400-998-5282
专注多肽 服务科研
编号: | 569983 |
中文名称: | 5TAMRA-Arg-OH |
单字母: | 5Tamra-R-OH |
三字母: | 5TAMRA N端5-TAMRA标记,单一异构体5-羧基四甲基罗丹明(5TAMRA)和混合异构体5/6-TAMRA是荧光染料,激发波长约为543纳米,发射波长约为572纳米。 -ArgL-精氨酸:arginine。系统命名为(2S)-氨基-5-胍基戊酸。在生理条件下带正电荷,为编码氨基酸。是幼小哺乳动物的必需氨基酸。符号:R,Arg。 -OHC端羧基:C-terminal carboxyl group。在肽或多肽链中含有游离羧基的氨基酸一端。在表示氨基酸序列时,通常将C端放在肽链的右边。 |
氨基酸个数: | 1 |
分子式: | C31H34N6O6 |
平均分子量: | 586.64 |
精确分子量: | 586.25 |
等电点(PI): | - |
pH=7.0时的净电荷数: | 1 |
平均亲水性: | 3 |
疏水性值: | -4.5 |
消光系数: | - |
来源: | 人工化学合成,仅限科学研究使用,不得用于人体。 |
纯度: | 95% 或98%可选 |
盐体系: | 若定制,可选TFA盐、醋酸盐、盐酸盐和柠檬酸盐等 |
生成周期: | 现货或定制2-3周,请咨询销售人员 |
储存条件: | 负80℃至负20℃ |
标签: | 精氨酸类 |
Peptide 5TAMRA-R-OH is a Research Peptide with significant interest within the field academic and medical research. Recent citations using 5TAMRA-R-OH include the following: Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors YW Li , B Li, J He, P Qian - Journal of Molecular Structure, 2011 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S002228601100384X Conjugation of a photosensitizer to an oligoarginine-based cell-penetrating peptide increases the efficacy of photodynamic therapy Y Choi , JR McCarthy, R Weissleder - ChemMedChem , 2006 - Wiley Online Libraryhttps://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.200500036 Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides Y Chen , MT Guarnieri , AI Vasil, ML Vasil - Antimicrobial agents , 2007 - Am Soc Microbiolhttps://journals.asm.org/doi/abs/10.1128/aac.00925-06 Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias V Made, S Babilon, N Jolly, L Wanka - Angewandte Chemie , 2014 - Wiley Online Libraryhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201403750 Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides TA Aguilera , ES Olson, MM Timmers, T Jiang - Integrative , 2009 - academic.oup.comhttps://academic.oup.com/ib/article-abstract/1/5-6/371/5211408 C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration T Teesalu , KN Sugahara - Proceedings of the , 2009 - National Acad Scienceshttps://www.pnas.org/doi/abs/10.1073/pnas.0908201106 Concomitant Occurrence of Peptide 310- and alpha-Helices Probed by NMR S Mammi, M Rainaldi, M Bellanda - Journal of the , 2000 - ACS Publicationshttps://pubs.acs.org/doi/full/10.1021/ja002710a Stearylated arginine-rich peptides: a new class of transfection systems S Futaki, W Ohashi, T Suzuki, M Niwa - Bioconjugate , 2001 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/bc015508l Arginine-rich peptides: an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery S Futaki, T Suzuki, W Ohashi, T Yagami - Journal of Biological , 2001 - ASBMBhttps://www.jbc.org/article/S0021-9258(19)46333-3/abstract Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides S Futaki, I Nakase, T Suzuki, Zhang , Y Sugiura - Biochemistry, 2002 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/bi0256173 Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization S Futaki, I Nakase - Accounts of chemical research, 2017 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/acs.accounts.7b00221 Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms S Futaki - International journal of pharmaceutics, 2002 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S037851730200337X Arginine-rich cell penetrating peptides: Design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides R Abes, A Arzumanov, H Moulton - European Peptide , 2008 - Wiley Online Libraryhttps://onlinelibrary.wiley.com/doi/abs/10.1002/psc.979 Exploring the sequence space for (tri-) peptide self-assembly to design and discover new hydrogels PWJM Frederix , GG Scott, YM Abul-Haija - Nature , 2015 - nature.comhttps://www.nature.com/articles/nchem.2122 Design, synthesis, and evaluation of amphiphilic cyclic and linear peptides composed of hydrophobic and positively-charged amino acids as antibacterial agents N Riahifard, S Mozaffari , T Aldakhil, F Nunez - Molecules, 2018 - mdpi.comhttps://www.mdpi.com/1420-3049/23/10/2722 Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan LN Irazazabal, WF Porto , SM Ribeiro , S Casale - et Biophysica Acta (BBA , 2016 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0005273616302449 Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers L Zhang, JP Tam - Journal of the American Chemical Society, 1997 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/ja9621105 Molecular transporters for peptides: delivery of a cardioprotective Ã\x8fµPKC agonist peptide into cells and intact ischemic heart using a transport system, R7 L Chen, LR Wright, CH Chen, SF Oliver, PA Wender - Chemistry & biology, 2001 - cell.comhttps://www.cell.com/ccbio/pdf/S1074-5521(01)00076-X.pdf Antibacterial activities of ferrocenoyl-and cobaltocenium-peptide bioconjugates JT Chantson, MVV Falzacappa, S Crovella - Journal of , 2005 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0022328X05005243 Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides JR Maiolo, M Ferrer , EA Ottinger - Biochimica et Biophysica Acta (BBAhttps://www.sciencedirect.com/science/article/pii/S0005273605001094 Peptide synthesis using unprotected peptides through orthogonal coupling methods. JP Tam , YIAN Lu, CFA Liu - Proceedings of the , 1995 - National Acad Scienceshttps://www.pnas.org/doi/abs/10.1073/pnas.92.26.12485 Ã\x8fâ\x80°-Amino acids in peptide design. Crystal structures and solution conformations of peptide helices containing a beta-alanyl-γ-aminobutyryl segment IL Karle, A Pramanik , A Banerjee - Journal of the , 1997 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/ja970566w A helix-stabilized cell-penetrating peptide as an intracellular delivery tool H Yamashita, M Oba , T Misawa, M Tanaka - , 2016 - Wiley Online Libraryhttps://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cbic.201500468 Sequence-specific Ni (II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism E Kopera, A Krezel , AM Protas, A Belczyk - Inorganic , 2010 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/ic1005709 Neuroprotective peptides fused to arginine-rich cell penetrating peptides: Neuroprotective mechanism likely mediated by peptide endocytic properties BP Meloni , D Milani, AB Edwards , RS Anderton - Pharmacology & , 2015 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0163725815001175 Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni (II) ions AM Protas, A Bonna , E Kopera, W Bal - Journal of inorganic biochemistry, 2011 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0162013410002175 Prediction of peptide retention at different HPLC conditions from multiple linear regression models , M MarszaÃ\x85â\x80\x9aÃ\x85â\x80\x9a , YV Heyden , R Kaliszan - Journal of Proteome , 2005 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/pr049780r