浙江省科技型企业---加速您的多肽研究
首页 >多肽产品 >Bactenecin, bovine

多肽产品

116229-36-8,Bactenecin, bovine,H2N-Arg-Leu-Cys-Arg-Ile-Val-Val-Ile-Arg-Val-Cys-Arg-COOH(Disulfide Bridge:Cys3-Cys11),RLCRIVVIRVCR,杭州专肽生物的产品

Bactenecin, bovine

Bactenecin是一种从牛嗜中性粒细胞中分离出的环状阳离子抗菌肽,序列中一共含有12氨基酸。由第三位半胱氨酸C3和第十一位半胱氨酸C11之间巯基氧化形成二硫键环。由于二硫键的存在使得它的结构更趋于稳定。

编号:148873

CAS号:116229-36-8

单字母:H2N-RLCRIVVIRVCR-OH(Disulfide Bridge:C3-C11)

纠错
  • 编号:148873
    中文名称:Bactenecin, bovine
    英文名:Bactenecin, bovine
    CAS号:116229-36-8
    单字母:H2N-RLCRIVVIRVCR-OH(Disulfide Bridge:C3-C11)
    三字母:H2N-Arg-Leu-Cys-Arg-Ile-Val-Val-Ile-Arg-Val-Cys-Arg-OH(Disulfide Bridge:Cys3-Cys11)
    氨基酸个数:12
    分子式:C63H118N24O13S2
    平均分子量:1483.89
    精确分子量:1482.88
    等电点(PI):-
    pH=7.0时的净电荷数:6.91
    酸性基团个数:3.91
    碱性基团个数:亲水
    平均亲水性:0.0083333333333333
    疏水性值:1.03
    外观与性状:白色粉末状固体
    闪点:0 M-1cm-1
    消光系数:-
    来源:人工化学合成,仅限科学研究使用,不得用于人体。
    纯度:95%、98%
    盐体系:可选TFA、HAc、HCl或其它
    储存条件:负80℃至负20℃
    标签:二硫键环肽    抗菌肽(Antimicrobial Peptides AMPs)    细菌肽(Bacterial Peptides)   

  • Bactenecin是一种从牛嗜中性粒细胞中分离出的环状阳离子抗菌肽,序列中一共含有12氨基酸。由第三位半胱氨酸C3和第十一位半胱氨酸C11之间巯基氧化形成二硫键环。由于二硫键的存在使得它的结构更趋于稳定。

    Bactenecin, a cyclic cationic dodecapeptide, was isolated from bovine neutrophil granules. Bactenecin exhibits a remarkable antibacterial activity in vitro which is comparable to that of the defensins.

    二硫键广泛存在与蛋白结构中,对稳定蛋白结构具有非常重要的意义,二硫键一般是通过序列中的2个Cys的巯基,经氧化形成。
     

    形成二硫键的方法很多:空气氧化法,DMSO氧化法,过氧化氢氧化法等。
     

    二硫键的合成过程,  可以通过Ellman检测以及HPLC检测方法对其反应进程进行监测。  
       

    如果多肽中只含有1对Cys,那二硫键的形成是简单的。多肽经固相或液相合成,然后在pH8-9的溶液中进行氧化。      
     

    当需要形成2对或2对以上的二硫键时,合成过程则相对复杂。尽管二硫键的形成通常是在合成方案的最后阶段完成,但有时引入预先形成的二硫化物是有利于连合或延长肽链的。通常采用的巯基保护基有trt, Acm, Mmt, tBu, Bzl, Mob, Tmob等多种基团。我们分别列出两种以2-Cl树脂和Rink树脂为载体合成的多肽上多对二硫键形成路线:
     

    二硫键反应条件选择    
     

     二硫键即为蛋白质或多肽分子中两个不同位点Cys的巯基(-SH)被氧化形成的S-S共价键。 一条肽链上不同位置的氨基酸之间形成的二硫键,可以将肽链折叠成特定的空间结构。多肽分 子通常分子量较大,空间结构复杂,结构中形成二硫键时要求两个半胱氨酸在空间距离上接近。 此外,多肽结构中还原态的巯基化学性质活泼,容易发生其他的副反应,而且肽链上其他侧链 也可能会发生一系列修饰,因此,肽链进行修饰所选取的氧化剂和氧化条件是反应的关键因素, 反应机理也比较复杂,既可能是自由基反应,也可能是离子反应。      

    反应条件有多种选择,比如空气氧化,DMSO氧化等温和的氧化过程,也可以采用H2O2,I2, 汞盐等激烈的反应条件。
     

    空气氧化法: 空气氧化法形成二硫键是多肽合成中最经典的方法,通常是将巯基处于还原态的多肽溶于水中,在近中性或弱碱性条件下(PH值6.5-10),反应24小时以上。为了降低分子之间二硫键形成的可能,该方法通常需要在低浓度条件下进行。
     

    碘氧化法:将多肽溶于25%的甲醇水溶液或30%的醋酸水溶液中,逐滴滴加10-15mol/L的碘进行氧化,反应15-40min。当肽链中含有对碘比较敏感的Tyr、Trp、Met和His的残基时,氧化条件要控制的更精确,氧化完后,立即加入维生素C或硫代硫酸钠除去过量的碘。 当序列中有两对或多对二硫键需要成环时,通常有两种情况:
     

    自然随机成环:       序列中的Cys之间随机成环,与一对二硫键成环条件相似;
     

    定点成环:       定点成环即序列中的Cys按照设计要求形成二硫键,反应过程相对复杂。在 固相合成多肽之前,需要提前设计几对二硫键形成的顺序和方法路线,选择不同的侧链 巯基保护基,利用其性质差异,分步氧化形成两对或多对二硫键。       通常采用的巯基保护 基有trt, Acm, Mmt, tBu, Bzl, Mob, Tmob等多种基团。

    AMPs是由相对较小的分子组成的异质基团,通常含有不到100个氨基酸。 它们最初是在20世纪60年代由Zeya和Spitznagel 在多形核白细胞溶酶体中描述的。 迄今为止,已在数据库(如数据库)中 确定和登记了2600多个AMP。  它们是由几乎所有的生物群产生的,包括细菌、真菌、植物和动物。 许多脊椎动物AMPs是由上皮表面分泌的,如 哺乳动物的气管、舌、肠粘膜或两栖动物的皮肤。 有些在中性粒细胞、单核 细胞和巨噬细胞中表达。 AMPs参与动物和植物的免疫防御系统。 构成表达或诱导它们在抵御微生物入侵者 的第一道防线中起着关键作用。

    结构/分类 AMPs可以根据其氨基酸组成和结构进行分类。 可以区分两大类AMP。

    第一类由线性分子组成,它们要么倾向于采用α螺旋结构,要么富含精氨酸、甘氨 酸、组氨酸、脯氨酸和色氨酸等某些氨 基酸。

    第二类由含半胱氨酸的肽组成, 可分为单一或多个二硫结构。 在许多情 况下,抗菌活性需要存在二硫桥。 大多数AMPs是阳离子肽,但也有阴离子肽,如真皮素,一种富含天冬氨酸 的人肽和两栖动物的最大蛋白H5皮肤。 其他非阳离子AMPs包括神经肽前体分子的片段,如原啡肽A, 芳香二肽主要从二翅目幼虫中分离出来,或从节肢动物或茴香物种的氧结合 蛋白中提取的肽。

    专肽生物可定制合成各类序列的抗菌肽,可标记FITC/FAM/TAMRA等常见荧光素。

    Definition

    Antimicrobial peptides (AMPs) are as widespread as bacterial inactivator molecules in the innate immune systems of insects, fungi, plants, and mammals. These peptides are also known as host defense peptides (HDPs) as they have other immuno-modulatory functions besides the direct antimicrobial actions and are even capable of killing cancerous cells 1,2. 

    Classification

    Three broad categories of HDPs have been identified: 1) the linear peptides with helical structures, 2) the cysteine stabilized peptides with beta-sheet, and 3) a group of linear peptides rich in proline and arginine that primarily have been identified in non-mammalian species. 

    Structural characteristics

    In mammals, cathelicidins and defensins are the two principal AMP families. Cathelicidins are peptides with a conserved proregion and a variable C-terminal antimicrobial domain. Defensins are the best-characterized AMPs, they have six invariant cysteines, forming three intramolecular cystine-disulfide bonds. 

    Mode of action

    The mode of action of AMPs elucidated to date include inhibition of cell wall formation, formation of pores in the cell membrane resulting in the disruption of membrane potential with eventual lysis of the cell. These peptides also inhibit nuclease activity of both RNase and DNase. 

    Functions

    They have a broad ability to kill microbes. AMPs form an important means of host defense in eukaryotes. Large AMPs (>100 amino acids), are often lytic, nutrient-binding proteins or specifically target microbial macromolecules. Small AMPs act by disrupting the structure of microbial cell membranes. It plays an active role in wound repair and regulation of the adaptive immune system. They have multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells, influencing diverse processes such as cell proliferation, wound healing, cytokine release, chemotaxis and  immune induction 3. 

    References 

    1.     Gottlieb CT, Thomsen LE, Ingmer H, Mygind PH, Kristensen HH, Gram L(2008). Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol., 8:205.

    2.     Yeaman MR and Yount NY (2003). Mechanisms of Antimicrobial Peptide Action and Resistance.  Pharmocological Reviews, 55(1).

    3.     Hanna Galkowska H and Olszewski WL (2003). Antimicrobial peptides – their role in immunity and therapeutic potential. Centr Eur J Immunol., 28 (3):138–141.

     

    Definition

    Bacterial peptides are protein fragments which are either part of a bacterium or produced by a bacteria1.

    Classification

    Different classes of peptides are produced by bacteria. Some examples include, antibiotics, enterotoxins, flagellar proteins, lipoproteins and various enzymes1.

    Structural Characteristics

    Structural characteristics of some bacterial peptides are described below-

    A)      Malaria merozoite surface peptide (MSP-1): It is synthesized as a large precursor on the surface of the bacterium Plasmodium falciparum.  Proteolytic cleavage results in the production of a 19 KDa product whose tertiary structure is maintained by disulphide bridges2.

    B)     Giardia variable surface protein: This peptide is the specific conserved region of the Giardia variable surface proteins (VSPs) that are cysteine rich zinc finger proteins. VSPs differ in size and sequence, they are characterized by this highly conserved C-terminal membrane spanning region, a hydrophilic cytoplasmic tail with a conserved five amino acid CRGKA signature sequence3,4.

    C)    P.falciparum liver stage antigen 3: The protein is 200Kda and is highly conserved among parasites from different geographic regions5.

    Mode of action

    A)     MSP-1 is known to trigger antibody response by CD4 helper T cells. It is likely that these cells bind to the C-terminal domain of MSP-12.

    B)     VSPs have a conserved hydrophilic amono acid trail that is palmitoyted by palmityl tranferases upon which they are activated3,4.

    C)    P. falciparum liver stage antigen 3 is a potent antigen that is recongnized by T cells5.

    Functions

    A)     MSP-1 is a vaccine candidate for Plasmodium falciparum infection. It triggers a CD-4 T cell response2.

    B)     VSPs are necessary for survival in the environment and host infection3,4.

    C)    P.falciparum stage antigen 3 is also a good candidate vaccine as it activates both T and B cell responses5.

    References

    1.     Gitai Z (2005). "The new bacterial cell biology: moving parts and subcellular architecture". Cell, 120 (5): 577–86.

    2.     Stuart JQ and Jean L (2001). Different regions of the malaria merozoite surface protein 1 of Plasmodium chabaudi elicit distinct T-cell and antibody isotype responses. Infect Immun, 69(4): 2245–2251.

    3.     Davids BJ, Reiner DS, Birkeland SR, Preheim SP, Cipriano MJ, McArthur AG, Gillin FD (2006). A New Family of Giardial Cysteine-Rich Non-VSP Protein Genes and a Novel Cyst Protein. PLoS ONE, 20,1:e44.

    4.     Touz MC, Conrad JT, Nash TE (2005). A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol Microbiol., 58 (4), 999-1011.

    5.     Jean-Pierre S, Blanca LP, Karima B, Pierra D, Pierra D (2001). DNA Immunization by Plasmodium falciparum liver-stage antigen 3 induces protection against Plasmodium yoelii Sporozoite challenge. Infect Immun., 69, 1202–1206.

  • DOI名称
    10.1016/0167-7799(90)90127-jAntibiotics from within: antibacterials from human and animal sources下载
    10.1021/ac901482sEnhanced electron transfer dissociation through fixed charge derivatization of cysteines下载
  • 暂时没有数据
  • 暂时没有数据