作 者:Sun L, Song L, Wan Q, Wu G, Li X, Wang Y, Wang J, Liu Z, Zhong X, He X, Shen S, Pan X, Li A, Wang Y, Gao P, Tang H, Zhang H.
Abstract
Cancer cells are known to undergo metabolic reprogramming to sustain survival and rapid proliferation, however, it remains to be fully elucidated how oncogenic lesions coordinate the metabolic switch under various stressed conditions. Here we show that deprivation of glucose or glutamine, two major nutrition sources for cancer cells, dramatically activated serine biosynthesis pathway (SSP) that was accompanied by elevated cMyc expression. We further identified that cMyc stimulated SSP activation by transcriptionally upregulating expression of multiple SSP enzymes. Moreover, we demonstrated that SSP activation facilitated by cMyc led to elevated glutathione (GSH) production, cell cycle progression and nucleic acid synthesis, which are essential for cell survival and proliferation especially under nutrient-deprived conditions. We further uncovered that phosphoserine phosphatase (PSPH), the final rate-limiting enzyme of the SSP pathway, is critical for cMyc-driven cancer progression both in vitro and in vivo, and importantly, aberrant expression of PSPH is highly correlated with mortality in hepatocellular carcinoma (HCC) patients, suggesting a potential causal relation between this cMyc-regulated enzyme, or SSP activation in general, and cancer development. Taken together, our results reveal that aberrant expression of cMyc leads to the enhanced SSP activation, an essential part of metabolic switch, to facilitate cancer progression under nutrient-deprived conditions. (Cell Research advance online publication 20 March 2015; doi:10.1038/cr.2015.33.)
版权与免责声明:本网页的内容由收集互联网上公开发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:sales@allpeptide.com