem & Mol Engn, Nanjing 211816, Jiangsu, Peoples R China
[ 3 ] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
MOLECULAR CATALYSIS,201810,458,9-18
Aerobic Baeyer-Villiger oxidation of ketones into corresponding esters were performed over mesoporous Mn-Ce and Mn-Co composite oxides prepared by co-impregnation method and benzaldehyde was used as the sacrificing agent. It was found that the best conversion and selectivity were obtained when the Mn/Ce mole ratio was 1:2 (denoted as Mn0.33Ce0.67Os) through investigating the effect of Mn/Ce mole ratio on the catalytic activity. Interestingly, Mn0.33Ce0.67Os (Mn/Co mole ratio was 1:2) catalyst had no catalytic activity for this reaction. Xray diffraction (XRD) results showed that MnOx was completely dissolved into the CeO2 lattice, and Mn0.33Ce0.67Os sample was existed in the form of spinel structure (Co, Mn) (Mn, Co)(2)O-4 and obvious peaks of Co3O4. Nitrogen adsorption-desorption measurements revealed that Mn0.5Ce0.5Os, Mn0.33Ce0.67Os, Mn0.33Ce0.67Os and Mn0.33Ce0.67Os materials possessed mesoporous structure. X-ray photoelectron spectroscopy (XPS) analysis showed that the highest concentration of Ce3+ on the surface of Mn0.33Ce0.67Os catalyst, which could create unsaturated chemical bonds, charge imbalance, and oxygen vacancies on the surface of samples, it is beneficial to the oxidation reaction. Additionally, XPS data revealed that Mn0.33Ce0.67Os catalyst has great potential in catalytic oxidation due to the large amount of active oxygen species on the surface. In addition, manganese and cobalt species on the surface of Mn0.33Ce0.67Os are almost present in the form of Mn2+ and Co3+, it is known that Mn2+ can serve as a potent antioxidant and scavenge the activity of active oxygen species, while Co3+ ions can prevent the formation of oxygen vacancies and inhibit the release of reactive oxygen species, thus the presence of Mn2+ and Co3+ inhibited the catalytic activity of Mn0.33Ce0.67Os catalyst. The diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis) and hydrogen temperature-programmed reduction (H-2-TPR) results are in accordance XPS data.
文章链接:
https://www.sciencedirect.com/science/article/pii/S2468823118302918?via%3Dihub
版权与免责声明:本网页的内容由收集互联网上公开发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:sales@allpeptide.com